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Abstract: A class of impulsive stochastic differential equations of Sobolev-type was studied. The
existence and uniqueness of the mild solution with the coefficients satisfying some generalized
Lipschitz conditions was proved by means of the successive approximation. Moreover, the
continuous dependence of the solutions on the initial values was given.
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. uniqueness, continuation and other properties of
0 Introduction A . :
solutions of various special forms of the

For the applications in modeling various deterministic Sobolev-type differential equations

physical phenomena such as the fluid flow through have been established by wusing different

fissured rocks, thermodynamics and shear in techniques. One can see Refs. [ 5-8 ] and the
second order fluids, Sobolev-type differential references therein. The deterministic models often
equations attracted researchers’ great interest. One fluctuate due to noise, which is random or at least
can see Refs. [1-4 ] and the references therein for appears to be so. Therefore, we must move from
more  details. Especially,  the existence, deterministic problems to stochastic problems. As
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the generalization of deterministic Sobolev-type
integro-differential equations, Ref. [1] proved the
existence and uniqueness of the mild solution for a
class of first-order abstract stochastic Sobolev-type
integro-differential equations in a real separable
Hilbert space. In addition, the theory of impulsive
differential equations has become an active area of
investigation due to their applications in fields such
as mechanics, electrical engineering, medicine
biology, ecology and so on (see Ref. [9] and the
references therein).

However, it should be emphasized that to the
best of our knowledge there is no result on impulsive
stochastic differential equations of Sobolev-type
and the aim of this paper is to fill this gap. In this
paper, we study a class of impulsive stochastic
differential equations of Sobolev-type. We prove
the existence and uniqueness of the mild solution
with the coefficients satisfying some generalized
Lipschitz conditions by means of the successive
approximation. Moreover, we show the continuous

dependence of the solutions on the initial values.

1 Preliminaries

In this section, we propose some preliminaries
for our analysis. Throughout this paper, let
(H, || « [|) and (K,
separable Hilbert
(e, ). Let AK,H) be the space of bounded

linear operators from K into H. In the sequel,

|+ || ) be two real

spaces with inner product

without confusion, we also employ the inner
product and the norm denoted, respectively, by
(e,+yandnorm | ¢ || for AK.H). Let (2,7,
{Z }i=0,P) be a complete filtered probability space
satisfying that %, contains all P-null sets of 7. Let
W= (W,)~, represent a Q-Wiener process defined
on (2,%,{% }=0.P) with the covariance operator
Q such that TrQ<oo, Further, we assume that
there exists a complete orthonormal system {e; } =,
in K, a bounded sequence of nonnegative real
numbers A, such that Qe, =X, k=1, 2,+++, and a
sequence of independent Wiener processes {f; =1

such that

(w(t)seyg = D) Valesedfe(t)s e € Kot =0,
k=1

Let Y9=9, (Q%K,H) be the space of all Hilbert-
Schmidt operators from Q%K to H with the inner
product (g, 0 =Tr[ Q¢+ ].

The purpose of this paper is to study the
stochastic  differential

following  impulsive

equations of Sobolev-type with the form

d(Bx (1)) = (Ax (&) + F(x) (1)) de +

o(toax)AW(D), t € J :=[0.T].t #1,.,
x(0) = x9,
Ax(t) = 2(0) —x2(ty) = L (x (),
k=1,2,,m
@b

in a real separable Hilbert space H, where the
state x ( » ) takes values in the separable real
Hilbert space H; A and B are linear operators on
H, F.([0,T];*(Q; H)—>2*((0,T); Y*(Q; H))
is a given mapping, ¢:J X ¥*(Q; H)—BL(K, H)
is an appropriate mapping. Furthermore, the fixed
times ¢, satisfies 0=1,<t;<{t,<-++<t,,<<T, x(t;)
and x (¢, ) denote the right and left limits of x(#)
at t=t,. I, (x(1,))=x(} ) —ax(t; ) represents the
jump in the state x at time ¢, , where I, determines
the size of the jump. The operators A: D (A) C
H—H and B:D(B) C H—H satisfy the following
conditions:

(M,) A and B are closed linear operators,

(M;) D(B)CD(A) and B is bijective,

(M;) B™'.H—D(B) is continuous.

Here, (M;) ~ (M;) and the closed graph
theorem imply the boundedness of the linear
operator AB™'; H— H and AB™' generates a
strongly continuous semigroup {T(z)}~, in H. In
what follows, max | T(t) [|[? =M, B'=M,,

I B | =M.
Definition 1.1
() o7 1s said to be a mild solution of (1) if
Ci) 2 is F,-adapted,
Cii) x(O)=x,€%*(Q,.H),
Ciii ) for each t € J, x (t) satisfies the

A cadlag H-valued process

following integral equation:
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(1) = BT Bre +JIB*1 Tt — 9 F () ()ds +
0
J";B*1 T — 9oCsa ()W (s) +

DIYB TG —t) L (x ().

O<;lk<:1
Now, we assume the following assumptions:
(HD
F. ([0, T];Y*(Q; H)) — %0, T); Y*(Q; H))
and ¢: J X 7% (Q; H)>—>BL(K, H) satisfy for all z&
J, x,y€ H such that
| F(o) () —Fy»@ |2V oltsa) —a(t,y) || * <
k(lz—y] .
(H2) for all t& ], it follows that F(0) (2),
o(2,0) €L? such that

[FOY@D 2V [|6.0) ]2 <K.

where K is a constant.

(H3) The function I,; H—H are continuous
and there is a positive constant gz, k=1,2,+,m,
such that

[ L) =L [ <q la—yl*,
q >0, k=1,2,,m
for each z,y&€ H, and I,(0)=0, £k=1,2,+,m.
Remark 1.1

generality of classic Lipschitz condition. Let us

The function « C «+ ) is a

illustrate it using concrete functions. Let K; >0
and let & (0,1) be sufficiently small. Define
() = Kiu, u>=0,
B uln(u ™), 0 <] u<§,
{alnwl) +i (3 (w—8)s u>> 8,
Juln(bf1 dn InCer ™), 0 << u <6,
;s (W) = 40In(d D In In(6™) +x5 () (w—9),
1 u>>0,

where «” denotes the derivative of function x. They

ro (u

are all concave nondecreasing functions satisfying

J du =—+4oco (1 =1,2,3). In particular, we see
O+K‘,'(L£)

that the Lipschitz condition is a special case of the
proposed conditions.
Let T>0

and o =0, u(t) and v (z) be two continuous

Lemma 1. 2"% (Bihari inequality)

functions on [0, T]. Let x:R. —R. be a concave
continuous and nondecreasing function such that

k(r)>0 for r=>0. If

WD < u +f~u<s>x<u(s>>ds forall 0 < r < T,
0

then
"t

W) < G (Glu) +Jov(s)ds)
for all such t€[0,T] that
GCuy) +J:v(s)ds € Dom(G )

where G(r) = JI /%

function of G. In particular, if, moreover, u, =0

andj dS o then u(t)=0 for all 0</<T.

ot k(s)

In order to obtain the stability of solutions,

, r=0and G ' is the inverse

we give the extended Bihari inequality which

appeared in Ref. [ 11, Lemma 3. 2] and its

corollary.

Lemma 1.3 Let the assumptions of Lemma

1.3 hold. If
T
W) < u, +J o(DeCu(s)dss 0< 1 < T,
then
. T
w() < G (Gluy) +J o(s)ds) s
for all t€[0,T] such that
T
GQup) +J v(s)ds € Dom(G ™),

ds
r(s)

, r=0and G ' is the inverse

where G(r) = JI

function of G.

Corollary 1.4 Let the assumptions of Lemma
1. 3 hold and v(z)=0 for t€[0,T]. If for all e >
0, there exists t; =0 such that for 0 < uy << e,

T [ ds
j v(s)ds <J holds. Then for every t&[¢,,T],

4 uy K,'(S)

the estimate u(#)<Ze holds.

2 Main results

We construct the sequence of successive
approximations defined as follows:

22() =B*'T()Bxy, t € ],

2 = BT Bey +J;Hl TG — DT () ds +

J’ BTG — )o(sy 2™ () dW(s) +
0

2 BilT(t*tk)I/;(ljhl(tk))y t 6 Ja n > 1

O'Sitk <t

(2)
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Assume the assumptions (H1) ~
(H3) are satisfied and

Lemma 2.1

m

1 — 4MpMm 2 q. > 0.
k=1

Then, for all n==1, it holds that
Elz®|* <M,
where M, is a positive constant,
Proof From (2), we have

E|lxz"@ ||*<<AE || B'T@WBx, || * +4E || J[BH TG —7G" ) (ds || 2+

4E||J B ' T(t—5)o(s.a" (s )dAW(s) || * +4E || 2 B'TG—t) LG @) || *

()\/L/ t

AMM MEE || 2 | +4MBMTEJ; | Fa ) (s) —F(0) +FC0) || 2ds +

4MBMEJ o™ () —6(520) +0(s5:0) || 2ds +AMMmE S || L (o) || 2 <

0Tt <t

AMGM NMGE || 2, || 2 + 8MBMTEJ;( | F () (s) —FO) |2+ || 70 || Hds+

k=m

8M31\4EJ (loCssxa™ ' () —6(s,0) || 2+ || 6(s50) || 2 )ds+4M;MquﬁE || 21| 2

k=m

AMMGE || ) || * +8MM(T+ D E] |2 ] * s+ KT+ 4MMun >l | 2 |

k=m

C, +8MM((T+ 1)(EJ )Cll 2 || 2)ds) +4M13MWZZC];«E |2 |2,

where

Ci = AMMMGE || 2 || 2 4-8MpM KT? 4-8M;M KT.

Given that «( « ) is concave and x(0) =0, there

exists a pair of positive constants a and b such that
k(w) <a-+bu, forall u >0

So, we obtain

Ella"|*<

C, +8MBM(T+1)(EJ;(a+b 120 [ 2)ds) +
AMpMm D5 qE || 2t | <

k=1
C2+8MBM(T+1)17(EJ |2 || 2ds) +

AMMm D qiE || 27 || 2
k=1

where C,=C, +8M;M(T+1)aT. For
max E || 2" () ||

<n<k

max{E || B'T(t)Bx, || 2,E || 2 (s) || 24+-+,
El 271 [ %) <
max{MuM ME | 2, |7 E [ 24 () || 1o,

Ell ) || 2,E| ) || 2} =
{M[gMMBE || Xo || ?,maxE H 1‘”(8) || ?

<n<_k

(,g+maxE | 2" () || 2,

1<n<k

where Cg:MBMMBE H xo | 2.

max E || 2" (2) || 2

1<n<k

Thus, we have

Cy, +8MpgM (T + I)IJJ - maxE Il 2" (s) || 2ds+

<n<k

C;SMBM(T+1)[J . T+
k=m

AMMm Zqﬁ((/3 + maxE Il || ®

1=<n=tk
Moreover, we get

axE Il 2" () | 2

<n<k

c4+c5J max E | 2% () | *ds,
0

1=n=<lk

where
k=m

Cy + 8C; MM (T + DT + AMpMmCs > q;
k=1

k=m

1 — 4MzMm Z qr
=1

C,1 —

and
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SMM (T + Db

k=m

1—4MMm > q,
k=1

A —
C =

From the Gronwall inequality, we have

maxE | 2" (o) || 2 << CueST,

<n<_

For £ is arbitrary, we have

2L CeST, > 1.

n

Thus, we get the desired result with M, =
max{C, e, E || 2, | *}. [
Theorem 2.2 Under the assumptions of
Lemma 2. 1, there exists a unique mild solution of
(D).
Proof Existence For n=>1, t& J, form
(2), we have

() — () =

J’ BT — [Ty — Fx) ]ds +
0
J;B’l T —$)[oCssa") —o(s,2™ ) ]ds +

DUBTG—to)[ L (1)) — Lz () ].

0<h <t
Furthermore,

Ell27 @ —a2"() || <

3MBMTEJ[ | F 2 — Fx
0

BMBMEJ[ | 6(ssa™) —oCsyx™ ") || 2ds +
0

k=m

SMMm D qE | 2 () — 27" () || 2 (3)
k=1
Choosing T, €[0,T) such that

(t—3s)" (t—s)"
K( nl C7>< nl G0<

< Ty,

where C; is a positive constant. Moreover, for 0<C
t<< T, (H2), (H3), (H4) and the Jensen

inequality show that
Ela0—20|t< SMBMTEJ[ | 7(2°) || 2ds+
0

0

SMHMEJI
0

k=m

0

SM [3M7}’Z

2yds+ KT) +

6MMTE (J

6MBME(J eIl 20 1| 2)ds + KT +

k=m

3MMm D qiE || 2 |17 <
k=1
6MMKT(T+1) +

GMBM(TJrl)EJ;K( | 2° ]| 2)ds +

k=m
SMB]VImEqu I |l 2.
k=1
From Lemma 2.1, we have
Ell2' () — 2" |2 < 6MMKT(T+1) +

6MM (T + 1)EJ (M) ds +

k=m

3MpMmM, > q, += C: (4)
k=1
(3) and (4) show that
sup. Ellz @ —2() || 2 <
0=r<_T, 1
MM, EJ,C< (& _f)” sup E |2 () =2/ [|* ) ds +-
0 nl! 0T

k=m

T
3MyMm D) @
k=1

0

<s<T l

6MBMT1EJZK( & ﬂ””cy )ds -+
0 n
k=m T,l,
3M3M77’l Z qr FC7 <
k=1 .
oMMT E[ = S ds+
k=m Ill . ,]1,1
SMBMmEQk n'C7\C ,7120’
k=1 .

where Cs >0 is a constant. Therefore, for any 1<
n<k, we obtain

n

\[\1

r=k—1

2 supEH:(

r=n < T 1

r=n

Thus, we can see that {x,}is a Cauchy sequence.
The Borel-Cantelli Lemma shows that 2" (z)
uniformly converges to x(¢) for t€[0,T,]. From
this, x(¢) is a mild solution of (1).

Let x (¢) and y (¢) be two
solutions of (1). We have

Uniqueness
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Ellx()— vy |2 <3E]| J;B’l T — ) [Fa) — Fy)]ds || 2+

SE | J";Bﬂ Tt — ) [o(sr () —oCsay() AW () || 2+

3E| D) B'TG—to)[L(x(t)) — Ly ]| * <

0t <t

k=m

BMBMTEJ;K( lz— vl >)ds—+ SMBMEJ;x( lz—y [ Hds+3MME > g 2 —y 2 <
k=1

k=m

SMM (T -+ 1)EJ;;C( =yl Dds+3MMm S E ||z — v || 2.

From the Jensen inequality, we get
El x(t) —y) [ * <
MM (T +1)

J;/C(E | 2(s) —y(s) || )ds.

k=m
1 — 3MgMm Z qr
=1
Moreover, the Bihari shows that
0§/u(pTE | x(t) —y() || 2 = 0.
Thus,x()=y(2), for all 0</<T. []

3 Stability of the solutions

In what follows, we aim to derive the
continuous dependence of the solution on the initial
value. To do so, we propose the definition of the
stability in mean square.

Definition 3. 1 A mild solution X**(¢) of (1)
with initial value (&,x) is said to be stable in mean
square if for all e>0 there exists >0 such that

E| X5 =Y () || <e (5)
when E || é—7 (| *<C 8, where Y77 (1) is another
solution of (1) with initial value (3,y).

Theorem 3.2  Let X® () and Y7 (1) be
solutions of (1) with initial values & and 7,
respectively., Assume the assumptions of Theorem
2.2 are satisfied. Then, the solution of (1) is
stable in mean square.

Proof From (1), we have
(1) = BT Be +J[ BTG — )7 (s)ds +
0
JZB’lT(t*s)a(s»x(s))dW(s) +

DIYBTG—t) L (x(1))

0<t, <t

k=1

and

YO = B TWBy+ | BTG — 07 (ds+
| BTG = Doty daw ) +

DYBITG— ) Ly ).

0=y, <<t

Thus, we have

Ell X() =Y || > <4MpMM,E || 6— 7> +

AMM (T + 1>J;K<E IX—Y | 5ds+
k=m

AMMm > qE | X—Y || 2.
k=1

Moreover,

El X —Y|?*<

AM M M ,
P Ele—qll*+

1 —4MpMm 2 Qe
=1

4MM (T + 1)

J;K<E IX—Y | ds.

k=m

1 —4MpMm 2 qr
=1

Let
AMGM (T + 1)

/cl(u) — T—m n(u)s

1 —4MpMm 2 Qe
=1

for k is a concave increasing function from R, to

R. such that x(0) =0, (u) >0 for u >0 and

j du =-+oo, So, Kk (u) is obvious a concave
ot x(u)

function from R. to Ry such that g (0) =0,x(u) =
du

ot Kl(u)

(D s for any 0<u<_1 andj — co. So,

A

%e, we have limje1 du  _

for any e >0, ¢ =
s>0 Kl(u)
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-+ co, So, there is a positive constant §<Ce; such

that rl du = T. From Corollary 1. 4, let
5 K1 (Ll)
v — 4MBMMkB:m E ”877}”2,

1 —4MgMm qu
=1

u(t) = E|| X()—=Y) || 2, o) = 1.
When u,<<6<le;, we have

J:) /clcib;) 2]? /cld(b;) =T= JOT'U(S)ds.

So, for any t € [0, T ], the estimate u (¢) <g

holds. This completes the proof of the theorem.

L]
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