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Abstract: Let F=Q( /d) be a real quadratic field and e= x+ y/d the fundamental unit of F

satisfying Ny (e) = 1. Some connections between the ramification properties for dyadic prime

ideals in quadratic extension F(/e)/F and congruence properties of x, vy were established. As a
corollary, some congruence properties about x, y were given when d= p; *** p, or 2 p; ** p, with
pr=-++=p,=1 mod 4 being distinct prime numbers.
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. Nyg (e) = 1. In this paper, we establish some
Introduction . e :
connections between ramification properties for

Let d be a square-free positive integer and F= dyadic prime ideals in the relative quadratic

Q(/d) a real quadratic field. Let e= x4 y Jd > 1 extension F([e)/F and congruence properties of x,

be the fundamental unit of F. We assume that y. As a corollary, we give some congruence
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properties about x, y in certain cases.

It is well known that if d=1 mod 8 or d=2,3
mod 4, then x, vy are integers, and if d=5 mod 8,
it can happen that x, y are not integers, if so, then

¢ does have integral coefficients. To avoid fractions,

we will temporarily let e= x+ y Jd, where the
positive integer pair ( x, y) is the fundamental
integer solution to the Diophantine equation
2 —dyt =1 (D

and we shall refer to € as the fundamental integral
unit of F=Q(/d) (cf. Ref.[1,p.273]). Thus, if
d=1 mod 8 or d=2,3 mod 4, the fundamental
unit of F is the fundamental integral unit. If d=
5 mod 8 and the fundamental unit of F is not the
fundamental integral unit, then its third power is
the fundamental integral unit of F.

The aim of this paper is to prove the following
theorem.

Theorem 0. 1
integer and F=Q(/d) a real quadratic field. Let e

be the fundamental integral unit of F. Assume that

Let d be a square-free positive

Nggq(e) =1, we have

@D Suppose d=1 mod 4. Then F([e)/F is
unramified at the dyadic prime ideal(s) of F if and
only if 2=1 mod 32, y=0 mod 8 or =9 mod 32,
y=4 mod 8. F([e)/F is ramified at the dyadic
prime ideal(s) of F if and only if x=31 mod 32,
y=0 mod 8 or =23 mod 32, y=4 mod 8.

@ Suppose d=2 mod 8. Then F([e)/F is
unramified at the dyadic prime ideal of F if and

only if =1 mod 16, y=0 mod 4 or =3 mod 16,

y=2 mod 4. F ([e)/F is ramified at the dyadic
prime ideal of F if and only if x=15 mod 16, y=
0 mod 4 or =13 mod 16, y=2 mod 4.

@ Suppose d=6 mod 8. Then F([e)/F is
unramified at the dyadic prime ideal of F if and only
if =1 mod 16, y¥=0 mod 4 or =11 mod 16, y=

2 mod 4. F([e)/F is ramified at the dyadic prime
ideal of F if and only if ¥=15 mod 16, y=0 mod 4
or =5 mod 16, y=2 mod 4.

xt+vld

@ Suppose d=5 mod 8. If p= 5

>1,

2= y=1 mod 2 is the fundamental unit of F, then
F( ﬁq)/ F is unramified at the dyadic prime ideal of F if
and only if x=3 mod 4; F( ﬁy)/F is ramified at the
dyadic prime ideal of F if and only if =1 mod 4.

We use o to denote the dyadic prime ideal of F
(i. e. , prime ideal of F lying above 2). Let F, be

the completion of F at ¢ and O the ring of

integers of F,. Then F( le)/ F is unramified at o if

F,([e)/F, is an unramified extension. The proof of
Theorem 0. 1 is given in Section 1.

Before proving our theorem, we give a corollary.

Corollary 0.2 Let F=0Q(Jd) be a real
quadratic field and e the fundamental integral unit
of F. Assume that Npq(e) =1, then we have

D If d= p, =+ p, with py=++=p,=1 mod 4
primes, then x=1 mod 32, y=0 mod 8 or =
9 mod 32, y=4 mod 8.

@ If d=2p,++ p, with py=++=p,=1 mod 4
primes, then x=1 mod 16, y=0 mod 4 or =
3 mod 16, y=2 mod 4.

@ If d= p,+** p,=5 mod 8 with p=+=p =
x+2y JE>1
is the fundamental unit of F, then =3 mod 4.

@ If d= p, p»=5 mod 8 with p;= p,=3 mod

1 mod 4 primes and 7= , 7=y=1 mod 2,

%M>1, x=vy=1 mod 2, is

the fundamental unit of F, then =1 mod 4.

4 primes and 7=

In order to prove this corollary, we need a lemma:

Lemma 0, 3 bemma 23] Let F be a real
quadratic number field with the fundamental unit e
and discriminant dp. Suppose Npgq (e) =1, then
there exists a positive square-free integer m
dividing dr such that me is a square in F.

Proof of Corollary 0.2 According to Theorem
0. 1, it suffices to show that F([e)/F is unramified
at every dyadic prime ideal of F in cases O, @, @

and ramified in case @. From Lemma 0. 3, in cases

D, @, @, we have that F(Je) = F( ym) =

QCd. Vm), where m/| py+ p, il d= p,+ p, and
1')7‘81)1"‘1),, if d=2p, - p,. =

Since p=++= p, =

1 mod4, F(le)/F is unramified at any dyadic
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prime ideal of F. In case @, m| p, ps» thus m= p,
or p;(see also Ref. [3,Lemma 3.2]). Since p, =

p2=3 mod 4, F(le)/F is ramified at the dyadic
prime ideal of F. This completes the proof.
Remark 0.4 As Ref. [4] proved, Corollary 0. 2
can also be proved using the method given in Ref. [5].
For other results of congruences for
fundamental units of real quadratic field, the

reader is referred to Ref. [6].

1 Proof of the theorem

In order to prove the theorem, we need three
lemmas.

Lemma 2. 3]

Suppose F=Q, ( V2n)
Then 7= V2n a

Lemma 1. 15

where n is an odd integer.
uniformizer of F and

(1) U¥ (U#)H* and Ui = U U
A+ +HUF 5

2) F(Vi+Z+od+a) =F(Vita) =
F([5) is unramified over F.

Corollary 1.2
F=Q( V2n) a quadratic number field. Let o be the
dyadic prime ideal of F and « & ©;\ ¢ an algebraic

Let n be an odd integer and

integer. Then F([)/F is unramified at ¢ if and only if
a=1,5,3+2 V2nor 7+2 V2n mod .

Moreover, if a=a+0b \V2n and 2| b, then if b=

0 mod 4, F,(/a)/F,is unramified if and only if a=

1 mod 4. If =2 mod 4. then F,([a)/F, is unramified
if and only if a=3 mod 4. Thus, if 2| b, then

F,([o)/F, is unramified if and only if a+ =1 mod 4.
Proof  This follows directly from Lemma
L. 1. L]
Lemma 1.3 Suppose d=5 mod 8, then
(1) If d=13 mod 16, then in the field

Q:(V—=3), Jd= V=3 mod 8.
(2) If d=5 mod 16, then in the field

Q. (V=3), Jd= V—3+4 mod 8.
Proof The proof is similar to Ref. [ 7,

Lemma 2.5].

Let F=Q; (V—3) and w=

Lemma 1.4

% I3 Then F(VITdw) = F(V1+dad) is

an unramified extension of F.

Proof It is clear that F is unramified over Q;
and the residue field of F is F,. Consider the
separable polynomial f(x) = 2* — x— w over F,.
Since Tracer, ¥, (w) =170, f(2) is irreducible over
F, (see Ref. [ 8, Corollary 3. 79]). Since & —ax—w is
a lifting of f(x), the roots (12£ V1+4w)/2 of
2 — x— w give an unramified extension. L]

Now we prove Theorem 0. 1.
@ Let e= x4y /d be

the fundamental unit of F=Q(/d), then ¥ —dy' =
1. Since d=1 mod 4, we must have that 4| y.

Proof of Theorem 0. 1

Moreover, if 8| y, then x= =41 mod 32; if y=
4 mod 8, then 2==9 mod 32. Now we prove that
F,([e)/F, is unramified if and only if =1 mod 4;
F,([e)/F, is ramified if and only if =3 mod 4. In
fact,

szl.erﬁ: I+y+#

C2y=
x+ y mod 8 O,

Thus, F,2Q, (/d), F,(JoL Q, ([d, Va+y).
Since d=1 mod 4. F,([e)/F, is unramified if and
only if x+y=1 mod 4, if and only if =1 mod 4,
because y= 0 mod 4. Similarly, F, ([e)/F, is
ramified if and only if x=3 mod 4. Therefore,
F,([e)/F, is unramified if and only if x=1 mod
32, y=0 mod 8 or x=9 mod 32, y=4 mod 8.
F,([e)/F, is ramified if and only if ¥=31 mod 32,
y=0 mod 8 or ¥=23 mod 32, y=4 mod 8.

@ Let e=x+ yd be the fundamental unit of
F=Q(/d), then 2*—dy*=1. Since d=2 mod 8,
y=0 or 2 mod 4 according to x==1 or £3 mod 8.
Moreover, if 4 | y, then 32 | & — 1, thus
x==+1mod 16; if y=2 mod 4, then X — 1=
8 mod 32, thus = =+ 3 mod 16. Since 2| vy, by

Corollary 1. 2, F,(J©)/F, is unramified if and only if
xt+ y=1 mod 4. Therefore, if y=0 mod 4, then
=1 mod 16; if y=2 mod 4, then =3 mod 16.

Similarly, F,([e)/F, is ramified if and only if x+ V=
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3 mod 4. Therefore, if y=0 mod 4, then x=
15 mod 16; if y¥=2 mod 4, then =13 mod 16.
@ The proof of @ is similar to that of @.

M be the fundamental unit of

@ Let =

F with x, y odd integers. We see that F, X

Q,(V—3) and every element o€ Op can be written
uniquely as a=ao+ a2+ @, 2 + a; 2° + -+, @, € {0,
—14+ V=3

5 .
We first show that in the local field F,,

l.wsof} s where w=

7= w(— 2) or o (— x) mod 4O .
Suppose first that d=13 mod 16, then by
Lemma 1.3, Jd— V—3=0 mod 8. Hence

oy = XAy 1+ V=3
Ui Y 2 2 y

xgy+ JE*Z 73315 xgymod 4,

Since &* —dy =4 and d=13 mod 16, *=13* +4=
vV + (125 +4)= 4" mod 16. If = — y mod 8,

then Ier Y=0 mod 4 and 7= wy=w(— x) mod 4;
if x= y mod 8, then %yzy mod 4 and 9=

(1+w) y=w' (— y)=w(—a) mod 4.
Suppose that d=5 mod 16. Then by Lemma
1.3, Jd— V—3=4 mod 8. Hence

oWy =
%}JrZyE%JrZ mod 4,

because y is odd. Since 2* — dy* =4 and d=
5mod 16, =5y +4=y +4(y + 1=y +

8 mod 16. If =—y+4 mod 8, then %352 mod 4

and 7= wy=w(—2) mod 4; if 2= y+4 mod 8,

then IeryEy+2 mod 4 and 9= (1 + w) y=

w (—y) =/ (— ) mod 4.

Since = o' (— 2) mod 40p , 1=1,2,

n
wi
—axmod 4 Op . Thus we have
lor5orl+4wor 1+ 4« mod 8Ok
:1 if x= 3 mod 4;

3 mod 49, , if =1 mod 4.

By Lemma 1.4, we see that F, ( Vl+4w) =

F,(V1+4d) is the unique unramified extension of
F, of degree two. Thus if x = 3 mod 4,
F,(/p=F,( Vy/)=F, or F,( V1+4w). which
is unramified over F,. If =1 mod 4, let 7/ =
3+40, 0€ O
X —(3+48, it is evident that f(x -+ 1) =
2 +2x—(2+48 is an Eisenstein polynomial.

Thus F, ( f;) = F, ( Vy/w') is a totally ramified

Consider the polynomial f(x) =

extension of F,. Thus, F([p/F is unramified at o

if and only if 2=3 mod 4, F([p/F is ramified at o
if and only if =1 mod 4. U]

Remark 1.5 For d=3 mod 4 a square-free

positive integer, we can also prove that F,([e)/F,

is ramified if and only if y=0 mod 4, where ¢is the

fundamental unit of F=Q( Jd).
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