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Abstract: The problem of non-fragile stabilization is investigated for a class of nonlinear
networked control systems with time-varying input delay and randomly occurring gain
uncertainties. A binary switching sequence obeying a conditional probability distribution is
introduced to govern the randomly occurring gain fluctuation in controller implementation, which
could better reflect the random nature of network-induced phenomena. Attention is focused on
the design of a non-fragile static output feedback controller such that the closed-loop systems is
mean-square asymptotically stable in the presence of network-induced delay and gain
uncertainties. Intensive stochastic analyses and novel inequality bounding techniques are carried
out to achieve the existence condition of the stabilization controller, and the desired controller
gain can be derived by solving a nonconvex feasibility problem via a modified cone complementary
linearization algorithm. Finally, a numerical example is provided to illustrate the effectiveness
and superiority of the proposed stabilization method.
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0 Introduction

In the past decade, with the rapid
development of network technology and the wide
spread of the Internet, the use of networks in
control systems has become popular!™, which
makes it possible for us to remotely control the

Networked

systems (NCSs) are a type of distributed control

large distributed systems. control

systems where the information of system

components is exchanged via communication
networks. Compared with the conventional point-
to-point system connection, the new network-
based control scheme can reduce system wiring,
ease installation and maintenance and increase the
reliability. While NCSs have many appealing
advantages, the insertion of the communication
network in control loops has also brought some
interesting and challenging problems due to

including
[8-9]
b

inherent network-limited bandwidth,

[6-7]

network-induced delays"""*, packet dropouts

Ll and so on, which could

quantization errors
deteriorate system performance and may even
destablize the system.

Recently, the stabilization problem of NCSs
has attracted considerable research interest and fruitful
results have been reported in the Refs. [ 11-15].
Generally speaking, based on the assumption that
system state information is completely available,
state feedback control is the most commonly used
stabilization method. For example, in Ref. [ 14 ],
by assuming that the network-induced delay takes
values in a set and the occurrence probabilities of
delay values are known, the stabilization problem

Under the

consideration of bounded packet loss, the problem

has been investigated for NCSs.

of state feedback stabilization has been studied for
linear systems over networks in Ref. [8]. In Ref.
[11], by constructing a new Lyapunov functional
and by making use of novel bounding techniques

for some cross terms to reduce the conservatism, a

delay-dependent H.. stabilization criterion has been
derived for continuous-time NCSs. On the other
hand,

information

in view of the unavailability of state

in practical engineering systems,
output feedback stabilization has stirred increasing
research attention due mainly to its practicability.
Just to mention a few: in Ref. [12], by taking
network-induced delay, random packet loss and
quantization error into consideration
simultaneously, a static output feedback controller
has been designed to stabilize the nonlinear NCSs.

different
backward and the

channels, the NCSs with short communication

According to the status of packet

dropouts in the forward
delays and packet dropouts have been modeled as
switched systems with four subsystems in Ref. [9]
and the observer-based output feedback controller
has been utilized to exponentially stabilize the
original systems. In Ref. [15], by employing two
Markov chains to model sensor-to-controller (S-C)
and controller-to-actuator (C-A) random network-
feedback

controller has been designed via iterative LMI

induced delays, a dynamic output
approach.

It is worth noting that almost all the reference
mentioned above has been based on the implicit
assumption that the controller can be implemented
exactly. Unfortunately, such an assumption may
not be true in some practical engineering
applications. For example, in practice, controllers
may have a certain degree of errors owing to round-
off in numerical computation, finite word length in
digital systems, the imprecision inherent in analog
systems and the need for additional tuning of
parameters in the finial implementation. Hence,
how to design a controller insensitive to the
variations in its gain, i. e. , the controller is non-
fragile, has received particular attention in recent

years'*'® However, so far, the non-fragile
stabilization problem for nonlinear NCSs with

time-varying delays and gain uncertainties has not
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been adequately investigated, not to mention the

case where gain uncertainties occur in a
probabilistic way.

In this paper, we will be concerned with the
non-fragile stabilization problem for a class of
nonlinear NCSs with time-varying input delays. A
unified static output feedback control law is
adopted to take network-induced delays and gain
uncertainties into consideration simultaneously. In
light of the fact that some network-induced
phenomena may lead to intermittent parameter
changes in practical systems, here the occurrence
of controller gain uncertainties is characterized in a
probabilistic way, which is quite different from
common deterministic and persistent uncertainties
considered in traditional non-fragile control/filter
problems. The main purpose of the paper is to

feedback

controller such that the resulting closed-loop

design a non-fragile static output

system is stabilized in the presence of network-
induced delays and randomly occurring gain

uncertainties. By utilizing Lyapunov stability

theory and some new inequality bounding

techniques, the existence condition of the
stabilization controller is formulated in the form of
nonlinear matrix inequalities, and the desired
controller gain can be derived by solving a
nonconvex feasibility problem via the provided

¢ CCL )

example is

cone complementary linearization

algorithm. Finally, a numerical
exploited to demonstrate the effectiveness of the
proposed stabilization method.

Notation  the notation used in the paper is
fairly standard. The superscript " T" denotes
matrix transposition. R" stands for the
n-dimensional Euclidean space, and R ™" is the set
of all the real matrices of dimension mXn. I and 0
represent the identity matrix and zero matrix,
respectively. The notation X > 0 (respectively,
X==0) means that X is real symmetric and positive
definite ( respectively, positive semi-definite ).
Prob{ * } means the occurrence probability of the

event "« ", and E{ x| y} stands for the expectation

of x conditional on y. In symmetric block
matrices, we use an asterisk * to represent a term
that is induced by symmetry and diag{-:+} denotes

a block-diagonal matrix.
1 Problem statements and formulations

Consider a class of discrete-time systems with
sector-bounded nonlinearity described as follows:
2(et1)=Ax(0)+ F fie, (1)) + Bu(x)
() =Cx(k)

where a(k) € R"is the state vector, u(k) € R? is

(D

the control input, y(x) € R™ is the measured
output, and A, B, C, F are known real constant
matrices with appropriate dimensions. The
nonlinear vector-valued function f C «, <« ) is
assumed to satisfy the following global sector-
bounded condition:

[ [k a(0) — Sa(w ] [ [l a(0) — Sa(w] =0 (2)
where x(k) € R", S, S, € R™" are known real
constant matrices, and S; — S, is a positive defined
matrix.

Remark 1. 1 It is customary that the
nonlinear function f( +, ¢ ) is said to belong to
the sector [ S, S, ],

description in Eq. (2) is quite general and can

Note that the nonlinear

include the usual Lipschitz condition as a special
case, and also covers several other classes of well-
studied nonlinear systems. In recent years, the
control analysis, filtering and fault detection
problems for systems with sector nonlinearities
have been intensively studied™*?

In this paper, we are interested in designing a
static output feedback controller of the following
form:

u(k) = Ky(rx) €D
where K is the controller gain to be determined,
such that the original system (1) is stabilized in a
nonideal networked environment.

As is discussed in Introduction, since the
measurements and control signals are transmitted
over the communication networks with limited
bandwidth, the network-induced delays are often

inevitable in the shared communication channels.
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In addition, inaccuracies or uncertainties do occur
in the controller implementation due to some
unexpected errors, e. g. actuator degradations,
roundoff errors in numerical computation,
additional tuning of parameters and so on. Thus,
by taking the communication delays and
uncertainties into consideration simultaneously,
the non-fragile output feedback control law can be
described preferably by
u() = [K+ () AK]y(k— (k) 4)
where the matrix AK represents norm-bounded
parameter uncertainties satisfying
AK = M, F(x) N;.
where M, and N, are known real constant matrices
F (k) is a time-

which
F' (k) F(o)<< Y1, where the positive scalar ¥

with appropriate dimensions.
varying  uncertain  matrix satisfies
stands for the amplitude of the uncertainty. The
stochastic variable « (k) € R is a Bernoulli-
distributed white sequence, which is introduced to
characterize the random fluctuation of controller
gain in the implementation. A natural assumption
on a(k) can be made as follows:

Prob{a(k) =1}=E{alk)}=a

Prob{a() =0}=1—FE{a(0}=1—a
(k) enotes network-induced delay satisfying

7, << () < v

where 7, and ©y are known nonnegative integers

(5

representing the lower and upper bounds of the
time-varying delays, respectively.

Remark 1. 2
described in Eq. (4) is proposed to take the

A unified control law model

randomly occurring parameter uncertainties and

communication delay into consideration,
simultaneously. Although the problem of non-
fragile control has attracted particular research
interests in recent years. the existing results have
mainly concentrated on deterministic and persistent

s ,23,24
uncertamnes[lg’ 4

In reality, however, the
occurrence of uncertainty in the controller gain
may be random and intermittent owing to abrupt
structural and parametric changes arising some

network-induced phenomena, such as random

failures and repairs of communication components,
sudden environmental disturbances in network
channels, changing subsystem interconnections,

tCEZ}ZG] .

e Therefore, it could better reflect the

reality of the gain fluctuation in controller
implementation to formulate the gain changes into
a stochastic framework especially in an unreliable
networked environment.

Substituting Eq. (4) as u(k) into Eq. (1), we
obtain the closed-loop system as follows:

dk+1) = Ac(w + Ff (ks () + BK; ale— «w0))  (6)
where K; =[K+a(k) AK]C.

It should be noticed that the closed-loop
system (6) is actually a stochastic system with
time-varying delays and parameter uncertainties, in
which the stochastic variable a(x) is employed to
characterize the phenomenon of randomly occurring
parameter uncertainties, and t(k) represents the
network-induced delay. The randomicity of the
parameter changes makes the analysis and
synthesis more complicated than that of ordinary
time-delay systems. To deal with the stochastic
parameter systems, the following definition should
be first introduced for the stability analysis.

Definition 1. 1 The stochastic parameter
system (6) is said to be robustly asymptotically
mean-square stable if

E{( [ (o [ 7} =0 as k>0
for any initial conditions and all admissible
uncertainties.

In the following, we will concentrate on
stability analysis and controller design for system
(6) with time-varying delays and stochastic

parameter uncertainties.
2 Stability analysis

Before proceeding further, we first give the
following lemmas that are essential in establishing
our main results in this paper.

Lemma 2. 17 Let Y, (). Y, (p)y oor,
Yy(p, be quadratic function of n&€ R", Y, () =
YITTiYI, i=0,1,2,+, 0 with T,= T,7. Then the

implicationY; () << 0.+, Yy (D <0=>Y, (1) <0
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holds if there exist nonnegative scalarsi;, ===, Ay

such that

0

— D>IAT, <0

i1
Lemma 2. 211 Suppose 7, << (k) < 7y,
>,=2>.7, i=1.2,and ® = P'are some constant
matrices with appropriate dimensions, then

(el — )2+ (t,— () 2, +P<X0 holds if

and only if the following inequalities hold:
(—) >y, + @< 0s(y— 1) >, , +®<0,

The following theorem provides a sufficient
condition under which the closed-loop system (6)
is asymptotically mean-square stable.

Theorem 2. 1 Let the scalars 7,» tms a and the
Then, the

closed-loop system (6) is robustly asymptotically

controller gain matrix K be given.

mean-square stable if there exist matrices P~>0,
Q>0(i=1,2,3), Rj>0(;=1,2), M, N, S, T

and a scalar =0 such that the following matrix

inequality.
6 * * * * * 7
B B * * * *
G 0o 6 * * *
<0 (D
B 0 0 CF * %
.N 0 0 0 — 1Ry *
L I, 0 0 0 0 By
holds for k=1,2, where
On=2+a+0", t=w— ., +1;
D=
B = * * * % ]
0 —Q * * *
0 0o —Q x|
0 0 0 —Q *
0. 5u(S;+ S 0 0 0 —pl
Q=[N'S' M' —=N'—S'"+T"'"—M"—T" 0];

E=Q+Q+7Q—P—0.5u(S,"S,+S,7S)

A 0 BK, 0
0, = H
0 0 BBK, 0 O

iPl %
®22:[

O —P 1:" K(;:(K+aA K)C,

K,=AKC, B Va )9 = ™M™ Tms

[TNI(A ) ‘L"\/[BK O ‘L'MI"‘}
0 wpBKy, 0 0 ]’

0
0
iRy TRzl *
a.-| e
0 T\/[Rl 0 TRzl
0

[TM(AI) BK, 0 %P]
: PBBK, 0 0]

31

0 0

w[i] n-f e[ )
ol el Lo =Ry

Proof is omitted here. If need, you can
contact with author.

Note that the stability criterion (7) in
Theorem 2. 1 is not a strict LMI condition due to
terms and the

the existence of uncertain

coexistence of Lyapunov matrices and their

inversions. In what follows, we are devoted to
establishing an alternative sufficient condition for

the controller design problem.
3 Controller design

Based on the stability criterion presented in
section 2, the following theorem will present a
sufficient condition for the existence of the non-
fragile stabilization controller, which ensures that
(6 ) s

asymptotically mean-square stable in the presence

the closed-loop system robustly
of randomly occurring uncertainties and time-
varying delays.
Theorem 3.1 Let the scalars 7, ty and « be
given. Then, there exists a non-fragile output
feedback controller in the form of (4) such that the
closed-loop system (6) is robustly asymptotically
mean-square stable if there exist matrices P>0, Q,
>0(i=1,2,3), R>0(j=1,2), y>0, U>0, V>
0, M, N, S, T and scalars e>0, x>0 satislying:

W, * * * * * *
W, W, * * * * *
I 0 U, * * * *

v 0 0 W * * * | <0 (&)
N 0 0 0 —gR  x  x

oL o o0 o0 0o @
L0 A 0 0 —el

Py=1, RRU=1, RiV=1 D)

fOl’ K — 19 29 Where H,ca @(;[;

are given in
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Eq. (7), and
‘I’M=®“+diag{0, O’ EYZCTN}‘Nl(:’ O’ O},

A 0 BKC 0 F —y
Wy, = s W= H
0 0 0 0 0 0 —X

(A—D 0 BKC 0 F
Yy =" f
0 0 0 0 0O

(A—D 0 BKC 0 *
\I/,i] =T ’ \E% M H
0 0 0 0 0 U
=V x L
?1,|T|: 0 v:| ’ \I";g:[aMllBl ‘BMllBl];
\PTJ. = TMw72 ’ Wm - %\1’72
Proof In order to eliminate the uncertain
terms, we rewrite Eq. (7) as the following form:
r e, * * * * * 7
Wy By * * * *
v, 0 G * * *
4
vy 0 0 Oy * *
TmN 0 0 0 7 Tle *
L II, 0 0 0 0 (O

ly [0 Wy Wy Wy 00" F()[$00000]+

iy (4000001 F* ([0 W, ¥, ¥, 00]< 0 (10)

Because of % FT (k) F(x) <I, according to

Schur complement, we know that Eq. (10) holds if

and only if there exists scalar €0 such that

@ x x % * % %
o 6y * * * * *
T 0 @ x * * *
¥, 0 0 6y * * * | <0 D
N 0 0 0 —.R *
1L 0 0 0 0 B *
L0 W ¥ W 0 0 —el|

Then, by defining y=P ', U=R, ' and V=
R, ', we readily obtain Eqgs. (8) and (9), and the
proof is completed.

Notice that the design criteria in the above
theorem are not strict LMI conditions due to the
existence of matrix equality constraint (9). This
means that the direct computation of the desired

controller gain K becomes infeasible. However, as
discussed in Ref. [ 28], we can use the CCL

algorithm to formulate it into a sequential

optimization problem subject to LLMI constraints.
Using the CCL approach, we suggest the

following nonlinear minimization problem involving

LLMI conditions instead of the original nonconvex

feasibility problem formulated in Theorem 3. 1.
Minimize tr{ Py+ R U+ R, V}

subject to Eq. (8) and

P I R, I R, I
=0, =0, =0 (12
I I U 1 V

According to the basic idea of CCL, if the
solution to the above minimization problem is 3n,
that is,

Minimize tr{ Py+R U+R,V=3n},

then the conditions in Theorem 3. 1 are solvable. It
is worth mentioning that although the above
optimization problem (12) may not necessarily
always find the global optimal solution, the
adopted nonlinear minimization problem is much
easier to solve than the original nonconvex
feasibility problem.

algorithm  for

feedback

Specifically, the iterative

designing  the non-fragile output
controller can be outlined as follows.

Algorithm 3. 1
feedback controller gain matrix K.

Step 1  Find a feasible set (P', Q°, Q°,
Q" R, R, ¥, U, V', K. M', N, §, T,
1 &) satisfying Eqgs. (8) and (12). Set «=0.

Step 2
problem

Minimize tr{ P+ Py*+ R U+ R U+ R“V+R, V*}

subject to Egs. (8) and (12).

Step 3

variables into Eq. (11). If the condition (11) is

Find the non-fragile output

Solve the following minimization

Substitute the obtained matrix

satisfied with
ltr{ Py + Py + R“U+ RU+ R*V+ RV} —6n| <o
for a sufficient small scalar §>>0, then output the
feasible solution, EXIT.

Step 4
number of the iterations allowed, EXIT.

Step 5 Otherwise, set k=x+1, (P, QF*,
Q" Q* Ri*y Ry ¢ U, V5, K*y M*, N, S7,

If kx> N, where N is the maximum
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’I‘K’ la", SK):(P’ le sz Qj,y Rly Rzy Xv U7 V7
K, M, N, S, T, u, & and go back to Step 2.

4 Numerical example

In this section, a numerical example is
provided to illustrate the effectiveness of the
proposed  non-fragile  stabilization  scheme.
Consider the discrete-time nonlinear system (1)
and the non-fragile output feedback controller
described by Eq. (4), where the system parameters

are given as follows:

0. 8187 0 —0.955 — 0. 85]
A= 1{0.1722 0.8048 —0.0094|, B= 0.06 |,
L 0 0 1. 050 0.25
[0.01 O 0 X
1 1 0
F=10.01 O o |, C= s x= |23 |,
1 0 1
L 0 0 0.01 X3
—0.7x +0.052; +0. 052
—0.052, +0. 85
ey ) = , ,
—0.052; —0.4752 + S0
-7312 Jrl‘zz Jrl‘sz
—0.5 0.1 0 —09 0 0.1
S = 0 0.9 0 , S = |—01 0.8 0 s
—0.1 0 —O. 0 0 —0.7
M 0.2 0.11, N {0.1 O.IJ
LT O o2 0.3 )0
1. 1sin(k) 0
F(r) = .
0 1. 1cos(k)

Since the eigenvalues of A are {0. 8048,
0.8187, 1. 05}, the system is unstable without a
stabilization controller. It can be easily checked
that the above nonlinear vector-value function f(«,
x(k)) satisfies the sector-bounded condition (2).
Assume that the occurrence probability of the
controller gain uncertainties is a= 0. 8, and the
time-varying communication delay z(x) uniformly
distribute in the interval [1, 2]. By utilizing the
CCL algorithm developed in section 3, we can
obtain the non-fragile output feedback controller
gain K=[0.1959,—0.2921].

Similarly, if we select communication delay
(k€[ 1, 4], the corresponding controller gain can

also be obtained from Theorem 3. 1:

K=1[0.1457, —0.2623].

To illustrate the stochastic stability of the
closed-loop system, the initial condition of the
state is chosen as x(0)=[0.15, 0, —0. 15]*. For
=2 and vy =14, the closed-loop state responses
are depicted in Figs. 1 and 2, respectively. We can
see that the state variables asymptotically converge
to zero in spite of the existence of time delays and
randomly occurring gain uncertainties. This shows
effectiveness of the proposed non-fragile controller
design procedure in Theorem 3. 1. Furthermore, it
is also obvious that a larger upper bound of time
delay will lead to a slower convergence speed of the
state. This means that the communication delay
has a significant effect on system stability in

networked environment,

0.15 |
\ - X
— X

0.10 - X3

0.05 |
0 - .I___.._.__.____.._.__

-0.05
-0.10

-0.15

-0.20

0 20 40 60 80 100 120 140 160 180 200
time step k

Fig. 1 State responses under the non-fragile

stabilization controller with 7, =2

0.15
0.10
0.05

-0.05
-0.10
-0.15

-0.20

0 20 40 60 80 100 120 140 160 180 200

time step &

Fig.2 State responses under the non-fragile

stabilization controller with 7,, =4

In order to show the advantages of the
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proposed non-fragile stabilization method, we

make a comparison between the non-fragile
stabilization scheme and the conventional one. In
the conventional stabilization scheme, the
randomly occurring gain uncertainties are not taken
into account during the controller design.
According to Theorem 3. 1 by setting a= 0 and
Y=0, a common output-feedback controller gain
can be derived as follows:
K=[0.0993, —0.1992],

that is, a delayed output-feedback control law u( k)
=1[0.0993, 0.1992]y(k— (k) is adopted. In this
case, the closed-loop system dynamics are shown

in Fig. 3.

0.15
0.10
0.05 -‘r"“‘.

ol
-0.05
0.10

-0.15 |

-0.20

0 20 40 60 80 100 120 140 160 180 200
time step k

Fig.3 State responses under the conventional

stabilization controller

From the contrastive simulation results, it is
clear that the convergence speed of the states under
the non-fragile controller is much faster than that
under the conventional one. This implies that it is
essential to take randomly occurring gain
uncertainties into

design.  The

superiority of the non-fragile stabilization scheme

consideration in controller

comparison also indicates the

developed in this paper.
5 Conclusion

In this paper, the non-fragile stabilization
problem has been investigated for class of
nonlinear NCSs with network-induced delays and
gain uncertainties. Different from traditional
deterministic and persistent uncertainty considered

in most of the existing reference, the controller

gain uncertainties under investigation has been
allowed to occur in a probabilistic way. By defining
new Lyapunov functional and by making use of

novel inequality bounding techniques, the

existence condition for the non-fragile stabilization
controller bas been derived in the form of nonlinear
matrix inequalities, and a modified CCL procedure

has been exploited to solve the nonconvex

feasibility problem. Finally, a simulation example
has been provided to demonstrate the effectiveness

of the theoretical results presented in this paper.
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