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The asymptotic solution to singularly perturbed
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elliptic equations of higher order with two parameters
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Abstract; The singularly perturbed boundary value problem for a class of nonlinear nonlocal
elliptic equation of higher order was considered. Under suitable conditions, the outer solution of
the original problem was obtained. Then, applying the multiple scales variable and the method of
component expansion, the first and second boundary layer corrective terms were constructed and
the formal asymptotic expansion was obtained. Finally, applying the theory of differential
inequalities the asymptotic expansion of a solution for the boundary value problem with two
parameters was studied. Some relational inequalities were educed. And the existence of the
solution for the original problem and the uniformly valid asymptotic estimation were discussed.
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0 Introduction

The nonlinear singularly perturbed problem is

object of study in the

[1-2]

a very attractive

mathematical circles Many approximation
methods have been refined, including the method
of averaging, the boundary layer method, the
methods of matched asymptotic expansion and
multiple scales. Recently, many scholars”®” have
done a great deal of work. Using the method of
differential inequality and others the authors also
considered a class of singularly perturbed nonlinear
8201 This paper

nonlinear nonlocal singularly perturbed problems

problems studies a class of
for the elliptic equations of higher order with two
parameters by means of the boundary layer
method. We construct the asymptotic expansion of
solution and discuss its asymptotic behavior.

Now we consider the following nonlinear

nonlocal boundary value problem with two
parameters
20D Ly - 25D Lry - Lu = f(ayus Tusespo) s

x e N

@b
du _ _
Tnl(I) =g (x), [=0,1,~ym—1,x € I
(2
where e and p are small positive parameters,

signifies a bounded convex domain in R* with
boundary 902 of class C and

B n V 92 n ~ p)
L 71’-]‘2:1(1"]‘ (1) (,)‘Il(’)‘r] + ;BI (1) E)Iz’ ’
X — (1'171'27""1‘71) 6\(27

Ti = [ K(outrede,
0

X — (11 s L2 ""91"71) S/
with 1 <k <m, and L signifies a uniformly elliptic

= d . .
type on (2, ™ denotes differentiation on the
an

direction of the outward normal at Q.

We need the following hypotheses:

(HiJo=¢"/p! =0, as u— 0.
[H,] The «;.3.K and g, are sufficiently
smooth functions with respect to variables.
[H;]
SulxsusTusesp) = N,
Sru(xsusTuses ) = N,
where N is a positive constant.
We now construct the formal asymptotic

expansion for the solution to the boundary value

problem (1), (2).

1 The outer solution

The reduced problem of problem (1), (2) is
Lu = f(xsu,Tu,0,0), xr € 0 (3)
u=go(x), x € IN 4
We need also a hypothesis that
[H, ] There exists a unique solution Uy, for
problem (3), (4) in (.
Let formal expansion of the outer solution U
for the boundary value problem (1), (2).
U~ D2 Uge'y! (5)

i,j=0

into Egqs. (1) and (2),

we equate the

Substituting (5)
developing f and g in e, pu.
coefficients of same powers for e’y (i,j = 0,1,++,
i+ j 7 0) respectively. And we have
LU; = f.(x,UyTUy,0,00U; +
I (2 Uy s TU40 0,00 TU; — LU (ipiy; —
L'Uiopiny +Fys i0j = 051,000,047 £ 0 (6)
U; (x) =0, i,5 = 0,1,,i4+j7# 0,2 € IN

@
where
F, =
1 Jiti - o = o
W[ ! DU T Uyl ew]|

In the above text and below, the values of terms
for the negative subscript are zero. From the linear
boundary value problems (6), (7), we can solve
U;G,.j = 0,1,2,--; i + j 7% 0) successively.
SubstitutingU; (i,j = 0,1,2,+++) into Eq. (5), we
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obtain the outer solution U for the original
boundary value problem (1), (2). But it may not
satisfy the boundary condition (2) for/ =1,2,-,
m — 1, so we need to construct boundary layer

corrective terms.

2 The first boundary layer corrective
term

Set up a local coordinate system (p,¢$) near
Q. Define the coordinate of every point Q in the
neighborhood of 90 in the following way: The
coordinate p(<< p) is the distance from point Q to
boundary dQ. where g, is small enough such that
the inner normals on every point of d do not
intersect each other in this neighborhood of 9.
The ¢ = (gragose
coordinate system in the (n — 1)-dimensional
manifold Q. The coordinate ¢ of point Q is defined
to be equal to the coordinate ¢ of point P &€ 9 at

s$.1) is a nonsingular

whose inner normal through point Q.
In the neighborhood of 902:0 < p <C oo »

n—1 n—1

I J—
=a,, 90 )—i—zam 1+,]Z)1 i a¢ 9¢]
n—1
(8
where
dp Jp 9N, o I
A ljz]] i ax 71 s Uy 2j;1a]k af al'k ’
Za I¢i I$; 2 ay —20
S da dx;’ dx; (71”

n 2
b, = Zaﬂ i

jk—1 dx;dx;

We introduce the variables of multiple

scales' on 0 << p <y
h—( 7) - -
- , —_ =4,
P p=p $= ¢

where h(p,¢) is a function to be determined. For
convenience, we still substitute p, ¢ forla,g below,

respectively. From (8), we have

L=1K +1K +K, 9
1z Iz

52
while K, = am,hl J = and K;,K, are determined

operators and their constructions are omitted.

Let the solution u of the original boundary
value problem (1), (2) be
u=U+V (10)
where V' is a first boundary layer corrective
function, Substituting Eq. (10) into problem (1),
(2), we have
VLYV ALV = (2 ,U+V, TWUWAV)sesp) —

S U, TU eyp) — "V L"V an
1
IV ) — “{, [ = 0.1k — 1oz € 90
'
12
0 ’)2
Set h(ps¢) :J do. Thus we have K, =
O alDI af
And let
Vo~ D), (r,4)ele’! (13)

ij=0

Substituting Eq. (13) into the boundary value
problem (11), (12), expanding nonlinear terms in
e,0, we equate the coefficients of same powers for
¢'e’ (i,j = 0,1,+++). And we obtain

9% Voo J* Yoo

P + PR 0 (14)
(’)1

% =g~ Uy, L=0,1,k—1,2 €30 (15
an

‘72%12/ 92‘011/‘ _

8_[2& + (:]TZ - 1

FuC04dsUsy 000 s TWao 4000 s0. 05 o) +

F1C046.Uss 100 s TWao + 1000 50,0 T o) +G; {
i = 0.1, k—1.i4j#£0

(16)

v

L =—U;js L =0,1,k— 1,20 € 90 aan

dn
b — 1,0 + 5 # 0) are

successively, and their

where G; (i,j = 0,1,
determined functions
constructions are omitted.

From Egs. (14), (15), we can have solution
vy. And form Eqgs. (16), (17), we can also obtain
vy (1,j =0,1,2,++5 i+j#0) successively.
Substituting v; (i,j = 0,1,2,++) into Eq. (13), we
obtain the first boundary layer function V for the
original boundary value problem (1), (2).

3 The second boundary layer corrective
term

We introduce the wvariables of multiple
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scales” on 0 << p< o :
(@é
C0=00 b= b
where 0 <y = &" “’H” < 1. For convenience, we

still substitute p,¢ for {5,; below, respectively.
From Eq. (8), we have
L=-1K+1K +K, (18)
Vo i

2 = = .
# and K, , K, are determined operators
7

while K, =
and their constructions are omitted, too.
Let the solution u of original boundary value
problem (1), (2) be
u=U+W 19
where W is a second boundary layer corrective
function. Substituting Eq. (19) into problem (1),

(2), we have

82(11771>L]’IW+€2(&71>L&V —
S, U+W, TWAW),esp) —
f(l‘st’IUan/l) — LW (20)
1 1
973’ - g,(x)—%], [ =01, m— 1,z € 900
2D
And let
W~ Zwy(q SV’ (22)

i,j=0

Substituting Eq. (13) into problem (11), (12),
expanding nonlinear terms in x,s, we equate the
coefficients of same powers for p'o’ (i,j =0,1,++).
And we obtain

2 2k
I wog I*wog

;)772”1 (’)772/3 = O (23)
l
T — U L= 0.1 am— 1oz € 902D
a2mwi_ 92/cw1_
7 21/'1] + ’) Zk] -
on on
f(o 9Uoo + Waoo » T(Uoo + Woo ) 9090)71)([*2111)(]*21/1) +

f(Oano “‘W)o 7T(Uoo “‘"W)o ) aovo)Tw('fzm(jfzm +G‘j ’ {

i’j:(),l,---,m l,iJrjiO
(25)
logy ..
%:—Uﬁ,Z:O,lyu-,mfl,l‘eag (26)

where Eg(i,j = 0,1,k —

successively determined

157 + 5 % 0) are
functions, and their

constructions are omitted too.

From Egs. (23) ~(26) we can obtain solution
wy (ivj = 0.1,0)
0,1,2,+++) into Eq. (22), we obtain the

second boundary layer function W for the original

successively.  Substituting

Wij (17] —

boundary value problem (1), (2).
Note From (yz)/p=v—0, we know that the
thickness of the second boundary layer for W is less

than of the first boundary layer for V near Q.

4 The main theorem

Let
'Zj,‘j - S[)((O)'U,‘j 7'(,;,'1' — (/J(p)‘w,j .
where ¢(p) is a sufficiently smooth function on 0

and satisfies

1, 0 < 14 < %Po H
¢lo) = 5
0, p= 3
For convenience, we still substitute v; ,w; for
v; »w;; below, respectively. It is easy to see that
vy »w; (isj = 0,1,+++) possesses boundary layer
behavior. Then we have the first and second
boundary corrective terms V and W in .
Thus we can construct the following formal
asymptotic expansion of the solution u for the

original problem (1), (2):

M M2

wm DU+ el

1,j=0 =0 j=0

NMH-2
wai,uj +O(A) , 0 Eslts0 < 1 27

i j=0

i M M1 V-1 M M _VH1 M+1 M
where A = max(e¥pM MMM M GY
M M1 M+1 M
Vi M ),

We have the theorem as follows:

Theorem 4.1 Under the hypotheses [ H, ]~
[H, ], there exists a solution « of the singularly
perturbed boundary value problem (1), (2) for the
elliptic equation of higher order with two parameters
and solution u is a solution of the uniformly valid
asymptotic expansion (27) for e,z on (.

Proof
functions @ and 3 :

a=Yy—A, f=Yut+a (28)

where § is a positive constant large enough, which

We first construct the auxiliary
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will be decided below, and

MM
Y. ZUus 2 2 2”051‘77 + Zwv’)#
i,j=0 i=0 j=0 i,j=0
Obviously, we have
a <B? v 6 .Q (29)
Ly
T8 g ()s L= 0L — Lo € 90(30)
n'

ﬁﬁ

25{1(1),1:0,17"'9771 19169(2(31)

an'

Now we prove that

f(laayTasevfl) 0, x 60 (32)
E2(”1*1) Ilmﬁ + Iu?(kfl) 14 ﬁ _'_ Ilﬁ R
f(laﬁ?TBs€9/l)<O, le\Q (33)

In order to prove Eq. (32), we need to consider

three cases: (1) nggépo; @ )%po <p<%pg;

Ciii) po<p

In case ( | ), from the hypotheses for e,pu

small enough, there is a positive constant K,

82(1;1*1) Ilma _'_#Z(kﬁl) Ilka + Iﬂ _ SuCh that
S2(21’1*1) Ilma + /12(h1) Ilka _'_ Iﬂ — f(x S Qs Ta .e ’/1) =
82(1”71) LmYm _’_/,LZUﬁl) LkY,” _|_ LYm — f(«T’Ym 7 8A ’ T(Ym 7 8/\ ) '€ 9IU> -

€2(1:171 ) LmYm + #2(k~l) LkYm + LY,,,

[f‘(.TmeTYm 357/1) - f-(x’Ym — O\ ’ T(Y,,,
M
LU, — f(x,U,, TU,,0,00 + > [LU;
i j=0.i+j7#0
LmU(Hnrﬂ)j + LkUz’(fZHZ) —F ij ]51/1] + a7
i=0 j=0 7 2}‘
+j7#0

- fu (xsUqo s TU g ’an)U[j

- f(lv’YmTlYm 76’/1) +
76/1)98,[1)] >

7](‘]}4(1"[]00 ?TUOO 70!O)TU;]' +

azkvoo +9 °Uoo+

— f.€0, b Uw + w00 s TWoo + 0000 50, 0 vigj—2 +

e T e 77T L
ﬁﬂ&%&ﬁwaW®+mxmmnwm+%}w+ Do 70 4

MH-2

E [(’)melj akaij
2m 2k
&)

i\ j=0,i+j7#0 (777

2m 2k
I &

- f(o vUoo + Woo » T(Uoo + Woo ) ,0, O>w(i72m)(i72m) -

f(OvUoo + wpo » TWo +w00)’O’O)w(i*ZM)(j*Zm) +Gij:|l/i/1j — KA+ NoA = (N§ — K)A.

Now we select § == K/N. Then the inequality (32)
is proved.

For cases ( | ) and (i), we can also prove
inequality (32) using the same method.

Analogously, we can prove inequality (33).
Thus from Egs. (29) ~ (33) and the theory of
differential inequalities, we obtain

alxsesp) < ulxsesp) < Blase,p)s x € (.

Thus from Eq. (28), the Eq. (27) is proved.

The proof of the theorem is completed. []
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