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Construction of optimal codes with Homogeneous distance
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Abstract: Based on the torsion codes of a (1-+ Au) constacyclic code with arbitrary length over
Ry =Fy[u]/<<u*>>, a bound for the homogeneous distance of a (14 Au) constacyclic code
with an arbitrary length over R ., is obtained and the exact homogeneous distances of some

(1+Aw constacyclic codes over R¢,».,y are determined, where A is a unit of R,»,;,. Furthermore,

. . . | . mCk—
a new distance-preserving Gray map from R{,., (Homogeneous distance) to Fi»

R Hamming
distance) is defined. It is proved that the Gray image of a linear (1 -+ Au) constacyclic code of
arbitrary length over R(,»; is a linear code over F,», and some optimal linear codes over F;, F;,
and F, are constructed under this Gray map.
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0 Introduction Hamming distances, Lee distances and Euclidean
. . ) - distances of a (1+w) constacyclic code with length
Distance is a very important indicator of the

. 2 over F;+ uF; were determined by Deng et al. In
quality of a code, and has thus been attracted much ver Tzt ul wete dete Y g !

. Ca Ref.[ 2], Shi et al investigated the H s
attention. In Ref. [1], the distributions of the ef. [2] 1 et almvestigate ¢ riomogeneous
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distance of a (1+ w) constacyclic code with length
2°over Fyn [ u]/<<u*> , which was extented to
(1+2Aw constacyclic codes with length p* over
R¢y".» by Liu et al in Ref. [3]for any unit A €
Ry . Zhu et al¥

Homogeneous distance of a (1 + u) constacyclic

discussed the the

code with an arbitrary length over R, . Besides,
Gray map is a bridge that connects a code over a
ring with a code over finite field. In Ref. [5], a
distance-preserving Gray map from (F; + ul;)"
(Lee distance) to F3N (Hamming distance) was
defined by Qian et al, and the resulting Gray image
of a single-root (1-+ w)-constacyclic code over F,+
uF; is a binary linear cyclic code, based on which
several linear codes were

binary  optimal

constructed under the Gray map. It was extended
to For [ u]/<<u* > by Jian et alt®, Kai et al ¥
showed that the Gray image of a linear (1+ Aw)
constacyclic code (Gray distance) of an arbitrary
length over F,+ uF, was a distance invariant linear
code (Hamming distance) over F,. In Ref. [9],
Amarra et al derived that the Gray image of a
single — root (1 — wu) constacyclic code
(Homogeneous distance) over F,» + uF, was a
quasi-cyclic code ( Hamming distance) over F,».
Furthermore, two optimal codes over F; were
constructed. Later, the result of Ref. [ 9] was
extended to single-root (1 -+ u*™') constacyclic
codes and single-root (1— u* ') constacyclic codes
over Rey . in Refs. [10-11] respectively, but
optimal codes were not given.

In this paper, we give a bound for the
homogeneous distance of a (1 -+ Au) constacyclic
code of an arbitrary length over R(,,, and the
exact homogeneous distances of some (1 + Au)
constacyclic codes over R(,., are determined,
Furthermore, a new

REN;J” k)

where A is a unit of R .

distance-preserving Gray map from

. mk 1) .
(Homogeneous distance) to Fi» Y ( Hamming

distance) is defined, and some optimal linear codes
over F,, F; and F, are constructed via the

Gray map.

1 Preliminaries

Let R¢,.» denote the polynomial residue ring
FooLuw]/<<u'>, where positive integer k=2, p is
a positive prime number and u*=0. Let nand p be
relatively prime, if 2" — 1= fif; == f; is the
factorization of (a"—1 ) into a product of monic
basic irreducible pairwise coprime polynomials in
Fy [ x], then this factorization is unique and can
be directly carried over Ry, from over F . Let
C be a code of length N= p‘n over R,y » where e
is a non-negative integer. For some fixed unit « of
R, » the a constacyclic shift 7, on R 4 is the
shift 7, (s 1y oy oy 1) = Cacn—1s CGs C1s ">
cn—2) . The code C is said to be an « constacyclic
code if 7,(C) =C . Now, we identify a codeword
c= Ces as *+s cy 1) with its polynomial

: . N—1
representation ¢(x) = ¢, ¢ xs ***s cn— X ', then

xc(x) corresponds to an « constacyclic shift of
c(x) in the ring Ry [ 2]/<<a2¥— a>. Thus «
constacyclic codes of length N over R, can be

identified as ideals in the ring

R wra/<<aN—a>.

In Ref. [ 12 ], the notion of homogeneous
weight on arbitrary finite chain rings was defined.
The homogeneous weight of a&€ R, is given by

me(k LoaE 1R(/)'".k)\{o}
(@) =1 p"™ 2" =1, a€ Ry \tl 'Ry
0, a=0

Whom

This extends to a weight function on R 4.

For ¢= (g, s s oy ) € R, we define

N 1
Whom () = 20 wWhom ( ;). The homogeneous distance
i 0

diom ( X» Y) between any two distinct vectors
X, YE R is defined to be wm (X—Y) . The
minimum homogeneous distance of any two distinct
codewords of Cis called the homogeneous distance

of C, which is denoted by dp, (O).

Any a€ r,m,.» s it can be written uniquely as
k—1

a= 2 w'ri(a), where r;(a) € F,» for 0<<i<<k—1.
i 0

Let a= Ry (@) and (C: u") ={c€ R&n | u'c € C}
for 0sxy=<k—1. If Cis a (14 Aw constacyclic code

of length N over R(m.n» then (C: u") is also a
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(14 Aw constacyclic code of length N over R¢ym
and (C:u) S (C:u™") for 0<Xi<{k—1. Besides.,
(C:u" is called the nth-torsion code of C, which is
denoted by Tor, (C). Obviously, Tor,(C) is a
cyclic code over F,» of length N.

2 Homogeneous distance

In the following, we suppose " —1=f, fo+** f;
is the factorization of (2" — 1) into a product of
monic  basic  irreducible  pairwise  coprime
polynomials in F,«[ x], then the following lemmas
is straight forward from Theorem 4 and Lemma 3
of Ref. [13].

Lemma 2, 1M Let C be a (1 + Au)

constacyclic code of length N= p‘n over R¢,» for
j

any unit A€ R, then C=<II ;% >, where
i1

non-negative integer 0 << k; << kp‘ for 0 <C i< j.

Furthermore, |C|=p"" ¢, where SZEkideg(ﬁ).
i1

Lemma2.2 Let C=< I %7 > bea (14w
i1

constacyclic code of length N= p‘n over Ry, p »

(p

then <fI f5 >C(C:u")y where < fI f{;)'(n) > is a
=1 i=1

(14 Aw) constacyclic code over Ry of length N for
0<<m<k—1 and 6" =k,—min{ p‘n, k;}.

Proof For any h(x) € < flfk >, there
i1

exsits g(x) € Ry p [2]/<<aN— 1+ 2w > such that
h(x)zg(f)_fllfi@‘w. Thus,
wh() =[N =D g I =

A (" —1) g () 1 fi@fW =A "g(x)
i=1

(€] e
P —

J
H f.,'O'
i=1

A g (o 'ljll flo rmmintte bl e C,
this gives the proof.

Lemma 2.3 Let f(x) be a monic divisor of
(2"—1) in Fy»[ x]. Then, for any positive integer [,
<N D>=<f" (D> in Fpla)/<(N—1D>.

Proof Let [(2)=(2"—1)/f(x). Sincef(x)
and f(x) are coprime in F,[ x], it follows that

f'(a) and [(x) are coprime in Fy [ x]. Hence, there
exist u(x), v(x) € Fpr [ x] such that pu(x) f (2) +

U D F¥ (©)=1. Computing in Fy [ 2]/<< (N —1) >,
we have
p(o D =[1—w) " (D] (D=f"(2),
this gives the proof.

The following lemma is from Theorem 1 of
Ref.[14].

Lemma 2.4 If Cis a linear code over Ry, »

ko1
then |Cl=1 |Tor,,(C) .
=0

Theorem 2.1 Let C=< g 1> be a (14w

constacyclic code of length N= p‘n over Ry p»

then Tor, (C) =< 1 f?m = is a cyclic code over
i=1

where ©? =

Fp of length N,
min{ p*(y+ 1), ki} —min{ py. ki} for O<y<k—1
and 1<<i<<j.

Proof From LLemmas 2.2 and 2.3, we get

] )

Tor,(O) =(C:uhH =2 Hl £l

p

S=<I P

. , j It
So. in Fy[ 2]/ (2N —1), Tor (OD<IL f,% " >=
i1
i e g J (p
S fot > =< f7" >,
i1 i1
) i o A
Since | I firl K > ‘ _ pm[N 1513 P deg(f,)] , then
i=1

ko1
II [ Tor,(O) [ =
7 0

k

b vg;[N—[é]r,“”’(leg<,f,>] _ pm[hN*iélh,deg(j,)]‘

From Lemmas 2. 1 and 2. 4, the result
follows.

Let dy(C) and d, be the Hamming distance of
C and Tor,(C) respectively. The following lemma
is from Theorem 4. 2 of Ref. [15].

Lemma 2. 5 Let C be a (1 + Au)
constacyclic code of length N= pn over Ry .p »
then du (O = p™* P d,_, for O<7}<k*l .

Theorem 2. 2
code of length N = p‘n over R(,».,y» then p
min {( p" — 1) di—z»s p"di—1 } =< dpm (C) <
PR A

Proof
Theorem 5 of Ref. [4].

From Theorem 2. 2, we can get the following

Let Cbe a (1+Aw constacyclic

m(k  2)

The proof is similar to that of

corollary.

Corollary 2. 1 Let C be a (1 4+ Aw)
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constacyclic code of length N= p‘n over R(,»,,,. U
(p"—1Ddy :=p"d, 1» then dy, (O = P"M Vdy .

Corollary 2.2 Let C— <}f11fﬁ> be a (1+

Au) constacyclic code of length N = p‘n over
Repr. I min{k , kys ===y ki) =p°(k—1), then
Ao (O = p"* P d, .

Proof If min{k , ky, ==+, kj}=p'(k—1), then

C= <ﬁf*ilg’>:<(‘rllil)lﬁk(k71) ﬁf-ikyfp"(kfl)>:
i=1 i=1

<uk71)\k71 fI f-_k,7p°’<h71>>
i=1
From Definition of Homogeneous weight and

Lemma 2.5, we get du, (O = p"™* Y d, 1.

Corollary 2.3 Let C= <_Ilefikz> be a (1-+

Aw constacyclic code of length N= p‘n over R¢,m.p
s k.

(1) I 1<o<< p'(k—2), then dym (C) =
p R (pr—1),

@2) U p(k—2) +F1<o<<p(k— 1),
then dp, (C) = p™* P,

Proof
Corollary 2 of Ref. [4].

and o=max{ky s ks, **

The proof is similar to that of

3 A new Gray map

Any a, b€ R,y can be written uniquely as
a:g u'r; (a) and b= ’Z‘é u'r; (b), where r (a),
()€ Fpr and r,(at0)=r,(a@)+r;(b) for 0<<i<<k—1.

Definition 3. 1 For any element a in R, »

m(k 1

the Gray map @y, p : Ry, — Fhr is defined as
D p"y k) (a) = (A (a)y Ay Cads ey Ay (a)),

k2
where A;(@) € {r— (a) + ; &ri(a)| &€ Fp) and

mCk 1)

pairwise inequal for 1<CI<C p . Naturally, the

Gray map can be extended as follows:
oo PRt REV//",M - Ff,::(kil) N,
(cps €1y o0y Oy 1)
(‘D<p"',k> () (D(p"',k) Cer)yeeey (D(p"',k) Cen1)).
Lemma 3. 1 The Gray map P, is a

distance-preserving map from RO
(Homogeneous distance) to F’;;:(k N ( Hamming
distance).

Proof Let a€ R, and whu[ @y, (@) ] be

the Hamming weight of &1, (a).

If a=0, then r,(0) =0 for 0<{i<{k— 1. Thus
-
re 1 (0) 4+ 2 &r (0) =0 for arbitrary & € Fy»,
i 0
which implies A;(0) =0 for 1<<I<<p"™* V. So
wHam[®(pm,k)(O)]:O.

If a€ u"" Ry \{0}, then r— (a)#0 and
r(w)=0 for 0L i< k—2. So rn. Ca)+

k=2
2 &ri(@) #0 for arbitrary &€ F,», which implies

1 0
A (@) F0 for 1<I<<p™* V. Thus
ul—lam[®(/7m,k)(a)]:pm(k v fOr (1.6 u'k 1R(f7m.k)\{o}-
If a€ Ry \t 'Ry, » there exists r,(a) 70

where 0<Cs<<k—2 . So, there were p"* " (p"—1)
k—2

non-zero elements in {r—; (a)+ 2 &r;(a) | &€
i=0

Fp’" }, which Wolam I: ®(p”’.k) (a ):I -

Pm(k 2)(pm71) for ae R<P'".k)\uk lR(p'".k)o
SO Witan [ Py (@) ] = Wi (a) for any a €

implies

R, » this gives the proof.

Lemma 3.2 Let Cis a linear code over R,y
of length N. Then &, (C) is a linear code over
F,» of length p™*~ " N,

Proof For any element a,b&€ R, » we have
Gy (atb=A(atb), Alatb) Ayt v (atb)=
ADQTAD A @D Apte v (@FAger v (B)=
A(@s A @y Ape v (@)FHA DA WD) e Ape (D)=
Dy iy Ca) + Dy gy (D).

Besides, for any element fE F*

Dy (Ba) =

(A (Ba) s Az (Ba) 5 +++ s A= (Ba) ) =

(BAI (@), BA (@) 5=+, Ay D (@) =

BD 1 ()

So, for any two codewords ¢= (c¢s ¢ *°

, we have

“yen 1)
and ¢= (cy, ¢1s ***s &y 1) of C, we have
Dy (et )=
(@ (66D, Qi (@ FE) @ (v 1 & D)=
Dy gy () F D (O
Furthermore, @y (Be) = (D (Ba)s Dy (Ba) s
@y (Ben—1)) = LBy (O,
Hence, @, (O is linear.
1 and 3. 2, the

following theorem is straightforward.

From Lemmas 2. 1, 3.

Theorem 3.1 Let C=<_fllf1-"’f > be a (1+2Aw

constacyclic code of length N= p‘n over R, p»
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then @ (C) is a linear [ p™ " N, KN —

1
E} kideg( f1)  dpom (O] code over F .

We say that a linear code C over F,» is optimal
if C has the maximal minimum distance for the
given length and dimension. According to the
minimum homogeneous distance of (1 + Au)
constacyclic codes and Theorem 3. 1, we can obtain
some optimal linear codes over Fn.

Example 3.1 In F,[ x],

F=1=fi(2) f2 (20 f: (1),
where fi(o)=a2+1, fr()=2>+x+1, f3(x)=
D+ +1. Let C=<fi(x) fi(x) fs(x)> be a
(1+ w constacyclic code over F; + uF; of length 7.
By Theorem 2. 1, we get Tor, (C) =
< f1(2 f(2)>, which is a [7.3,4] cyclic code
over F;. According to Corollary 2. 2 and Theorem
3.1, &30, (C) is a [14,3,8] linear code over F,,
which is an optimal code. We list several binary
optimal linear codes obtained from (1 + u)
constacyclic codes over F,+ uF; in Tab. 1.

Example 3.2 In E[x],
d—1=f1(® (D f; (D,
Tab.1 Optimal binary linear codes obtained from
(14w constacyclic codes over F, + uF,

Length of C Generator polynomial of C Gray image
3 (D2 (242D [6,2,4]
5 (D2 B+ 22+ 2D [10,4.4]
6 (D3 (2 + 2t D2 [12,5.4]
6 (D (24213 [12,2,8]
6 (D (A2 t+D [12,7,4]
6 (r+D(Z+atD? [12,5,4]
6 (D' 242+ D [12.6,4]
6 (D (2 + Dt [12.3.6]
7 (D2 D2(B 24D [14.3,8]
7 (ADHP+ D P+ 2412 [14,3.8]
7 (D2 (P 42D [14,9,4]
7 (DA 241D [14,9,4]
9 (DA 241D [18.10,4]
10 (D3 (A2 2+ D [20,13,4]
10 (DA 2+ 22D [20,12,4]

where fi(D=x11, f,(D=x1+2, fi(x)=2+1
Let C= < fi* (x) f; Cx) > be a (1 4+ Au)
constacyclic code over F;+ uF; of length 4, where
A=1 or 2. By Theorem 2. 1, we get Tor, (C) =
< fi(® f3(x)> and Tor, (C) =< f, (x) >, which
are [4,1,4] and [4,3, 2] cyclic code over F;
respectively. According to Corollary 2. 1 and
Theorem 3.1, @35, (C) is a [12,4,6] linear code
over F;, which is an optimal code.

Let w be a primitive element of F,. Tabs. 2
and 3 present several optimal linear codes over F,
and F, obtained from (1 -+ Au) constacyclic codes
over F,+uF, and F; + uF; + «* F, of some lengths
respectively.

Tab. 2 Optimal linear codes over F, obtained from

(1+ Aw constacyclic codes over F,+ uF,

Length of C Generator polynomial of C Gray image
3 (zF D%t w [12.3,8]
3 (z+ D (artw? [12,3,8]
3 (x4 DZ(ato?) [12.3.8]
3 (et D Catof)? [12.3,8]
3 (zF+ ?(zt o) [12.3.8]
3 (zF w (xtof)? [12,3,8]
5 (r+ D224 wrtDE(Z+ ot r+1)  [20.2.16]
5 (z+ D224 wrt D (4ot 12 [20,2,16]
5 (x+1D (2 +wrt1)? [20,5,12]
5 (x+ 1D (2ot 12 [20.5.12]

Tab.3 Optimal binary linear codes obtained from (1-+ Aw
constacyclic codes over F,[ ul/<u'>

Length of C Generator polynomial of C Gray image
3 (x+1)2 [12,7,4]
3 (24 2+1)2 [12.5,4]
3 (x+ D22+ 2+ 1D [12.5.4]
3 (et D32+ 2t 12 [12,2,8]
6 (z+1)3 [24.15,4]
7 (z+1D? [28,19,4]
7 (et D3P+ 2t 12 [28,12,8]
7 (a+ D3 (4224 1)2 [28,12,8]
7 (BHat DB+ 2 +1D3 [28.6,12]
7 (B+ 2+ A+ 2412 [28.6.12]
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4 Conclusion

In this paper, we extended the result of Ref.
[4] to (14 Au) constacyclic code of arbitrary

length over R(,.,. Furthermore, some optimal

linear code over F,, F; and F, were constructed

under a Gray map with the Homogeneous distance.
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