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0 Introduction

In this paper, we will consider the equation

Dutdu=—| ul'u, (x,0) € R’ XR;}
. @D)
u(0) = w, € H' (R

Here, u: R X R* —>C is a

where u, is radial.
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complex-valued function.
The energy
ECuw(p) :=

!

The solutions to Eq. (1) and the energy are

1 TR NITRDS
> | Vult, o) | 6\u(t,1)\ da.

invariant by the scaling
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uCts ) A7 u(At A ).
For this reason, Eq. (1) is called energy-critical.
A function u on a non-empty time interval 12

0 is called a strong solution to (1) if it lies in the

class CCHL(KXRD N LY. (KXRY) for all compact
KC1, and obeys the Duhamel formula

u() = e™uy + iﬁei(’ P2 uls) | ulds.

u is called a maximal-lifespan solution if it cannot

be extended to any strictly larger interval.
Theorem 0.1 Assume that ECw) <<E(W),

lw I g1 << Wl 4 and w is radial. Then the

solution u with data u, at t= 0 is defined for all

time and there exists w. » w.— in H' such that

lim [ w(o) —e™uy, | ;0 =0 (2)

Py
Theorem 0.1 was proved by Kenig and Merle
by concentration-contradiction in Ref. [1]. They
reduced it to the existence of minimal blowup
solutions of almost periodic solutions and used the
virial identity to verify that. Here, we will use
Morawetz estimate to prove the similar result for

almost periodic solutions.

Definition 0.2 A solution «€ L™ H.(IXR®)
is said to be almost periodic (modulo symmetries)
if there exist functions N: IR, x(): I=-R* and
C:R"—>R" such that for all 1€ I and 70,

| Vultsx) |*dx—+

J x (0 =Clp/ N
J LEP | u(n® PdE<<n (3)
& =Cp N

We refer to the function N (1) as the frequency
scale function for the solution u, to x(t) as the
spatial center function, and to C(%) as the modulus
of compactness.
Then we have the following important result:
Theorem 0.3 (Reduction to almost periodic
solutions, see Refs. [1-2]) Suppose Theorem 0. 1
fails. Then there exists a maximal-lifespan solution
u: IXR*—C to (1) which is almost periodic and
blows up both forward and backward in time in the
sense that for all ¢, € I,
rup JJRS | uCt, ) [Mdadt =

b

JIO J | uCty ) [Ydadt = co.
B

inl T
The proof of Theorem 0.3 can be found in
Ref. [1], but for complete details see Ref. [2].
Though Theorem 0. 3 does not explicitly claim that
u is a minimal counterexample, this is how it is
constructed and shown to be almost periodic.
Our main result is
Theorem 0. 4

blowup solutions to (1) when N(1)=1 such that

There are no minimal energy

Tﬂh’lx
J N '"(pdt = o=,
0

The similar result was proved by Dodson™ for
the mass critical NLS (nonlinear Schrédinger)
equations with mass below that of the ground
state. Here we will prove Theorem 0.4 for the
three dimensional energy-critical focusing NLS in
the radial case. And the case when N (1) varies is
interesting.

The remainder of the paper is organized as
follows. In Section 1, we will give some notations
and useful lemmas. In Section 2, we will construct

a Morawetz estimate that gives the contradiction
T
K = j Nt (pdt = o(K)
[

for K large enough and its error is small. In
Section 3, we will verify that the error from the

truncation in frequency is small.

1 Several lemmas

We will need the Littlewood-Paley theory. Let
$€ G (R"), radial, supported in the ball | x| <2
and ¢(x) =1 on the ball [ x[<C1. Then, we can

define the Littlewood-Paley projection operators

Ponf (& := ¢(&/N) [(® (1)

Poyf (&= (—$(&/NDJBD ()

Puf (9 1= ($(&/N) — $(28/N) (O (6)
Similarly, we can define P-y, P=y, and
Pyeon ' = Paon— Pewus
where N and M are dyadic numbers. Sometimes.,
we will use f«y instead of P<yf.

Theorem 1.1 ( Sobolev and Bernstein
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estimates)'™  For s=0, 1< p<<g<<oo,

I Poxfllir = NI |V [Paxfll 2y

[ Pex | V I'fllr = N Penfll s

[Pyl VI flle ~ Nl Paflle,
| Poxfll = Novo | Penf |l 10

| Paf Il o = Nv 7o | Puf |l oo

where X=Y means that there is a constant C such
that X<X CY, and X~Y means X<Y=<X. In
addition, X =,Y means there is a constant C
depending on u such that X<XC(wY.

In the focusing case, the solution of Eq. (1)
must satisfy the condition:

Theorem 1.2 (Energy trapping, see Ref. [1])

Let u be a solution of Eq. (1), with =0, ul, o

=, such that for §,>0,

J |V w \2<J TW |,
C7)
ECu) < (1—68,)EW)

Let 120 be the maximal lifespan of solution, and

8=08(8,,3). Then for each (€ I. we have
j| V ult) |2<<1—’3)j| VW [? (8)

J | Vulp |2 —| wn |2 >§J | Vut) |2 (9)

ECu() =0 (10>
where 2" =6.
Lemma 1.3 Let u be the solution of
(1), then
lull o <Gl Vul 2 (1D
Proof We consider the elliptic equation
— AW =| W |'W (12
We have
VWi = Wi (13)
So
= [l vwi " (14)
Then
lul e <=t I Vulle a5

[ VW
U]
Lemma 1.4 Suppose y€ C; (R, y(x)=1

on|1‘\<§ and y(x) =0 on | x| =R wuis the
solution of Eq. (1). Then
[1vGor<]ivur (16)

Proof Since y&€ G C Y, then
R S
YA 2 DN
1

(1+| T ‘)Nfl ’
where Cy and Cy 1 are dependent on N, and N=

07172’...

| (o [< C

| (Vx)(l) ‘< CxV\l

j | Vy(ow ["dax =

| V (x(0)w [2dax =

[ o] =R

J
[ T et
Jyo
J

| V (y w () [2da <<

R/2

| Vulo) [*dx+

x|=iR/2

|
ZJ K\ V y(xo |2

R/ 2=

Ll | Vultde<

L ‘ | Vulo) [*dx+
J<R/2

“N—1 2
2 <1+R/2>2N+2JR,2< I

A
Cn

ZAE R/ DN

J | Vul?dxe<<
R/2< |« <R

J‘ ‘ | Vulo) [*dx—+
2R/

{ C g e R

(1+ R/2)2N (1+ R/2)#N**

J | Vul|?dx a7
R/2< <R

Choose N =
enough such that

Gk
<1+R/2>’“

Therefore,

2, then fix N and choose R large

G R
(1+ R/

+38 <1 (18)
[ 19 Gow Paz< |1 7ul? a9
O

2  Nonexistence of minimal energy

blowup solutions

Let Iu denote P=v. Suppose
id Ju=—Alu—| Iu|'lu-+ 7,
where 7= | Iu|"Iu— | u|"w. Then ignoring the

Fourier truncation error %, we only consider

i Ju=—Alu—| Lul" Tu
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Theorem 2. 1
blowup solutions to (1) when N(¢) =1 such that

There are no minimal energy

T
J N7 ' (pdt = oo.
o

Proof u is radial meaning x(t) =0. We use
the Morawetz potential. Let ¢€ C"(R*), ¢(x)=1
when | | <R, ¢(x) =0 when | x| =2R and

1
9 =T
| (,b(l)‘ ‘1“‘“‘

Y a € N*. Here R is a positive

number that is to be determined. In the following
pages, we write a complex function z as ¥=Re 2+
Im 2z, where Re zis the real part of z and Im =z is
the imaginary part of z.

Let
M) :th,b(x)lm(Tu(I)VIu(x))dx (20)
then

d%M(t) :Jx¢<x>1m<?l,<x>v1u(x>>dx+

j.n,b(l‘,)lm(n(l‘,) Viu(o)dx =

I +1.
Integrating by parts,

1 ZJJ‘gb(I)Im((iAIquH Iu "TwV Iwdx =
*ReJ xt,b(l’)AEV ludx—
Rejl‘gb(l) | Tu | TuV ludx =
1 5
gJV(l‘gb(x)) | Tu |°dax—
L9 Capcan | VI |7t

> Rejak(ﬂp( )3, Tud, Tudx

jek 1

and

I = Jxx,b(x)lm(EVIu,)dIZ
fJ.V(;u,b(x))Im(EIu,)dxf

| 2 (Y Tuluda =
—wau))Re(Tu(muH Iu |"Tu)dx+1 =
—%jmwwm)) | I |2det

JV(xgb(I)) | VIu \Z*JV(IA,ZJ(JC)) | Tw |"+ 1,

then

Ay =27 +11 =
dt

3
2> Rejak(xjajj(x))ak Tud; Tudx—
j» k=1

.

JV(ISZJ(]I)) | Tu |®dx—

Do = w |t

JA(V(I(!)(JT))) | Tu |*da.

Let y() € G, 5 and y(2) =1 on |1|<§, y ()=

0 on | x| =R. Since
yViu=ViyIw—(Vylu @D

we have

M = 2| | VGt Pde—2] | gl |'det
ZJ(V)()Z | Tu \deJrZJ(gb*XZ) | V Iu|?dx—
1Re| 7 (4 Iw) (7 ) Tudx+

2> Rej(xa,\,(/)(x))ah Tud;Tudx—

ok 1

2J(</)* ¥ | Tu \“dx*%Jthj)(I) | Tu |*da—

%JA(V(%/)(I))) | Lu ”da

By Lemma 1.3, Lemma 1.4 and || Vu [|$ <
| VW iz,
ZJ | 'V (y Iw \Zdlt*ZJ Iy Iu|"dx=

VL [
| VW || 1

Let us make a refinement.

211

] I V (y Tw [ %2.

ZJ | V (y Tw) |2d1‘*2j | x Iu|"da =
2[ | V(g lw [Pda— @+ p| | ¢ Iu [Pdat

'IJ |y Tu|'da=

TV w || 42 )
[2—(2+rp %} |V (yTw | 3+
A |y Tulfda,
Choose v]such that
| ¥ Lu, || 32
2— (24 oot —
Torvwle Y

then
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2J| V (y Tw \de*ZJ |y Tu [®da=

IV Gy Tw | 42 +J |y Tu [fdo) (22)
Then

d%M(t) = (|| Vg Tw || 5 +J |y Tu [fda) —

3 5de— CCp_ 2, _
| o e Regms | 1l
IRACRIARE (23)

We can choose R(y sufficiently large so that

- r |
| " dmcnde=|" gl g 1ul irde—
0

o dt
K
K%?L—jj I [Pdadi = K
(20)

From the definition of almost periodic solution,
M(p = Jw(mm(ﬁ(@ V Iu(x)dx < Ro(K)

(25)

For K sufficiently large, this gives a contradiction.

3 The estimates of Fourier truncation

errors

In previous sections, we ignored the Fourier
truncation errors. Now, we will show that the
errors can be controlled by o(K). First, we need
some restrictions on these parameters. We choose
N small enough and R sufficiently large, so that

given 7= n(w ,
JR‘" | Vo, (ty ) \deJrJR‘ | Nuy(ty ) [*dx+

J R | Vu;,,-(tax) |ZdI< 7']2 (26)

ol >
uniformly for 0<{t<Z T, where wy *= -y = Py
and w, * = u — uw,. This observation follows
immediately from the fact that u is almost periodic
modulo symmetries and N() =1,

Lemma 3.1 (A priori bounds, see Ref. [3])
For all %+%:% with 2<C ¢<{°° and any s<<1

3

s

q
H Vo, H LIL” + H N' - | V "\Mm H LIL" =.
1+ N KV 27
Under the hypothesis of (26),

o, I = A+ NTKOV! (28)
In the proof, we will use the fact N<X1B1, Let
F= wy [fuy—| ul*u
and
{(Fowi}h, = Re(TV wy — u; VA,
Proposition 3.2 For any ¢€ (0,17,

o
‘ J JRB (/)(I)x - {7, uhi}pdxdt |§“

€J J . ‘ u,,,-,(tax) ‘hdl‘dt+
1J R®

w15 + g+ (N +K) (29
Proof First, we know that

(F($) s o) :%v g7,

and
(Tow) = V D, OCuul?) +
=1

O wiul, V w,) + OCu’ wy, V ow,) +
V @( u;”'P/”F( u)) + @(u,,,- V P[(,F( u)) (30)
We first estimate the first term of (30).

Integrating by parts and using

5
Dol w07 =
i1

el ow "+ [ wo 7] wa 01w 4] wo 1175

we have that

f [ V@D | wew "=
e

SJJ 5 ‘ u,;,,‘(tyf) |GdIdt
VR

and

SIJJJRBV("ZJ(I)I) ‘ Uy, ‘Z | Upi ‘ D Upi |+| Uy, |:|% =

eflleRBV(gb(x)x)ﬂ wo 12w 124w 17 ] we ) e
L] ows |4 w, | JPdadt =

s W 1w 30 1wl 3 +

el Do 2 el s 0l 30 =
e'n(N*+ K),

where we have used the Hoélder inequality. Now,

we use Lemma 3. 1 to estimate the second term of (30).

I OCE wiud, Vo) || =<
IO wui, Vo) |0 =
Do ez o s 1DV I Wl s =,

(N ° + K.
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We use Bernstein and Lemma 3.1 to control the
third term in (30),
I oCu wi V w,) I L. = || 0 whi V w,) I L. =

2.
L=

| |l %;‘, |V w, | 50 0 [ wll 590 [ ul
N w |l f}( | w, |l S | w, |l 50 [l fﬁlG‘ =

| L H V w,

N 3w
NY2 | ;;}r I U, |
[N [t Ny A+ NK T w |1 =,
nClw 1+ N*+ K.

Finally, we will use the same method as used in

| AN H LLH fops =<
t x t x

20§ <<

Lr L no~

Ref. [ 3] to control the fourth and the fifth terms,
and we have
|V OCu, P FCu) || =
1V 7w ez CIPLF G ] gz +
| VP, FCw | z) =<
N7+ N K2 (1 + N K2 +
e e N A+ NKY [ ullie =
NZA+NK 1+ NKY N2 [ |5+
N+ NKY | ulli= =
(N7 + K) +
N2 11 A+ N w108 =<
w1 + N7+ K,
and
| @Cu; VP,FCw) | =
[ VA R
Cl aP,FCw | 12085 | VP,FCw | 12185) =
[ VAR T | 1218 ( I AP, F Cu) |l L2+
| AP, D Cupyridyu®) || L%+
AP O Cuu®) || 2055 + (| V P FCw [ 200) =<

w1+ N+ K.

The proof now is complete. L]
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