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identical marginal F. Suppose that the insurer

0 Introduction and model . . . . o
positions himself in a discrete-time financial market

Following Refs. [1-5], we consider a discrete- consisting of a risk-free bond with a constant
time stochastic risk model, within period n, a real- periodic interest rate r and a risky stock with a
valued random variable (r.v.) X, is interpreted as periodic stochastic return rate A, supported on
the net payout of the insurance. and these random (—1,22). Moreover, suppose that, at the
variables are assumed to follow Farlie-Gumbel- beginning of each period n the insurer invests a

Morgenstern ( FGM ) distribution type with fraction ®€ [0,1) of his current wealth in the stock
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and keeps the remaining wealth in the bond.
Denote the insurer’s wealth at time n by U,, and
let the initial wealth of the insurer be x==0. Thus
we have the recursive equation

U, =[0—oA+n»+14+2)]U,, —X,.

U =z, n€ N

(D

As usual, the finite time ruin probability is defined
as follows:

(/)(1"9 1’1) — P(mll’lU,<0 ‘ UQ -
0

T

17)9 n— 1929"'

(2)
Denote
Y,, = 1 + An l

1
(1—od+»+=rY,’

where Y, represents the inflation rate stochastic

f(mY,) 1=

accumulation factor of the risky stock and f(m,Y,)
the overall deflation rate/stochastic discount factor
of the investment portfolio during period n.
Obviously, f(=m, Y,) are bounded from above by
positive constants. According to Refs. [4,6], we
call X;, Xp, o

financial risks.

insurance risks and Y., Yy,

We shall assume that the loss distribution is
regularly varying tailed. A distribution F is said to
be regularly varying tailed with regularity index «=>0,
if F(2)=1—F(2)>>0 for all x and

lim 7&&1 )
oo F(x)

holds for all y>>0, denoted by FE %_,. For details
of % , see Refs. [7-8].

Throughout this paper we assume that { X,,
n=1} is a sequence of identically distributed
random  variables  (r.v.s)  with
distribution F on (—co, -00), {Y,, n=1} is

another sequence

common

of nonnegative r.v.s with
marginal distribution G,, n==1, respectively. For
the asymptotic behavior of ruin probability has
been considered widely, see Refs. [3-5,9]. In fact,
the independence assumption is far unrealistic for
so people have started to
Ref. [ 5]

obtained an exact asymptotic formula for ruin

applied problems,

consider some dependence structure.

probability under the condition that any
n-dimensional distribution of the financial risks Y; »
Y, is a multivariate FGM distribution, where,
they still assume that the two sequences { X, , n=1}
and {Y,,n=1} are mutually independent.

Recently, a lot of research has been focused
on random weighted sums for the case that { X,,n
=1} are dependent but independent of the
sequence of {Y,, n=1}, such as Refs. [10-12],
etc. From a more realistic point of view, it is more
interesting to study the case that insurance risk X
and financial risk Y are dependent. However, the
product of dependent r. v. s has not been well
studied, there being only a few papers on this topic
(Refs. [13-15]).

In this paper we assume that these random
vectors from the two sequences jointly follow
multivariate Sarmanov distributions, that is to

says Xiseots Xops Yiseee

multivariate Sarmanov distribution for any m, n€ N.

,Y, are dependent through a

Under these assumptions we obtain asymptotical
relations for finite-time ruin probability of this
stochastic risk model.

The rest of this paper is organized as follows:
Section 1 introduces preliminaries and presents our
main results, Section 2 gives some necessary lemmas

and provides the proof of the obtained theorem.

1 Preliminaries and main results

It is well known that correlation coefficients of
FGM distributions lies between — 1/3 and 1/3
(Ref. [16 ]). Ref. [17] showed that the range of
correlation coefficients can be widened by
considering the iterated generalizaiiori of FGM
distribution proposed by Ref. [18]. To overcome
this limitation several authors suggested various
generalizations. Refs. [ 19-20 ] proposed different
extensions of the FGM. Then there is the
Sarmanov family of distributions, of which FGM is
a special case, see Refs. [21-227.

Let ¢;(x), i=1,+,n, be a set of bounded

nonconstant functions such that
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| ga Pada) =0

for all 1<Xi<{n. We say a random vector Y;,++,Y,
jointly follows a Sarmanov distribution, if it has
the distribution of the form

PCY; € dyi s+, Y, € dy,) =

1= k=llzin

(1+ Z wmﬁk(yh)dn(yl))H(},-(dy,-)(3)
il

where Gy, *+, G, are corresponding distribution

functions of Yy,+-,Y,, respectively, ¢,, ¢, are
kernels, and wy, 1<Ck<I<{n, are real numbers

which satisfy the condition

1+ Z wklgbk(yk)(jn(yz)}O, (y“"'

lslkllsin

’ y”) 6 R

4D

The definition of Sarmanov distribution above

is slightly different from and more general than the
original given in Refs.[23-24 ], see Ref. [9]. Note
that when all of the wy are equal to zero, then (3)
reduces to the independent case. By Theorem 5 of
Ref. [23], we know that any subset (Yu s+t Yi)
1< by < by <<+ <k, < n, is also a Sarmanov

distribution of the form

m

PCA (Y, € dy))=

(14 20w g, () [ Gy (.
i=1

15 i 5 m
Note tha]t
Cov(Y:» Y)) = wy ELY ¢ (YD JELY;46(Y) ],
therefore we can choose w; and ¢;» ¢; such that Y;
and Y; are positively dependent or negatively
dependent. If ¢; =1—2G;, then (3) leads to the
well-known FGM distribution.
Throughout this paper we assume that (X,
vy X,y Yi, o

distribution of the form

. Y,) jointly follows a Sarmanov

PO (X € das 1 (Y, € dy))=

I1 Fcdzo [] G dyp) -
i=1 j=1

(1+ D) wudeCy) diCy)+

1l k=T Isin

2 Cij(l*ZF,(Ig))¢j(yj)+

leseim, 1ss j=in

> a;(1—2 F(x)) A —2F(2)) (5)

l=ii=j5=am

From (5), for any n€ N, m& N we know that X,
FGM

distribution and Y, -, Y, follows a general

-, X, jointly follows a multivariate
Sarmanov distribution. And the two sequences are
not independent.

For m,n €N, let (X{ ,---
be an independent copy of (X,

s Xos Y Y0 )
s X Y e Y ).
That is to say, the former has the same marginal
distributions as the latter which has independent
components. Let (Xj, ===y Xois Y1, ooy YD,
(X Xogs Yooy Yoo, (X{ 5, Xos Y,
-, Y, ) be three independent and identically
distributed random variables. Denote X}y : =X V
X » we then know that X, has density function
2F;(2) F;(da.

For the sake of simplicity, denote

pi(mo) = EL((1—o 0+ 4+ 7Y™,
yi(ma) = E[$; (YDA =m0+ +=xY;) “].
Hereafter all limit relationships are for a—> o
unless stated otherwise, and for two positive
functions f(x) and g(x), we write f(x)~g(x) if
%_igf( /gl =1.

Now we give our main results as follows.

Theorem 1. 1  Let Xy, ==y X0 Yy, ==+, Y,
jointly follow a multivariate Sarmanov distribution
given in (5) with F €% .
p=>a, EY?!<co for all j=1,2,---
PCxs ) ~ F(x) -

Assume that for some
,n. Then

n

E(ﬁ#;(”va)

i=1  j=1

Uk(Tfaa)U[(ﬂ'aa) o
L l,:g,:,wkl e (7ts ) py (s @)

i

Z cyv; (m, a)Hm(rc, a))

Il [
I

In particular, if all kernels ¢; are identical and all
marginal distributions are identical, then

Plx, n) ~

1+[v1(7r,a)]‘ E whz]*
1

F(2 €. )
(r ;<M(n ¢ m(m o) A

w(ms )y (7, ) Z c;_,-).

1 jeli

Now we consider a special case that {(X;,Y,),
i==1} are independent and identical distributed
random vectors. In this case, a; =0, w; =0 for all

i» jJEN, ¢;=10, ¢; =0 for all i¥j. we have the



630 T EAFHERKFFR % 45 &

following corollary:
Let {(X;,Y),i=1} be a

sequence of independent and identical distributed

Corollary 1. 1

random vectors, and ¢; =0, —1<C0<1. Let F €
% ,for some a=>0 and EY?< <o for some p_>a,

then we have for all n=1,2,++,00,

$(asn) ~ %wl(m) — O (1)) F(a)
1 9

(6)

2  Proof of the theorem

For the case that Z and W are independent, it
is well-known that if Z&€ % , for some «a>>0 and
EW<?< oo for some 60, then

lim P(ZW > x)
e P(Z > 2)

This result is usually called Breiman’s theorem,

= EW=-,

see Ref. [25]. Now let us introduce the definition
of the dependence structure of random variables:
quasi-asymptotic independence first introduced by
Ref. [26].
Definition 2.1
variables X; and X, with distributions F, and F,,

Two nonnegative random

respectively, are said to be quasi-asymptotically
independent if

lim —= = =0
ey () 4 Fo ()

By the

independence, we know that if X,

D)

definition of quasi-asymptotical
, X, follow a
joint n~dimension FGM distribution, then X, -,
X, are pairwise quasi-asymptotically independent.
The following two lemmas come from Ref. [ 26 ]
after some minor modifications.

Let X, -

independent

Lemma 2.1 -, X, be n pairwise

quasi-asymptotically real-valued

random variables with marginal distributions

FEeE? .o, F, €% ., respectively. S, = ZX,-,
i1

then it holds that

P(S, > 1) ~ >, Fi( (8
i=1

Lemma 2.2 Let Z; and Z; be two quasi-

asymptotically independent random variables

distributed by Hi €% , and H, €% . respectively.

And let W, and W; be two nonnegative random
variables independent of 7, and Z; such that
EW!<<co and EW!<Cco for some p=>pV 7. Then
the random variables Z, W, and Z;,W, are quasi-
asymptotically independent.

The following lemma extends Breiman’s
theorem to dependent and multivariate case.

Lemma 2.3 Suppose that for any n €N, X, ,
ey X, Yy, e
distribution of the form (5), F&€ %_, and for some

p=>a, EY!<<oo for all j=1,2,:*,n Then

. Y, jointly follows a Sarmanov

PX, J[(Q—nQ+n»+ry)" > ~

il
F,(x) C(n) (9
where

Cln) =

]i[/lj(ﬂy (1)

=1

v (1) vy (s )

1+ >

T o (|

n

Z cyv; (s a)H;x,-(m ).

1= j=in i,'fﬁ'

Proof Denote the distribution function of
(X,sY1,.Y,) by HCx,s yi»***» y,). By the form
(5) of Sarmanov distribution, we have

H(dl?uadyl %0 9dyn) —

F,(dx) [ Gdy) (1+ D) wudeCyo i Cy)+

i=1 1= kel l=in

DV (1 —2F,(x,))¢;(y) )=

L= j=an

F.(dz) [] Gdy) (1+ D wugeCy) ¢iCy) )+
i1

lstk=llsin

F,,(dl-,)ﬁcj(dyj)( 20 e (1—2F, (2,00 $,(3)).
Note thelj‘;12F,x(17) F”(ld:;)nis the density function of
Xy =XiV X3, and let (Y., Y,) be a
random vector independent of (X, -, X, .
Y; .o, Y ) with distribution G,, defined by

G, (dy) = ¢;,(y)G,(dy).
By Ref. [27], EY’ <o for some p > a and

Breiman’s theorem, we have

P(X, [] f(mY) > 2)=
i1

P(X; ] f(mY) > 2)+
i=1
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M, P(X Y | fr Y ) > 2)—
1= j=in i—=1
7]

Z C,,J'P<X,T\/ f(ﬁa?jx)Hf(Tf9Ygx)>I)::
15 j<in R
i7"

P, + P, — Ps.

P~ F(E[ [ (A =0+ +ay)]=
ji=1

= T v (s )y (7 @)
F,,(x)j]'[lﬂ,m, ® [1 +1»\ }le” PRET e

X €9, implies P(X}y > 2) ~2P (X > x) and
Xy e? ., then
P, ~ > ¢,F.(E[$(Y) f(m.Y;)) <]

l=j=in

n

E[ [[ sy =]=

i=1
i7j

n

Fﬂ(l‘) Z C,,jUj(Tfa(X)H}l,(Tfaa)a

1l j<n il
=]

n

P, ~ 2P, ~2F,(x) E ey (7 @) | | pi(ms ).
1 =1
i~

Thus we have
P(X, ] f(mY) > x)~
i=1

Tﬁ,,(x-)(f[#,(n,a)(u Mo M)f
i1

e " e (s o) py (s @)

n

EC“jVj(TE’(X)H}li(Kva))- D

l=j=in i=1
i7j

Lemma 2.4 Let X;,+, X,, Y,
follow a multivariate Sarmanov distribution given
in (5) with F,€%_,, 1<Xi<{n and assume that for
some p=>a, EY?<loo for all j=1,2,+-,n Then
for any 1<C k<I[<{n, the random variables XY, *-*Y,
and X,Y, Y, are quasi-asymptotically independent.
Proof » y.) be the
distribution function of X;s X¢sYy,s+++,Y,, then

H(dfll ’dl‘k’d‘yl [ ’dyn) =

, Y, jointly

Let H ( Tps Tps Mo °°°

Fi(dx) F,(dxp) [] Gi(dy,) -

i1

((1+ Z 'w;dm(yk)@(yz))Jr

T k=ll=n

ayn(1—2F,(x)) (1 —2F,(x)) +
DT ey (I —2F(a)) ¢ (y)) +

1= j=an

Z C1](1 *2F1(11))¢](‘}//))

1< j=n

A
We cut the probability of P( XzH [, Y) >

i1

k
Xi || f(x. Y;) > 2) into four parts. that is

i1

L k
PCX, ] f(mY) = o X ] f(rY) > o) =

i=1 j=1

J 1 o 3 ' H(dl’[ydl'kydyly’"vdyk) =:
o [l sy e [] fmypsa
i=1 =1

Q+Q+Q+Q 10)
First we deal with Q,. From Lemma 2. 3 we know

that

1
PCX, ] f(mY) > 2) ~ Fi(2) CD.
ji=1

1

By Lemma 2.2, we know that X/ H f(mY;) and
il
k

X H f(r,Y;) are quasi-asymptotically independent.

i=1
Following the definition of quasi-asymptotically

independent and Breiman’s theorem, we have

Q =
(1+ Z wkz¢/<(yk)¢1(yl))'

l=ik=lz=mn

Jrl 1_1[ [l YJ ), ﬁ flm YJ Y
i=1 i=1
F/(dxp F(dzo) [] G(dy) =
i=1

L k
PX/ ] S Y) > 2 X0 ] f(mY) > 2 =
i1 i1

L
oD (PCX) ] fCmY) > 2+

il
k
PXi || f(mY) > o) =
i1

ol D(P(X; > x) + P(X, > 2) =

L
o) (PCX, ] f(mY) > o+
i1
k
PCX ] FCmY) > o).
j 1
Next we consider Q;,
Q :j ] k

(o ] s ™Yy, 1T E =S
j=1 i=1

CL/\,I(I - ZI“k(Ik)) *
(1—2F () F(dap) B (dap) [ Gidy) =
i=1
L k
(1,}\.1[P( )([X H f(7['9§/jX ) > x, X}j H f(ijx ) > l)*
=1 i=1

L k
P(Xy ] f(Yy) > 2. X0 ] S Y ) > 2)—
i=1 j=1
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rid
e~
ol
7

1 k
P(X; ] fCmY) > 2. X0y ] £ Y ) > 2)+
i=1 =1

1 k
P(Xiy [T fmY ) > o Xy [ f(mY ) > I)} —.
i1 i1
a}d(Ql —Qy — Qs+ Q).
Note that P( Xy > 2) ~2P(X,>x), by a similar

argument to Q we have

1
Q; =oD(PX, ] f(mY) > 2+

i1

k
PCX ] fCrY) > 2, j=1,2.3.4.

i=1

Armed with the same technic to Q,, we have

l
Q =oD(PX, ] f(mY) > 2+

i=1

k
PCX, [ f(mY) > 20). i = 3,4
i1

Thus the random variables X,Y; =Y, and X,Y; **Y.
are quasi-asymptotically independent. []

Proof of Theorem 1. 1
its positive part is denoted by

' = max{x, 0) =

For a real number x,

x 'V 0.

Clearly, {Y,;,i==1} are nonnegative,

n i k i n i
x|y < ;nf},xz Xx]ly, < 2x [l
i=1 ji=1 S| =1 i=1 i=1

n—= 1.
Lemma 2.3 implies X, [[ Y, € %, for all

i1

1
i=1,*+,n Lemma 2.4 gives that X,HY,- and

i=1

k
XkHYj are quasi-asymptotically independent for

i1

all 1<<[#k<<n. By Lemma 2.1, we have

POIX Y, > o~ DX J]Y, > .
i=1 j=1 i=1 j=1

and
POOIX LY, >~ DX Y, > .
i1 il i1 i1

Note that P(X; [[ Y, > » = P(X[] Y, > o,

il i1

x>0, the rest proof of Theorem 1.1 is trivial.

The proof is completed. ]
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