A58 114 ¥ B # 2 & £ %X & 3 & Vol. 45,No, 11

20154E11H JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Nov. 2015

Article 1D:0253-2778(2015)11-0881-12

Random weighting method for smoothed
binary response model

YUAN Min', WU Xiaoyan®

(1. Department of Probability and Statistics, School of Mathematical Sciences ,
Uniwversity of Science and Technology of China, He fei 230026, China;
2. Department of Mathematics . Electronic Engineering Institute of the People’s Liberation Army, Hefei 230037, China)

Abstract: The smoothed score estimating method has the nice properties of vn-consistency and
asymptotic normality under some regular assumptions. However, the asymptotic variance
involves quantities related to the unknown error distribution which is hard to be accurately
estimated. A random weighting method for estimating the asymptotic variance of the maximum
smoothed score estimators was proposed. The random weighting estimator is shown to be
consistent and asymptotically normal. Statistical inference is thus possible with the variance
estimates.
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extensively in economics, sociology, medicine and

0 Introduction many other fields. This model assumes that the

The binary response model has been applied binary response variable is governed by a latent
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variable which is linearly related to some
explanatory variables, but the link function that
connects the probability function of the response
and the latent variable is assumed to be completely
unknown. In this sense, different from the
(parametric) generalized linear models for binary
response variables, the binary response model is
semi-parametric.

The binary response model assumes that the
response variable y depends on the explanatory
variables x through

1, ifﬁ/ere}O;

0, otherwise

y= oy

where e is the unobserved error variable with
completely unknown distribution except that
median(e|2)=0, the p X1 vector x stands for the
explanatory variables and f3 is the p X1 regression
coefficients. In model (1), only x and y are
observable. The expectation of y given x is
E(y|lx) =P(y=1|x) =
P(e 2—[3’1 | 2) = F(—ﬁ'x),

where F =1 — F is the cumulative distribution
function of e, which is completely unspecified
except that F (0) = 1/2. Therefore the link
function, the inverse function F ', is unspecified.
Obviously the model is not identifiable to scale
transform on the parameter B Without loss of
generality, we assume that at least one of the
regression coefficients is not zero and g =1 (if the
effect of x| is negative, one can change the sign of

x1). In what follows, for a vector
b= (b by,+:b,) € R,

we denote b="(by ,** ,bp)/ for the vector composed
by components of & except the first coordinate.

Therefore for the true regression coefficients g of

the binary response model, Z?: (BB .
Generally, in the binary response model the

error distribution (or the link function) is assumed

to be unknown and the model is therefore robust in

the link

parametric regression models such as the logistic

specifications.  Many  well-known

regression model and the probit model are sub-

models of the binary response model when the
error distribution is taken to be the logistic and
normal distributions.
Let (x;sy:;)s i=1,++,n, be the samples of
(x+y). Manski® defined the score function
i) =L 2y =D 10, =0 @)

i=1
where I(A) is the indicator function of event A.
He proved that the maximum score estimator of 3,
the maximizer of the score function subject to the

constraint of & = 1, is consistent. Pollard"'*

showed that, at the rate of #7 » the maximum score
estimator converges in distribution to the random
variable that maximizes a certain Gaussian process.

Obviously, it is difficult to carry out statistical
inference based on such complex distribution.

[1]

Horowitz'"! modified the score function by replacing

the indicator function by a smooth function

1’/1') (3)

B l n .

SHORSS ; 2y, — D K( -
where K( « ) is a certain smooth function, and the
scale is chosen such that 5,0 as n—>oo. The

maximum smoothed score estimator (MSSE) of

B is defined as the maximizer of the score function
S, (b) subject to the constraint of b, =1. Horowitz
showed that the smoothed

maximum score

estimators of é are consistent and asymptotically
normally distributed. However statistical inference
is still difficult to implement since the asymptotic
variance in the limit distribution involves
parameters related to the nonparametric density
function of the error e, which may not be
accurately estimated in practice.

In this article we propose using the random
weighting method to estimate the variance of the
MSSE. The random weighting method has been
investigated and studied as an alternative method
to the bootstrap method and is also referred to as
Zheng'*! and
Dudley™” called it the random weighting method.
Rao and Zhao!'*

estimation in linear models.

the Bayesian bootstrap method""?*,

applied the method to M-
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For the maximum smoothed score estimation
problem in the binary response model, we can
randomly weight the summand of the smoothed
score function repeatedly. The randomly weighted
version of the estimators can be used to estimate
the asymptotic variance of the original maximum

smoothed score estimators. The random weighting

method put an extra weight, w;, into the
summation of the smoothed score function,
n / .
S = L3 w2y —DE(ZE) @)
n i=1 n
where
W1 » Wo 9"’i. i. d. P(w1 20) — 1, l (5)

FEw, =1, Ewi =¢>1, Ew}<®0f

and the sequence {w;} and {(x;, y;)} are

independent. Then the random weighting maximum

smoothed score estimator (WMSSE) gy is defined
as the maximizer of the smoothed score function.
In this article, we will show that under some

conditions the random weighting version of MSSE,

BYs is consistent and the conditional distribution of
By —p. given the data {(z;,y:),i=1,2,+=-,n} is the

same as that of 8, —f asymptotically.

1 Main results

Firstly, we assume the following assumptions
hold as they are necessary for both the parameter’s
identification and asymptotic normality.

(1) (regularity)

(a) The support of the distribution of x is not
contained in any proper linear subspace of R?”,

(b) 0<<P(y=1]x)<1 for almost every x.

(¢) For almost every x = (x,,++,x,) s the
distribution of x; conditional on x has everywhere a
positive density with respect to Lebesgue measure,

(d) median(e|x) =0 for almost every .

Secondly, we need the following conditions on
the smooth function K, as given by Horowitz"".

(K1) K(v) is a continuous function of the real
line into itself such that: | K (v) | <<M for some
finite M and all v in (—co0,00), lim K(v)=0 and

lim K(v)=1.

00

(K2) K is twice differentiable everywhere,
K'(+), K’C+) are uniformly bounded, K'( +) is

symmetrical about 0 and each of the following

integrals over ( — co, + co), J(K/(’U))J‘d'v’

J(K’(v))zdv, J'UZK”('U)C]‘U’ J'USK”('U)CI‘U are all
finite.

(K3) For some integer h—>2 and each integer
1<<i<h, J | v K'(v)dv | < oo and
0, if i <<h—1;
(K4) For any integer ¢ between 0 and h, >

|k oo = {

0, and any sequence {g,} converging to zero,

lim afch‘ ‘ | vK'(v) | dv =0,
oo o, vl >y

lme![ K@ | do=o.
0,0 >y

Since K is twice differentiable everywhere,

S,(b), S¥ (b) are also twice differentiable with

respect to I;E(@ yooo ,bp)/ , define

U, (bro) = 2528 Uy g,) = 2500
b b
and
z 2 Qu
Q(bia) = P20, Qg = 5L

Let r=(B4, )" denote the maximizer of (4),
and assume that §is an interior point of B, then
with probability approaching 1 as n—>co, g is an

interior point of E, Bi=p=1 and Uy (B ,0,)=0.
A Taylor expansion of Uy (87, 6,) at true
parameter f3 yields

Us B0 = Ui Boo) + QB » 6 (B — D = 0,
where 8, is between S and . We will show that
there is a real function p(n) such that pGOU} (B,0,)
is asymptotically normally distributed if 4,, the
bandwidth, is suitably chosen so that lg n/(ngt)—0

and ng?" !

— ) as n—>0co, where h is a positive
integer selected according to some criteria, In
addition, under some mild conditions Q; (S, s0,)
converges in probability to nonsingular, non

stochastic matrix Q, then
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o) (B — P =— Q" p(U (B, + 0, (1)
Thus, the standard Taylor series methods of
asymptotic distribution theory yield the result that

o (n) (,Z?ff' — Z?) is distributed asymptotically as
—Q (U5 (Bsa,).

To formalize these ideas. let = = § x. By
assumption ( | ), the distribution of = conditional
on x has everywhere positive density with respect
to Lebesgue measure, for almost every z. Let
p(z|x) denote this density. For each positive integer
is define p” (2|2)=09" p(2|x) /%", whenever the
derivative exists and p” (z|x) = p (2| x). Let
F(C-

conditional on z and 2, define F?(— 2 | z,2) =

2,7) denote the cumulative distribution of e

IF(—z | 2,2)/d2 whenever these derivatives

exist. Define the scalar constants a4 and ap by
e oo , ,
apr = K (v)dv, ap = (K" (v))*dv

whenever these quantities exist. For each integer
h=2, define the p —1 dimensional vector A and
two (p—1) X (p—1) matrices D and Q by

A=

h
— ; (€] N p D N
aAIZQ i!(h—i)!E[F 0] 0,2)p% 0 | 2)x ]

D = apE[az'p0 | )7,
Q= 2E[zx'FV (0] 0,2)p0 | 2)7.

In order to prove the consistency and
asymptotical normality, we need to make the
following additional assumptions ([[ )~(V[):

(ID E|l x| *<ee.

(I (a) For each integer i (1< i<<h—1), all
2’s in a neighborhood of 0, almost every x, and
some M<<co, p® (z|x) exists and is a continuous
function of z satisfying | p® (2| 2) | <M, in
addition, |p(z|x)|<M for all z’s and almost
every .

(b) For each integer i (1<{i<Ch), all 2’s in a
neighborhood of 0, almost every x, and some M<C
co, F? (— 2| 2, 1) exists and is a continuous

function of z satisfying |F® (—z|z,2) | <M.

(W)lg TZAO ,0,—>0 as n—>oo,

n

(V) The true regression coefficient g =

Brofos B B =10 B= (Brs ws ) s
contained in a compact subset BER !,

(VD Q is negative definite.

Assumptions ([[[) and (K1)~ (K4) insure the
existence of A, D,Q as well as the convergence of
certain sequences of the integrals that arise in the
proof of asymptotic normality. ([V) are analogous
to assumptions made in kernel density estimation.
K’( +) is the kernel function, g, is the bandwidth
in the kernel estimation. (V) is the standard in
asymptotic distribution theory for Taylor series
expansion.

In the text bellow, ¢ is constant and may vary
from place to place, and may be different in even
one formula,

In this article, notation such as ¥*, P*, E*,
Var” , F, refer to probability calculation under the
condition that (x;,v;),**, (x,,v,) are given.
Under the

assumption ( [ ), the random weighting maximum

Theorem 1 ( consistency )

smoothed score estimator f; defined as the

maximizer of (4) converges almost surely to the

true parameter (3.

Theorem 2 (asymptotic normality)  Assume

that under model (1), Conditions ( [ )~(V[) and
(K1)~ (K4) are held with t=2 in the conditions
imposed on the weights (5), and §,,8; are defined
as the maximizer of (3) and (4), respectively.

When ng?'—>), as n—>co, for h==2, we have

sup | P* (\/H(éf_[}n) <0 —
P(«/no,,(,g’,, *Z?) <0 | —P>O, as n — oo,
2 Simulation studies

This section presents results of simulation

studies. To compute S or 8, in application, it is

necessary to assign a numerical value to the

bandwidth parameter ¢,. Since 8 or 8, can be quite
sensitive to the choice of g, , it is necessary to have

a good choice for the bandwidth. The bandwidth

selection is common in nonparametric and

semiparametric estimation, however, there is no
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[ discussed the

satisfactory solution. Horowitz
problem of bandwidth choice. It is a data-driven
method which is optimal in the sense of minimizing
the mean square error (MSE). In this article we

also choose the optimal bandwidth which minimizes

the mean square error of ‘é, Cor ‘g’;f) Unlike
Horowitz’s method, we directly search for the
optimal bandwidth over a discrete set of [0.1,0. 9]
which contains all the possible values of g, in our
simulation.

The model we used to generate data is the

same as that used by Horowitz!!

1, ifa +pe,+e=0;
Y 0, otherwise.

We use the same parameter settings as Ref. [1] in
order to compare the behavior of maximum random
weighting smoothed estimates with the maximum
smoothed estimates. The true value of fis 1, x1~
NC0,1), and x» ~ N (1, 1). There are four
different distributions of e, that is, distribution L
e ~ logistic with median 0 and variance 1;
distribution U: e ~ uniform with median 0 and
variance 1; distribution T3: e ~ student’s t
distribution with 3 degrees of freedom normalized
to have variance 1 and distribution H: e=0. 25(1+
22+ 2') v, where x = 1, + 2., v is a logistic
random variable with mean 0 and variance 1. With
distribution H, e is heteroscedastic.

We used two smoothing functions in our
simulations. The first one is K, (x) = & (x)
corresponding to h = 2 where & (x) 1is the
cumulative standard normal distribution function.

The second smooth function is defined as follows
(h=4).

K, (x) =
0 if x<<—5,
5 7
I ety
if =5 <{x<5,
1 if x >—05.

The weighting variables are generated from the
exponential distribution (i. e. w; s ws,**y W, iid~

exp(1)) and Poisson distribution (i. e. wj yws 4+,

w, iid~Poisson(1)). The sample size are n=250,
500 and 1 000 in the simulation. There are 1 000
replications per experiment.

Both the smoothed score function and the
random weighted smoothed score function have
many local maximizers, a global optimization
algorithm is necessary to compute (3, and f;.
Although such methods, for example, tunneling
and simulated annealing, are available, we search
for the optima over a discrete set of 8 values, which is
convenient in our simulation as 3 is one-dimensional.

Tabs. 1 and 2 report the mean, mean square
error (MSE) of MSSE and WMSSE estimators and
the optimal bandwidths under different scenarios.
From Tab.1, we can see that all estimators are
consistent and robust with respective to different
error distributions. The bias of WMSSE is larger
than MSSE when the

However, the difference becomes negligible when

sample size is 250,

sample size becomes larger. The mean square error
of WMSSE is always larger than MSSE. It is
within our expectation as the introduction of
variation when

random weights brings more

estimating model parameters. Similar properties
are observed with the kernel function K, (x) (see
Tabs.3 and 4 for details). In

estimators from both smoothed score function and

conclusion,

random weighted smoothed score function are good

choices in the binary response model.
Figs. 1 and 2 are the Q-Q plots of /7,8, and

M‘Bﬁ' with sample size n =250, n=1 000 and
Poisson weights. ¢, is the optimal bandwidth
selected according to the minimum mean square
error criteria. We also have the Q-Q plots for n=
500 and exponential weights under different error
distributions. These figures are not shown here as
they have similar patterns. Although distribution
approximation of MSSE by WMSSE is not very
satisfactory when sample size is small, the Q-Q
plots become more diagonal when the sample size
becomes larger, indicating that the random
weighting method is desirable in distribution

approximation for moderately large sample size.
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Tab.1 Monte Carlo simulation results of MSSE and WMSSE for i = 2, smoothed function K(x) = K, (x) .
exponential weight, sample size » = 250, 500, 1 000, error distributions L., U, T3 and H

sample error MSSE WMSSE
size distribution Bias MSE bandwidth Bias MSE bandwidth
L 0.096 2 0.099 5 0.15 0.153 1 0.278 0 0.12
250 U 0.199 4 0.216 3 0. 28 0. 200 7 0.488 4 0.12
ol
T3 0.081 0 0.039 3 0.23 0.105 6 0.091 5 0. 21
H 0.026 4 0.010 6 0.13 0.044 9 0.032 6 0. 14
L 0.093 0 0.039 8 0. 27 0.074 0 0.081 2 0.18
500 U 0.108 0 0.085 7 0.25 0.156 1 0.282 4 0. 14
T3 0.052 9 0.018 4 0. 20 0.082 9 0.044 4 0.22
H 0.020 2 0.004 3 0.14 0.027 5 0.009 7 0. 14
L 0.052 8 0.017 6 0.19 0.072 9 0.033 8 0.23
1000 U 0.088 8 0.038 9 0. 24 0.082 8 0.083 3 0.18
T3 0.044 6 0.009 6 0.19 0.057 8 0.021 4 0. 20
H 0.015 2 0.002 2 0.11 0.019 4 0.004 3 0.12
Tab. 2 Monte Carlo simulation results of MSSE and WMSSE for i = 2, smoothed function K(x) = K, (x),
Poisson weight, sample size » = 250, 500, 1 000, error distributions L., U, T3 and H
sample error MSSE WMSSE
size distribution Bias MSE bandwidth Bias MSE bandwidth
L 0.081 9 0.082 7 0.17 0.155 3 0.246 2 0.14
250 U 0.189 4 0.305 4 0.23 0.2610 0.664 4 0. 10
T3 0.078 4 0. 045 2 0.23 0.110 0 0.1315 0.19
H 0.028 3 0.010 3 0.12 0.050 8 0.059 3 0.11
L 0.067 3 0.038 6 0. 20 0.100 3 0.094 4 0.21
500 U 0.159 5 0.094 7 0.32 0.163 1 0.228 9 0.23
o]
T3 0.052 8 0.018 7 0. 20 0.064 7 0.043 7 0.19
H 0.018 2 0.004 3 0.13 0.029 9 0.009 7 0. 14
L 0.0517 0.015 7 0. 20 0.081 8 0.036 0 0. 23
1000 U 0.072 4 0.034 7 0.22 0.094 0 0.087 0 0. 20
T3 0.038 7 0.008 4 0.19 0.058 0 0.018 7 0.22
H 0.013 0 0.002 0 0.11 0.021 5 0.004 4 0.13
Tab.3 Monte Carlo simulation results of MSSE and WMSSE for 7 = 4, smoothed function K(x) = K, (2),
exponential weight, sample size » = 250, 500, 1 000, error distributions L., U, T3 and H
sample error MSSE WMSSE
size distribution Bias MSE bandwidth Bias MSE bandwidth
L 0. 088 6 0. 048 0 0.33 0.130 1 0.194 6 0. 27
950 U 0.169 2 0.158 6 0. 47 0.284 4 0.526 0 0. 47
T3 0.077 5 0.033 6 0. 30 0.119 3 0.087 2 0. 32
H 0.017 5 0. 008 0 0. 14 0.029 8 0.028 9 0.13
L 0.068 1 0.024 7 0. 32 0.081 2 0.055 3 0.32
500 U 0.120 1 0.047 8 0. 45 0.202 5 0.193 3 0. 48
T3 0. 040 9 0.013 5 0.25 0.054 5 0.034 8 0. 26
H 0.0117 0.003 4 0.13 0.013 7 0.007 0 0.15
L 0.037 5 0.010 4 0.27 0.050 8 0.023 3 0.28
1000 U 0. 066 6 0.020 6 0. 40 0.079 6 0.042 8 0. 40
T3 0.032 4 0. 007 0 0. 24 0.046 6 0.0150 0. 26
H 0.010 7 0.001 9 0.13 0.012 9 0.003 5 0. 14
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Tab.4 Monte Carlo simulation results of MSSE and WMSSE for i = 4, smoothed function K(x) = K, (2) .,
Poisson weight, sample size » = 250, 500, 1 000, error distributions L, U, T3 and H

sample error MSSE WMSSE
size distribution Bias MSE bandwidth Bias MSE bandwidth
L 0.075 2 0.054 1 0. 31 0.117 3 0.157 5 0.29
950 ] 0.139 6 0.167 2 0.41 0.242 9 0.477 2 0.41
T3 0.059 5 0.030 7 0. 27 0.0717 0.090 8 0. 24
H 0.024 8 0. 008 6 0.15 0.041 7 0.024 8 0.16
L 0.067 4 0.025 1 0.32 0.079 2 0.072 0 0. 30
500 U 0.138 1 0.051 1 0. 47 0.151 1 0.146 7 0. 39
T3 0.037 0 0.013 5 0.23 0.047 0 0.0327 0. 24
H 0.017 5 0.004 0 0.13 0.017 4 0.008 7 0.10
L 0.035 2 0.010 9 0. 27 0.084 1 0.027 0 0. 35
1000 U 0.063 1 0.023 5 0. 36 0.092 9 0.052 9 0. 40
T3 0.024 9 0.006 7 0. 21 0.046 2 0.014 5 0. 25
H 0.010 0 0.001 9 0.12 0.014 7 0.003 9 0.13

3 Conclusion

This paper has described a random weighting
version of Horowitz's smoothed score estimator for
model.  The

estimator converges to a normal distribution with

the binary response smoothed
the variance parameter related to an unknown
nonparametric density function. It is thus difficult
to carry out statistical inference based on such limit
distribution. The randomly weighted version of the
estimators can be used to estimate the asymptotic
variance of the original maximum smoothed score
estimators. We proved that the conditional
distribution of the random weighed maximum
estimator given data could

smoothed score

accurately approximate the distribution of
Horowitz’s smoothed score estimator whether it is
normal or not.

A popularly used method for approximating
distribution, bootstrap could be viewed as the
special case of random weighting method by setting
the weights to be distributed as multinomial
distribution, 1. e (w;, ***y w,) ~ multinomial (7,
(1/n,1/n,++,1/n)). Random weighting method
has advantages over the bootstrap method in the
sense that it is more flexible to choose weights.
Simulations have indicated that the approximations

of asymptotic distribution are likely to be accurate

with moderate large samples. In conclusion, the
random weighting method provides a useful
approximation to the maximum smoothed score
estimator in the binary response model and makes

statistical inference possible.
Appendix

This appendix presents the proof of three main
theorems and several lemmas. These lemmas
establish properties of the functions S, (b), S; (b)
and S¥'(b) that are used in proving theorems. For
bER?, define,

S(h) = 2P(y = 1,b/'x =0) — P(b'x > 0).

Define sets B by B={1) X Band B* by B*={1} X
R,

Results from the empirical process are needed
to prove the uniform convergency summarized in
Lemma A.1 and LLemma A.2 (Theorem 4. 8 and
Theorem 8. 3 in Ref. [13].

Lemma A.1 Let 7 be a bounded subset of R”
with envelop F and pseudo-dimension at most V.

Then there exist constants A and W, depending
only on V, such that D, (¢ | a OF |, a ©®%) <

w
A (%) , for 0<e<(l, for every rescaling vector «

of non-negative constants.
D, is the package number under L, distance,

the definitions of package number and pseudo-
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dimension refer to Ref. [ 13, Definitions (3. 3) and
(4.3)]. @ is inner product operation.
Lemma A, 2 { fi Cws t): t € T} are

independent, manageable series with envelopes

Filw. it ) E
i—1

L2
S+ < oo, then as n—>co, we have
1

L 1S, ) —M,() | 23>0 (AD
n T

where S, (w,t) = Efi(w, ), M, (t) represents
i=1

the expectation of S, (w,1).

Definition of “manageable random functions”
can be found in Ref, [ 13, Definition (7. 9) ].

Lemma A.3 Under assumption ( [ )~ ([\),
(VD) and (K1)~ (K4),

lim Q; (B s0,) = Q in prob. .

Proof It is easy to show that EQy =FEQ, and
VarQy = (r—1)VarQ,.
together with Ref. [1, Lemma 9| prove Lemma
A. 3. U]
Ref. [ 3, Lemma 3 and

Lemma 5] proved S(b) is continuous and achieved

These two equations

Proof of Theorem 1

its unique maxima at true value . Thus, we only
need to prove | S¥ () —S(b) | —0 uniformly hold
for b€ B as n—=><o, Denote M(b) =E(S¥(b)), we
prove lim Sup | S* (b) — M (b)) | = 0 and

U0 b

lim sup | S(6) —M(bh) | =0 respectively.
e BT

First of all, for some o>0,
| S(b) —M(b) | =
b/l','

‘E(Zy,- —1 (K(—)—I(b'x,- > o>) ‘ <

n

E K(bx’)— I(l/x,- 2 ) <

GH
E K(%)_I(b/xi =0 I Ve [Za)+
E K(%)—m)’xi =0 I bz [< .

Since le K(v) =0, le K (v)=1, therefore, for
any gi‘ven ¢ >0, there exists a constant A, when
[v|>A, | I(v=0)— K (v) | <e. Then, when
a/o.,>A,
| KW'xi/o) — 102, =0 | I(] o, [ =) <
| K(Wxi/o,) Iz, =0) |<e

uniformly hold over 4 € B*. By the dominated
convergence theorem,
b/x,-

K(—)—I<1)’x,- =0

n

limsup E

v e B
I bz, |=a) =0 (A2)
The bounding property of function K ( + ) implies

that there exists a constant ¢ such that
| I 2, =0 —KWz:/6,) | <,
therefore, we have

Eﬁdéﬂ)*nau;w>1ﬂbﬁﬂ<w><

On
E IV, [<a) =P bz, [<a).
Ref. [ 1, Lemma 4] proved that P (| b z; | <a)
converges to 0 uniformly over B* as a goes to 0.
Thus,

On

Jim sup E‘ K(@)— Wz, =0) |-

e BY
I Wz |<a) =0asa—0 (A3)
(A2) and (A3) imply limsup | S(6) —M(b) | =0.

e BT

Lemma A.2 to prove
limsup | S¥(6) —M(H) | =0. Taking f; (w, b) =

oroobe B
w; K(b'z;/5,) in Lemma A. 2 we obtain { f;} with

envelop {F;}, F,

fi(w,b) are independent with respect to their

Now we use

= ¢ | w; |, and furthermore

envelops, manageable and
SEE=ee Y 4 <o
=1 1 i=1 1
So, by applying Lemma A. 2 we obtain
lim sup | S¥(b) —M(b) |= 0.

n—>oco hE B+

This completes the proof. ]
Proof of Theorem 2 The Taylor expansion of
Uy (B,0,) at B yield
V1o Us (Bao) + Qb o)/ na, (B —P) = 0,
where b, is between B and ;. By applying Lemma
A. 3 we have

Vno, (,Z{f'*[?) =—Q "'Vno,U; (B, +0,(1) =
LSV Dk (B
T2 (e D@ = bk (TR )+
()/)(1)3
Let

o 1 - o o ~ 2 @
z,,—mg(wi D2y, 1).r,K(6” )

7Q1
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then - R B, RN ¥Y'Dy as n — oo (A9)

Ve, (B —B) =— Q' (z, +&), 1 (AD It is because

E* & A1 —>0inpr. asn—>co E(B, —EB,)? =

2
E 2z, =E Z<w — D22y, —1)* » fVar[ (K(@)) y’iliﬁy]é
ne, = Ou O
/ : I ~, oo~ o~
(53 L (x <@>> i)

1 Bxiyy’ 1 ~\]=
LSk (2n). Lelp(L(k(B0)) oeiint12)]-
Since E f;;/<K/(@))Z — D exists, so when l J > (z | 21)d=( ) 2 S u
On - Oy N n p < 11 Y‘I 11‘1’}/
n—>co, 1 - ’ 4 ’ ~ Y

, o E X(K W' plou | x)du(yx1277)%.
Ezz:EGl;yz(K(%)) 25D (A "

Let U, be a be denumerable dense subset in the

unit sphere, U={yER" ', || y || =1}. It is
necessary to prove
P* (702, v)—»@( ()D}’o> in pr. as n— o©
(A6)
where v, €U,, vER', & is the standard normal
distribution.
Let

_ 1 _ 1y (B
= (e D@y, DYk (B).

then

Yz, = 277”1'7 EY 7],1,' =0
i—1

E' g = LK’<&>Z7/},~;§}’ = o7

non 671

Let B,= 2,67, we need to verify the Lindeberg
=1

condition
1 n J 1 , ,
P 1 - 2 i 1 e
B,,; I 1= /B, no,,(w 2y )

(K’(@) )Zy/if%édeﬁ (w,) = 0 in pr.

(A7)
for any given ¢ >0,
That is to say
L,(e) := —ZE* 7l g |=¢ V/BD L

71

(A8)
Firstly,

By dominated convergence theorem, as n—>co,

E[ (K@) plow | 20du (/7 Fip)?
EJ(K/(u>)4p(O | 2D du(y 727 =

J;}K’(mwduEp(o | 2D (YT .

() and (K2) imply the right side above is
bounded and noticing that n ¢,—>°°, so
E(B,—E(B,))* —0,

as n—>co, Similarly,

EB, = lE(K’(&) )27/21%’17 —

On O
GLE[E[(K(%» |;1:|y/;1;’1},:|:
%E“K/(f]))zp(z | T dey 7 0y e

E[(K @) plo,u | Z0duy5,3y.
By dominated convergence theorem, when n—>co,
EB, = | (K' 0 E[p(0 | 1)y/2,357] = Dy

(A10)
E(B,—EB,)*—0 and (A10) imply (A9) as n—oo,
By (A9), in order to prove (A8) it is

necessary to prove

E[iml —1)2(1{/(@))27’;1;371 .

On On
(|- L — e (6 (E2)) 52300 =)
0, in pr.
Let
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Since

L (K (E2)) sty )=

E[E-L (K (E2)) e sty 5 )=

LE(K’(£>>2p(z \ L)dzy';lf}?ﬁym

no, On

LE[K @) plou | Z0dur7,7y.
By dominated convergence theorem, as n— co,
we have

EJ.(K/(H))ZP(O‘,, u | ) dwy’z 2y — ¥ Dy,

thus ET,—0 as n—>oo,

Therefore,
T,—>0, in pr. as n—> oo (A1D
Besides,
E[%(m — 1 (K(%) )2y’;1;3y]:
EB, >y Dy (A12)

by (All) and (Al2), the Lindeberg condition
(A7) is established. This completes the proof. []
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