Vol. 45, No. 7 Jul. 2 0 1 5

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2015)07-0588-06

# Construction of optimal codes with Homogeneous distance

# DING Jian, LI Hongju

(Department of Common Courses, Anhui Xinhua University, Hefei 230088, China)

Abstract: Based on the torsion codes of a  $(1+\lambda u)$  constacyclic code with arbitrary length over  $R_{(p^m,k)}=F_{p^m}\lceil u\rceil/< u^k>$ , a bound for the homogeneous distance of a  $(1+\lambda u)$  constacyclic code with an arbitrary length over  $R_{(p^m,k)}$  is obtained and the exact homogeneous distances of some  $(1+\lambda u)$  constacyclic codes over  $R_{(p^m,k)}$  are determined, where  $\lambda$  is a unit of  $R_{(p^m,k)}$ . Furthermore, a new distance-preserving Gray map from  $R_{(p^m,k)}^N$  (Homogeneous distance) to  $F_{p^m}^{p^{m(k-1)}}$  (Hamming distance) is defined. It is proved that the Gray image of a linear  $(1+\lambda u)$  constacyclic code of arbitrary length over  $R_{(p^m,k)}$  is a linear code over  $F_{p^m}$ , and some optimal linear codes over  $F_2$ ,  $F_3$ , and  $F_4$  are constructed under this Gray map.

Key words: Optimal code; Constacyclic code; Homogeneous distance; Gray map

**CLC number:** TN911. 22 **Document code:** A doi: 10.3969/j.issn.0253-2778.2015.07.013

Citation: DING Jian, LI Hongju. Construction of optimal codes with Homogeneous distance [J]. Journal of University of Science and Technology of China, 2015,45(7): 588-593.

# 利用齐次距离构造最优码

## 丁 健,李红菊

(安徽新华学院公课部,安徽合肥,230088)

摘要:利用  $R_{(p^m,k)} = F_{p^m}[u]/< u^k>$ 上任意长度的 $(1+\lambda u)$ 常循环码的挠码得到了  $R_{(p^m,k)}$ 上任意长度的 $(1+\lambda u)$ 常循环码的齐次距离的界,并确定了  $R_{(p^m,k)}$ 上某些 $(1+\lambda u)$ 常循环码的齐次距离的准确值,其中  $\lambda$ 是  $R_{(p^m,k)}$ 上的单位。此外,定义了从  $R_{(p^m,k)}^N$  (Homogeneous 距离)到  $F_{p^m}^{pm(k-1)}$  (Hamming 距离)的一个新的保距 Gray 映射,得到  $R_{(p^m,k)}$ 上任意长度的线性 $(1+\lambda u)$ 常循环码的 Gray 像是  $F_{p^m}$ 上的线性码,构造了  $F_2$ 、 $F_3$ 和  $F_4$ 上的一些最优线性码。

关键词:最优码;常循环码;Homogeneous 距离;Gray 映射

## 0 Introduction

Distance is a very important indicator of the quality of a code, and has thus been attracted much attention. In Ref. [1], the distributions of the

Hamming distances, Lee distances and Euclidean distances of a (1+u) constacyclic code with length  $2^s$  over  $F_2 + uF_2$  were determined by Deng et al. In Ref. [2], Shi et al investigated the Homogeneous

**Received**: 2015-01-28; **Revised**: 2015-06-10

Foundation item: Supported by National Natural Science Foundation of China (61370089), Anhui Province Natural Science Research (KJ2015A308) and Natural Science Project of AnHui Xinhua University (2014Zr009).

Biography: DING Jian (corresponding author), male, born in 1982, Master/lecture. Research field: Algebraic coding. Email: dingjian\_happy@163.com

distance of a (1+u) constacyclic code with length  $2^{s}$  over  $F_{p^{m}}[u]/\langle u^{k} \rangle$  , which was extented to  $(1+\lambda u)$  constacyclic codes with length  $p^s$  over  $R_{(p^m,k)}$  by Liu et al in Ref. [3] for any unit  $\lambda \in$  $\mathrm{al}^{[4]}$ Zhu et discussed  $R_{(p^m,k)}$ . Homogeneous distance of a (1 + u) constacyclic code with an arbitrary length over  $R_{(p^m,k)}$ . Besides, Gray map is a bridge that connects a code over a ring with a code over finite field. In Ref. [5], a distance-preserving Gray map from  $(F_2 + uF_2)^N$ (Lee distance) to  $F_2^{2N}$  (Hamming distance) was defined by Qian et al, and the resulting Gray image of a single-root (1+u)-constacyclic code over  $F_2$ + uF2 is a binary linear cyclic code, based on which several binary optimal linear codes constructed under the Gray map. It was extended to  $F_{2^m}[u]/\langle u^k \rangle$  by Jian et al<sup>[6-7]</sup>. Kai et al <sup>[8]</sup> showed that the Gray image of a linear  $(1 + \lambda u)$ constacyclic code (Gray distance) of an arbitrary length over  $F_p + uF_p$  was a distance invariant linear code (Hamming distance) over  $F_p$ . In Ref. [9], Amarra et al derived that the Gray image of a single - root (1 - u) constacyclic code (Homogeneous distance) over  $F_{p^m} + uF_{p^m}$  was a quasi-cyclic code (Hamming distance) over  $F_{p^m}$ . Furthermore, two optimal codes over  $F_4$  were constructed. Later, the result of Ref. [9] was extended to single-root  $(1 + u^{k-1})$  constacyclic codes and single-root  $(1-u^{k-1})$  constacyclic codes over  $R_{(p^m,h)}$  in Refs. [10-11] respectively, but optimal codes were not given.

In this paper, we give a bound for the homogeneous distance of a  $(1+\lambda u)$  constacyclic code of an arbitrary length over  $R_{(p^m,k)}$  and the exact homogeneous distances of some  $(1+\lambda u)$  constacyclic codes over  $R_{(p^m,k)}$  are determined, where  $\lambda$  is a unit of  $R_{(p^m,k)}$ . Furthermore, a new distance-preserving Gray map from  $R_{(p^m,k)}^{N_m}$  (Homogeneous distance) to  $F_{p^m}^{p^m(k-1)}$  (Hamming distance) is defined, and some optimal linear codes over  $F_2$ ,  $F_3$  and  $F_4$  are constructed via the Gray map.

#### 1 Preliminaries

Let  $R_{(p^m,k)}$  denote the polynomial residue ring  $F_{p^m}[u]/\langle u^k \rangle$ , where positive integer  $k \ge 2$ , p is a positive prime number and  $u^k = 0$ . Let n and p be relatively prime, if  $x^n - 1 = f_1 f_2 \cdots f_j$  is the factorization of  $(x^n-1)$  into a product of monic basic irreducible pairwise coprime polynomials in  $F_{p^m}[x]$ , then this factorization is unique and can be directly carried over  $R_{(p^m,k)}$  from over  $F_{p^m}$ . Let C be a code of length  $N = p^e n$  over  $R_{(p^m,k)}$ , where eis a non-negative integer. For some fixed unit  $\alpha$  of  $R_{(p^m,k)}$ , the  $\alpha$  constacyclic shift  $\tau_{\alpha}$  on  $R_{(p^m,k)}^N$  is the shift  $\tau_{\alpha}(c_0, c_1, \cdots, c_{N-1}) = (\alpha c_{N-1}, c_0, c_1, \cdots,$  $c_{N-2}$ ). The code C is said to be an  $\alpha$  constacyclic code if  $\tau_a(C) = C$ . Now, we identify a codeword  $c = (c_0, c_1, \cdots, c_{N-1})$  with its polynomial representation  $c(x) = c_0$ ,  $c_1 x$ , ...,  $c_{N-1} x^{N-1}$ , then xc(x) corresponds to an  $\alpha$  constacyclic shift of c(x) in the ring  $R_{(p^m,k)}[x]/\langle x^N-\alpha \rangle$ . Thus  $\alpha$ constacyclic codes of length N over  $R_{(p^m,k)}$  can be identified as ideals in the ring  $R_{(p^m,k)\lceil x\rceil}/\langle x^N-\alpha\rangle$ .

In Ref. [12], the notion of homogeneous weight on arbitrary finite chain rings was defined. The homogeneous weight of  $a \in R_{(p^m,k)}$  is given by

$$w_{\text{hom}}(a) = \begin{cases} p^{m(k-1)}, & a \in u^{k-1} R_{(p^m,k)} \setminus \{0\} \\ p^{m(k-1)}(p^m-1), & a \in R_{(p^m,k)} \setminus u^{k-1} R_{(p^m,k)} \\ 0, & a = 0 \end{cases}$$

This extends to a weight function on  $R_{(p^m,k)}^{N_m,k}$ . For  $c=(c_0, c_1, \cdots, c_{N-1}) \in R_{(p^m,k)}^{N_m,k}$ , we define  $w_{\text{hom}}(c) = \sum_{i=0}^{N-1} w_{\text{hom}}(c_i)$ . The homogeneous distance  $d_{\text{hom}}(X, Y)$  between any two distinct vectors  $X, Y \in R_{(p^m,k)}^{N_m,k}$  is defined to be  $w_{\text{hom}}(X-Y)$ . The minimum homogeneous distance of any two distinct codewords of C is called the homogeneous distance of C, which is denoted by  $d_{\text{hom}}(C)$ .

Any  $a \in r_{(p^m,k)}$ , it can be written uniquely as  $a = \sum\limits_{i=0}^{k-1} u^i r_i(a)$ , where  $r_i(a) \in F_{p^m}$  for  $0 \leqslant i \leqslant k-1$ . Let  $\overline{a} = R_0(a)$  and  $(C: u^\eta) = \{c \in R^N_{(p^m,k)} \mid u^\eta c \in C\}$  for  $0 \leqslant \eta \leqslant k-1$ . If C is a  $(1+\lambda u)$  constacyclic code of length N over  $R_{(p^m,k)}$ , then  $(C: u^\eta)$  is also a

 $(1+\lambda u)$  constacyclic code of length N over  $R_{(p^m,k)}$  and  $(C:u^i)\subseteq (C:u^{i+1})$  for  $0\leqslant i\leqslant k-1$ . Besides,  $\overline{(C:u^\eta)}$  is called the  $\eta$ th-torsion code of C, which is denoted by  $\operatorname{Tor}_\eta(C)$ . Obviously,  $\operatorname{Tor}_\eta(C)$  is a cyclic code over  $F_{p^m}$  of length N.

#### 2 Homogeneous distance

In the following, we suppose  $x^n-1=f_1 f_2 \cdots f_j$  is the factorization of  $(x^n-1)$  into a product of monic basic irreducible pairwise coprime polynomials in  $F_{p^m}[x]$ , then the following lemmas is straight forward from Theorem 4 and Lemma 3 of Ref. [13].

**Lemma 2.**  $\mathbf{1}^{[13]}$  Let C be a  $(1 + \lambda u)$  constacyclic code of length  $N = p^e n$  over  $R_{(p^m,k)}$  for any unit  $\lambda \in R_{(p^m,k)}$ , then  $C = \langle \prod_{i=1}^j f_i^{k_i} \rangle$ , where non-negative integer  $0 \leqslant k_i \leqslant kp^e$  for  $0 \leqslant i \leqslant j$ . Furthermore,  $|C| = p^{m(kN-e)}$ , where  $\epsilon = \sum_{i=1}^j k_i \deg(f_i)$ .

Lemma 2.2 Let  $C = <\prod_{i=1}^{J} f_{i}^{\theta_{i}^{(\eta)}}>$  be a  $(1+\lambda u)$  constacyclic code of length  $N=p^{e}n$  over  $R_{(p^{m},k)}$ , then  $<\prod_{i=1}^{J} f_{i}^{\theta_{i}^{(\eta)}}>\subseteq (C:u^{\eta})$ , where  $<\prod_{i=1}^{J} f_{i}^{\theta_{i}^{(\eta)}}>$  is a  $(1+\lambda u)$  constacyclic code over  $R_{(p^{m},k)}$  of length N for  $0 \le \gamma \le k-1$  and  $\theta_{i}^{(\eta)} = k_{i} - \min\{p^{e}\eta, k_{i}\}$ .

**Proof** For any  $h(x) \in \langle \prod_{i=1}^{J} f_i^{k_i} \rangle$ , there exsits  $g(x) \in R_{(p^m,k)}[x]/\langle x^N - (1+\lambda u) \rangle$  such that  $h(x) = g(x) \prod_{i=1}^{J} f_i^{\theta_i^{(i)}}$ . Thus,

$$\begin{split} u^{\eta}h(x) &= \left[\lambda^{-1}(x^{N}-1)\right]^{\eta}g(x)\prod_{i=1}^{j}f_{i}^{\varrho_{i}^{(\eta)}} = \\ \lambda^{-\eta}(x^{n}-1)^{p^{\ell}\eta}g(x)\prod_{i=1}^{j}f_{i}^{\varrho_{i}^{(\eta)}} = \lambda^{-\eta}g(x) \\ \prod_{i=1}^{j}f_{i}^{\varrho_{i}^{(\eta)}+p^{\ell}\eta} &= \\ \lambda^{-\eta}g(x)\prod_{i=1}^{j}f_{i}^{k_{i}+p^{\ell}\eta-\min\{p^{\ell}\eta,k_{i}\}} \in C, \end{split}$$

this gives the proof.

**Lemma 2.3** Let f(x) be a monic divisor of  $(x^n-1)$  in  $F_{p^m}[x]$ . Then, for any positive integer l,  $< f^{p^e+l}(x) > = < f^{p^e}(x) >$  in  $F_{p^m}[x]/<(x^N-1)>$ .

**Proof** Let  $\hat{f}(x) = (x^n - 1)/f(x)$ . Since f(x) and  $\hat{f}(x)$  are coprime in  $F_{p^m}[x]$ , it follows that  $f^l(x)$  and  $\hat{f}(x)$  are coprime in  $F_{p^m}[x]$ . Hence, there exist  $\mu(x)$ ,  $\nu(x) \in F_{p^m}[x]$  such that  $\mu(x) f^l(x) + f^l(x) = 0$ 

 $\wp(x)\hat{f}^{p^e}(x)=1$ . Computing in  $F_{p^m}[x]/<(x^N-1)>$ , we have

 $\mu(x) f^{p^e+l}(x) = [1 - \nu(x) \hat{f}^{p^e}(x)] \hat{f}^{p^e+l}(x) = f^{p^e}(x),$  this gives the proof.

The following lemma is from Theorem 1 of Ref. [14].

**Lemma 2.4** If C is a linear code over  $R_{(p^m,k)}$ , then  $|C|=\prod_{\eta=0}^{k-1}|\operatorname{Tor}_{\eta}(C)|$ .

Theorem 2.1 Let  $C = \langle \prod_{i=1}^{j} f_i^{k_i} \rangle$  be a  $(1 + \lambda u)$  constacyclic code of length  $N = p^e n$  over  $R_{(p^m,k)}$ , then  $\operatorname{Tor}_{\eta}(C) = \langle \prod_{i=1}^{j} f_i^{e_i \eta} \rangle$  is a cyclic code over  $F_{p^m}$  of length N, where  $\tau_i^{(\eta)} = \min\{p^e(\eta+1), k_i\} - \min\{p^e \eta, k_i\}$  for  $0 \leq \eta \leq k-1$  and  $1 \leq i \leq j$ .

**Proof** From Lemmas 2.2 and 2.3, we get

$$\begin{split} \operatorname{Tor}_{\eta}(C) &= \overline{(C; u^{\eta})} \supseteq \overline{\langle \prod_{i=1}^{j} f_{i}^{\varrho_{i}^{(\eta)}} \rangle} = \langle \prod_{i=1}^{j} \overline{f_{i}}^{\varrho_{i}^{(\eta)}} \rangle. \\ \operatorname{So, in } F_{p^{m}} \llbracket x \rrbracket / (x^{N} - 1), \operatorname{Tor}_{\eta}(C) \supseteq \langle \prod_{i=1}^{j} f_{i}^{\varrho_{i}^{(\eta)}} \rangle = \\ \langle \prod_{i=1}^{j} f_{i}^{\min(p^{e}, \varrho_{i}^{(\eta)})} \rangle = \langle \prod_{i=1}^{j} f_{i}^{\tau_{i}^{(\eta)}} \rangle. \\ \operatorname{Since} &| \prod_{i=1}^{j} f_{i}^{\tau_{i}^{(\eta)}} \rangle| = p^{m \llbracket N - \sum\limits_{i=1}^{j} \tau_{i}^{(\eta)} \operatorname{deg}(f_{i}) \rrbracket}, \text{ then} \\ \prod_{\eta=0}^{k-1} |\operatorname{Tor}_{\eta}(C)| \geqslant \\ &| p^{m \sum\limits_{i=1}^{k-1} \lceil N - \sum\limits_{i=1}^{j} \tau_{i}^{(\eta)} \operatorname{deg}(f_{i}) \rrbracket} = p^{m \llbracket kN - \sum\limits_{i=1}^{j} k_{i} \operatorname{deg}(f_{i}) \rrbracket}. \end{split}$$

From Lemmas 2. 1 and 2. 4, the result follows.

Let  $d_H(C)$  and  $d_\eta$  be the Hamming distance of C and  $Tor_\eta(C)$  respectively. The following lemma is from Theorem 4.2 of Ref. [15].

**Lemma 2.**  $\mathbf{5}^{[15]}$  Let C be a  $(1 + \lambda u)$  constacyclic code of length  $N = p^e n$  over  $R_{(p^m,k)}$ , then  $d_{\text{hom}}(C) = p^{m(k-1)} d_{k-1}$  for  $0 \leqslant \eta \leqslant k-1$ .

**Theorem 2.2** Let C be a  $(1+\lambda u)$  constacyclic code of length  $N=p^e n$  over  $R_{(p^m,k)}$ , then  $p^{m(k-2)}$  min  $\{(p^m-1)\ d_{k-2},\ p^m d_{k-1}\}\leqslant d_{\mathrm{hom}}$  (C)  $\leqslant p^{m(k-1)}\ d_{k-1}$ .

**Proof** The proof is similar to that of Theorem 5 of Ref. [4].

From Theorem 2.2, we can get the following corollary.

Corollary 2. 1 Let C be a  $(1 + \lambda u)$ 

constacyclic code of length  $N = p^e n$  over  $R_{(p^m,k)}$ . If  $(p^m-1)d_{k-2} \geqslant p^m d_{k-1}$ , then  $d_{\text{hom}}(C) = p^{m(k-1)}d_{k-1}$ .

Corollary 2.2 Let  $C = \langle \prod_{i=1}^{j} f_i^{k_i} \rangle$  be a  $(1 + \lambda u)$  constacyclic code of length  $N = p^e n$  over  $R_{(p^m,k)}$ . If  $\min\{k_1, k_2, \dots, k_j\} \geqslant p^e(k-1)$ , then  $d_{\text{hom}}(C) = p^{m(k-1)} d_{k-1}$ .

**Proof** If  $\min\{k_1, k_2, \cdots, k_j\} \geqslant p^e(k-1)$ , then  $C = \langle \prod_{i=1}^j f_i^{k_i} \rangle = \langle (x^n-1)^{p^e(k-1)} \prod_{i=1}^j f_i^{k_i-p^e(k-1)} \rangle = \langle u^{k-1} \lambda^{k-1} \prod_{i=1}^j f_i^{k_i-p^e(k-1)} \rangle.$ 

From Definition of Homogeneous weight and Lemma 2.5, we get  $d_{\text{hom}}(C) = p^{m(k-1)} d_{k-1}$ .

**Corollary 2.3** Let  $C = \langle \prod_{i=1}^{j} f_i^{k_i} \rangle$  be a  $(1 + \lambda u)$  constacyclic code of length  $N = p^e n$  over  $R_{(p^m,k)}$  and  $\sigma = \max\{k_1, k_2, \dots, k_j\}$ .

(1) If  $1 \le \sigma \le p^e (k-2)$ , then  $d_{hom}(C) = p^{m(k-2)}(p^m-1)$ .

(2) If  $p^e$  ( k-2 )  $+1\leqslant \sigma\leqslant p^e$  ( k-1 ), then  $d_{\text{hom}}$  ( C )  $=p^{m(k-1)}$  .

**Proof** The proof is similar to that of Corollary 2 of Ref. [4].

### 3 A new Gray map

Any  $a, b \in R_{(p^m,k)}$  can be written uniquely as  $a = \sum_{i=0}^{k-1} u^i r_i(a)$  and  $b = \sum_{i=0}^{k-1} u^i r_i(b)$ , where  $r_i(a)$ ,  $r_i(b) \in F_{p^m}$  and  $r_i(a+b) = r_i(a) + r_i(b)$  for  $0 \le i \le k-1$ .

**Definition 3.1** For any element a in  $R_{(p^m,k)}$ , the Gray map  $\Phi_{(p^m,k)}: R_{(p^m,k)} \to F_{p^m}^{p^{m(k-1)}}$  is defined as  $\Phi_{(p^m,k)}(a) = (A_1(a), A_2(a), \cdots, A_{p^{m(k-1)}}(a))$ , where  $A_l(a) \in \{r_{k-1}(a) + \sum\limits_{i=0}^{k-2} \xi_i r_i(a) \mid \xi_i \in F_{p^m}\}$  and pairwise inequal for  $1 \leq l \leq p^{m(k-1)}$ . Naturally, the Gray map can be extended as follows:

$$\begin{split} & \Phi_{(p^m,k)} : R^{N}_{(p^m,k)} \to F^{p^{m(k-1)}}_{p^m}, \\ & (c_0, c_1, \cdots, c_{N-1}) \to \\ & (\Phi_{(p^m,k)}(c_0), \Phi_{(p^m,k)}(c_1), \cdots, \Phi_{(p^m,k)}(c_{N-1})). \end{split}$$

**Lemma 3. 1** The Gray map  $\Phi_{(p^m,k)}$  is a distance-preserving map from  $R^N_{(p^m,k)}$  (Homogeneous distance) to  $F^{p^{m(k-1)}}_{p^m}$  (Hamming distance).

**Proof** Let  $a \in R_{(p^m,k)}$  and  $\mathfrak{w}_{\operatorname{Ham}} \llbracket \Phi_{(p^m,k)} (a) \rrbracket$  be the Hamming weight of  $\Phi_{(p^m,k)} (a)$ .

If a=0, then  $r_i(0)=0$  for  $0 \leqslant i \leqslant k-1$ . Thus  $r_{k-1}(0)+\sum\limits_{i=0}^{k-2}\xi_ir_i(0)=0$  for arbitrary  $\xi_i \in F_{p^m}$ , which implies  $A_l(0)=0$  for  $1 \leqslant l \leqslant p^{m(k-1)}$ . So  $w_{\operatorname{Ham}} \big[ \Phi_{(p^m,k)}(0) \big] = 0$ .

If  $a \in u^{k-1} R_{(p^m,k)} \setminus \{0\}$ , then  $r_{k-1}(a) \neq 0$  and  $r_i(a) = 0$  for  $0 \leqslant i \leqslant k-2$ . So  $r_{k-1}(a) + \sum\limits_{i=0}^{k-2} \xi_i r_i(a) \neq 0$  for arbitrary  $\xi_i \in F_{p^m}$ , which implies  $A_l(a) \neq 0$  for  $1 \leqslant l \leqslant p^{m(k-1)}$ . Thus

 $\mathsf{u}_{\mathsf{Ham}} \big[ \Phi_{(p^m,k)} (a) \big] = p^{m(k-1)} \text{ for } a \in u^{k-1} R_{(p^m,k)} \setminus \{0\}.$ 

If  $a \in R_{(p^m,k)} \setminus u^{k-1} R_{(p^m,k)}$ , there exists  $r_s(a) \neq 0$  where  $0 \leq s \leq k-2$ . So, there were  $p^{m(k-1)} (p^m-1)$  non-zero elements in  $\{r_{k-1}(a) + \sum_{i=0}^{k-2} \xi_i r_i(a) \mid \xi_i \in F_{p^m}\}$ , which implies  $w_{\text{Ham}} [\Phi_{(p^m,k)}(a)] = p^{m(k-2)} (p^m-1)$  for  $a \in R_{(p^m,k)} \setminus u^{k-1} R_{(p^m,k)}$ .

So  $w_{\text{Ham}} [\Phi_{(p^m,k)} (a)] = w_{\text{Ham}} (a)$  for any  $a \in R_{(p^m,k)}$ , this gives the proof.

**Lemma 3.2** Let C is a linear code over  $R_{(p^m,k)}$  of length N. Then  $\Phi_{(p^m,k)}$  (C) is a linear code over  $F_{p^m}$  of length  $p^{m(k-1)}$  N.

**Proof** For any element  $a, b \in R_{(p^m,k)}$ , we have  $\Phi_{p^m,k)}(a+b) = (A_{\mathbf{i}}(a+b), A_{\mathbf{i}}(a+b), \cdots, A_{p^{n(k-1)}}(a+b)) = (A_{\mathbf{i}}(a)+A_{\mathbf{i}}(b), A_{\mathbf{i}}(a)+A_{\mathbf{i}}(b), \cdots, A_{p^{n(k-1)}}(a)+A_{p^{n(k-1)}}(b)) = (A_{\mathbf{i}}(a), A_{\mathbf{i}}(a), \cdots, A_{p^{n(k-1)}}(a)) + (A_{\mathbf{i}}(b), A_{\mathbf{i}}(b), \cdots, A_{p^{n(k-1)}}(b)) = \Phi_{(p^m,k)}(a) + \Phi_{(p^m,k)}(b).$ 

Besides, for any element  $\beta \in F_{p^m}^*$ , we have  $\Phi_{(p^m,k)}(\beta a) = \\ (A_1(\beta a), A_2(\beta a), \cdots, A_{p^{m(k-1)}}(\beta a)) = \\ (\beta A_1(a), \beta A_2(a), \cdots, \beta A_{p^{m(k-1)}}(a)) =$ 

 $\beta\Phi_{(p^m,k)}(a)$ So, for any two codewords  $c=(c_0, c_1, \cdots, c_{N-1})$ and  $c'=(c'_0, c'_1, \cdots, c'_{N-1})$  of C, we have  $\Phi_{(p^m,k)}(c+c')=$ 

 $(\Phi_{p^{m},k)}(c_{0}+c_{0}'),\Phi_{p^{m},k)}(c_{1}+c_{1}'),\cdots,\Phi_{p^{m},k)}(c_{N-1}+c_{N-1}'))=\Phi_{(p^{m},k)}(c)+\Phi_{(p^{m},k)}(c').$ 

Furthermore,  $\Phi_{p^m,k}(\beta c) = (\Phi_{p^m,k}(\beta c_0), \Phi_{p^m,k}(\beta c_1), \Phi_{p^m,k}(\beta c_1), \cdots, \Phi_{p^m,k}(\beta c_{N-1})) = \beta \Phi_{p^m,k}(c).$ 

Hence,  $\Phi_{(p^m,k)}(C)$  is linear.

From Lemmas 2. 1, 3. 1 and 3. 2, the following theorem is straightforward.

**Theorem 3.1** Let  $C = < \prod_{i=1}^{J} f_i^{k_i} > \text{ be a } (1 + \lambda u)$  constacyclic code of length  $N = p^e n$  over  $R_{(p^m,k)}$ ,

then  $\Phi_{(p^m,k)}$  (C) is a linear  $[p^{m(k-1)}]$  N, KN  $-\sum_{i=1}^l k_i \deg(f_i)$ ,  $d_{\text{hom}}$  (C) ] code over  $F_{p^m}$ .

We say that a linear code C over  $F_{p^m}$  is optimal if C has the maximal minimum distance for the given length and dimension. According to the minimum homogeneous distance of  $(1 + \lambda u)$  constacyclic codes and Theorem 3.1, we can obtain some optimal linear codes over  $F_{p^m}$ .

**Example 3.1** In 
$$F_2[x]$$
,  $x^7 - 1 = f_1(x) f_2(x) f_3(x)$ ,

where  $f_1(x) = x+1$ ,  $f_2(x) = x^3 + x+1$ ,  $f_3(x) = x^3 + x^2 + 1$ . Let  $C = \langle f_1^2(x) f_2^2(x) f_3(x) \rangle$  be a (1+u) constacyclic code over  $F_2 + uF_2$  of length 7. By Theorem 2. 1, we get  $Tor_i(C) = \langle f_1(x) f_2(x) \rangle$ , which is a [7,3,4] cyclic code over  $F_2$ . According to Corollary 2. 2 and Theorem 3. 1,  $\Phi_{(2,2)}(C)$  is a [14,3,8] linear code over  $F_2$ , which is an optimal code. We list several binary optimal linear codes obtained from (1+u) constacyclic codes over  $F_2 + uF_2$  in Tab. 1.

Example 3. 2 In 
$$F_3[x]$$
,  
 $x^4-1=f_1(x)f_2(x)f_3(x)$ ,

Tab. 1 Optimal binary linear codes obtained from (1+u) constacyclic codes over  $F_2+uF_2$ 

| Length of C | Generator polynomial of C           | Gray image |
|-------------|-------------------------------------|------------|
| 3           | $(x+1)^2(x^2+x+1)$                  | [6,2,4]    |
| 5           | $(x+1)^2(x^4+x^3+x^2+x+1)$          | [10,4,4]   |
| 6           | $(x+1)^3(x^2+x+1)^2$                | [12,5,4]   |
| 6           | $(x+1)^4(x^2+x+1)^3$                | [12,2,8]   |
| 6           | $(x+1)^3(x^2+x+1)$                  | [12,7,4]   |
| 6           | $(x+1)(x^2+x+1)^3$                  | [12,5,4]   |
| 6           | $(x+1)^4(x^2+x+1)$                  | [12,6,4]   |
| 6           | $(x+1)(x^2+x+1)^4$                  | [12,3,6]   |
| 7           | $(x+1)^2(x^3+x+1)^2(x^3+x^2+1)$     | [14,3,8]   |
| 7           | $(x+1)^2(x^3+x+1)(x^3+x^2+1)^2$     | [14,3,8]   |
| 7           | $(x+1)^2(x^3+x+1)$                  | [14,9,4]   |
| 7           | $(x+1)^2(x^3+x^2+1)$                | [14,9,4]   |
| 9           | $(x+1)^2(x^5+x^3+1)$                | [18,10,4]  |
| 10          | $(x+1)^3 (x^4 + x^3 + x^2 + x + 1)$ | [20,13,4]  |
| 10          | $(x+1)^4(x^4+x^3+x^2+x+1)$          | [20,12,4]  |

where  $f_1(x)=x+1$ ,  $f_2(x)=x+2$ ,  $f_3(x)=x^2+1$ . Let  $C=\langle f_1^2(x) f_3(x)\rangle$  be a  $(1+\lambda u)$  constacyclic code over  $F_3+uF_3$  of length 4, where  $\lambda=1$  or 2. By Theorem 2. 1, we get  $\text{Tor}_0(C)=\langle f_1(x)f_3(x)\rangle$  and  $\text{Tor}_1(C)=\langle f_1(x)\rangle$ , which are [4,1,4] and [4,3,2] cyclic code over  $F_3$  respectively. According to Corollary 2. 1 and Theorem 3. 1,  $\Phi_{(3,2)}(C)$  is a [12,4,6] linear code over  $F_3$ , which is an optimal code.

Let  $\omega$  be a primitive element of  $F_4$ . Tabs. 2 and 3 present several optimal linear codes over  $F_4$  and  $F_2$  obtained from  $(1 + \lambda u)$  constacyclic codes over  $F_4 + uF_4$  and  $F_2 + uF_2 + u^2 F_2$  of some lengths respectively.

Tab. 2 Optimal linear codes over  $F_4$  obtained from  $(1+\lambda u)$  constacyclic codes over  $F_4+uF_4$ 

| Length of ( | C Generator polynomial of C                            | Gray image |
|-------------|--------------------------------------------------------|------------|
| 3           | $(x+1)^{2}(x+\omega)$                                  | [12,3,8]   |
| 3           | $(x+1)(x+\omega)^2$                                    | [12,3,8]   |
| 3           | $(x+1)^2(x+\omega^2)$                                  | [12,3,8]   |
| 3           | $(x+1)(x+\omega^2)^2$                                  | [12,3,8]   |
| 3           | $(x+\omega)^2(x+\omega^2)$                             | [12,3,8]   |
| 3           | $(x+\omega)(x+\omega^2)^2$                             | [12,3,8]   |
| 5           | $(x+1)^{2}(x^{2}+\omega x+1)^{2}(x^{2}+\omega^{2}x+1)$ | [20,2,16]  |
| 5           | $(x+1)^2(x^2+\omega x+1)(x^2+\omega^2 x+1)^2$          | [20,2,16]  |
| 5           | $(x+1)(x^2+\omega x+1)^2$                              | [20,5,12]  |
| 5           | $(x+1)(x^2+\omega^2x+1)^2$                             | [20,5,12]  |

Tab. 3 Optimal binary linear codes obtained from  $(1 + \lambda u)$  constacyclic codes over  $F_2 \lceil u \rceil / \langle u^3 \rangle$ 

| Length of C | Generator polynomial of C    | Gray image |
|-------------|------------------------------|------------|
| 3           | $(x+1)^2$                    | [12,7,4]   |
| 3           | $(x^2+x+1)^2$                | [12,5,4]   |
| 3           | $(x+1)^2(x^2+x+1)$           | [12,5,4]   |
| 3           | $(x+1)^3(x^2+x+1)^2$         | [12,2,8]   |
| 6           | $(x+1)^3$                    | [24,15,4]  |
| 7           | $(x+1)^2$                    | [28,19,4]  |
| 7           | $(x+1)^3(x^3+x+1)^2$         | [28,12,8]  |
| 7           | $(x+1)^3(x^3+x^2+1)^2$       | [28,12,8]  |
| 7           | $(x^3+x+1)^2(x^3+x^2+1)^3$   | [28,6,12]  |
| 7           | $(x^3+x^2+1)^3(x^3+x^2+1)^2$ | [28,6,12]  |

### 4 Conclusion

In this paper, we extended the result of Ref. [4] to  $(1 + \lambda u)$  constacyclic code of arbitrary length over  $R_{(p^m,k)}$ . Furthermore, some optimal linear code over  $F_2$ ,  $F_3$  and  $F_4$  were constructed under a Gray map with the Homogeneous distance.

#### 参考文献(References)

- [1]邓林,朱士信,韩江洪. 环  $F_2 + uF_2$  上长为 2°的 (1+u)常循环码的距离分布[J]. 中国科技大学学报, 2008, 38(10): 1810-1814.
  - Deng L, Zhu S X, Han J H. The distribution of (1+u) distances of constacyclic codes of length  $2^s$  over  $F_2 + uF_2$  [J]. Journal of University of Science and Technology of China, 2008, 38(10): 1810-1814.
- [2]施敏加,杨善林,朱士信. 环  $F_2[u]/< u^t>$ 上长为  $2^s$  的(1+u)常循环码的距离分布[J]. 电子与信息学报, 2010, 32(1): 112-116.
  - Shi M J, Yang S L, Zhu S X. The distributions of distances of (1+u) constacyclic codes of length 2' over  $F_2 \lceil u \rceil / < u^k > \lceil J \rceil$ . Journal of Electronics & Information Technology, 2010, 32(1); 112-116.
- [3]刘晓娟, 朱士信. 环 F<sub>p</sub><sup>m</sup> + uF<sub>p</sub><sup>m</sup> + ··· + u<sup>k-1</sup> F<sub>p</sub><sup>m</sup> 上的长为 p<sup>s</sup> 的(1+λu)常循环码的距离分布[J]. 中国科学技术大学学报, 2012, 42(11): 931-935.

  Liu X J, Zhu S X. The distributions of distances of (1+λu) constacyclic codes of length p<sup>s</sup> over F<sub>p</sub><sup>m</sup> + uF<sub>p</sub><sup>m</sup> + ··· + u<sup>k-1</sup> F<sub>p</sub><sup>m</sup> [J]. Journal of University of Science and
- Technology of China, 2012, 42(11): 931-935. [4]朱士信,黄素娟. 环  $F_{p^m} + uF_{p^m} + \cdots + u^{k-1} F_{p^m} \pm (1+u)$ 常循环码的齐次距离分布[J]. 电子与信息学报, 2013, 35(11): 2579-2583.
  - Zhu S X, Huang S J. The distribution of homogeneous distance of (1+u) constacyclic codes over  $F_{p^m} + uF_{p^m} + \cdots + u^{k-1} F_{p^m}$  [J]. Journal of Electronics & Information Technology, 2013, 35(11): 2579-2583.
- [5] Qian J F, Zhang L N, Zhu S X. (1+u) constacyclic

- and cyclic codes over  $F_2 + uF_2$  [ J ]. Applied Mathematics Letters, 2006, 19 (8): 820-823.
- [6] Ding J, Li H J. The Gray images of -constacyclic codes over  $F_{2^m}[u]/< u^k > [EB/OL]$ . http://link. springer. com/article/10.1007%2Fs12190-014-0847-5.
- [7] Ding J, Li H J. The Gray image of a class of constacyclic codes over polynomial residue rings [J]. Journal of the Franklin Institute, 2014, 351(12): 5467-5479.
- [8] Kai X S, Zhu S X, Li P.  $(1+\lambda u)$  constacyclic codes over  $F_p$  [u]/ $< u^k > [J]$ . Journal of the Franklin Institute, 2010, 347(5): 751-762.
- [9] Amarra M C V, Nemenzo F R. On (1+u) cyclic codes over  $F_{p^k} + uF_{p^k}$  [J]. Applied Mathematics Letters, 2008, 21 (11): 1129-1133.
- [10] Sobhani R, Esmaeili M. Some constacyclic and cyclic codes over  $F_q[u]/< u^{r+1}>[J]$ . IEICE Transactions on Foundamentals of Electronics, Communications and Computer Sciences, 2010, 93 (4): 808-813.
- [11] Udomkavanich P, Jitman S. On the gray image of  $(1+u^m)$  cyclic codes over  $F_{p^k} + uF_{p^k} + \cdots + u^mF_{p^k}$  [J]. International Journal of Contemporary Mathematical Sciences, 2009, 4 (25): 1265-1272.
- [12] Greferath M, Schmidt S E. Gray isometries for finite chain rings and a nonlinear ternary (36, 3<sup>12</sup>, 15) code
   [J]. IEEE Transactions on Information Theory, 1999, 45(7): 2522-2524.
- [13]李岩,朱士信. 环  $F_{\rho^m} + uF_{\rho^m} + \dots + u^{k-1} F_{\rho^m}$ 上的一类 常循环码[J]. 合肥工业大学学报, 2013, 35(3): 408-411.
  - Li Y, Zhu S X. A class of constacyclic codes over the ring  $F_{p^m} + uF_{p^m} + \cdots + u^{k-1} F_{p^m}$  [J]. Journal of Hefei University of Technology, 2013, 35(3): 408-411.
- [14] Han M, Ye Y P, Zhu S X, et al. Cyclic codes over  $R = F_{p^m} + uF_{p^m} + \cdots + u^{k-1} F_{p^m}$  with  $p^*n$  length [J]. Information Science, 2011, 181(4): 926-934.
- [15] Sălăgean A. Repeated-root cyclic and negacyclic codes over a finite chain ring [J]. Discrete Applied Mathematics, 2005, 154(2): 413-419.