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Vapor-phase synthesis of single-crystalline
Ag nanowires and their SERS properties
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Abstract: Single-crystalline Ag nanowires with a face-centered cubic (fce) crystal structure were
synthesized inside Ag/Zn(O coaxial nanocables by the vapor-liquid-solid ( VLS) mechanism
through a thermal evaporation route. The confinement of the ZnO shell was believed to be
responsible for the emergence of the single-crystalline phase. Ag nanowires with different
diameters could be obtained by etching Ag/ZnO coaxial nanocables with modulated core-shell
ratio determined by Ag concentration in the source. These high-quality silver nanowires were
explored as sensitive substrates of surface enhanced Raman scattering (SERS).
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0 Introduction

Metal nanostructures have attracted particular

attention due to their superior properties and

potential applications in catalysist'™,
optoelectronics®*,  and  optical  sensing™™,
Notably, surface-enhanced Raman scattering

(SERS), which allows the detection of single
molecules, is one of the most interesting features

[9-13]

of these metal nanostructures Among all

metals, silver has the highest electrical and
thermal conductivity and also shows the most
effective SERS performance in the visible region.
A number of chemical approaches have been

explored to silver into 1D

[11-16]

actively process

nanostructures However, most reported
methods for the synthesis of Ag nanostructures are
routes

wet chemical involving the wuse of

[17-19]

20-2
surfactants , Leozi]

templates or capping

agents. 1 Although  good  control  over
nanostructure dimensions can be realized in these
syntheses, severe post-treatments are required to
remove the templates, surfactants, or capping
agents from the nanostructure surface, which
affects the purity of the materials.

Recently, in order to provide a reliable SERS
detection, vapor deposition methods have been
developed to prepare silver nanowires with a clean
surface, using sources such as Ag,O or pure
Agl+?l,
using these vapor deposition methods are all

CVS)

mechanism. However, these methods for synthesis

The growth process of Ag nanowires by

attributed to the vapor-solid growth
of Ag nanowires suffer from several problems,
such as low yields, and inability in controlling the
diameters of the nanowires.

Herein, we describe a facile two-step thermal
high-yield Ag

nanowires via the vapor-liquid-solid (VLS) growth

evaporation route to fabricate
mechanism. The resulting Ag nanowires are
single-crystalline and have a face-centered cubic
(fce) structure. Their diameters can be modulated

by changing the ratio of Ag in the source. The

optical and SERS properties of the resulting Ag
nanowires were investigated. The approach we
demonstrated here may be extended to synthesize

other metal nanowires.

1 Experimental

The Ag nanowires were fabricated by a two-
step process. First, Ag/ZnO nanocables were
synthesized in a conventional tube furnace as

Ll Subsequently, Ag

reported  previously
nanowires were successfully obtained by etching
ZnO shell with 3 mol/L hydrochloric acid solution
for 120 min.

The as-prepared Ag nanowires were
characterized by field emission scanning electron
microscopy (FE-SEM, JEOL JSM-6700F), high-
resolution  transmission  electron
( HRTEM, JEOL 2010,
diffraction microscopy (XRD) with Cu K, radiation
(wavelength, 1.504 5 A,

For preparation of SERS substrates, the

microscopy

model and X-ray

synthesized Ag nanowires on the Si substrates
were washed with deionized water and then ethanol
and dried in air. Then the substrates were

immersed in 1 nmol/LL aqueous solution of
rhodamine B for 30 min, rinsed with deionized
water after removal from the solution, and finally
dried in air. The Raman instrument used in this
study was in confocal configuration ( LABRAM-
HR) and excited by an Ar laser (514 nm). The
spot size of the laser beam on the sample was about
2 pm. The acquisition time of the scattering signal

was 1 s.

2 Results and discussion

It has been confirmed that the products of the
first step process are nanocables which are made up
of ZnO nanotubes filled with silver nanowires in

workP?3, A detailed

illustration of the formation process is shown in

our previous schematic
Fig. 1. The formation of the Ag/ZnO nanocables
synthesized here can be attributed to the VLS

growth mechanism. Briefly, Ag vapor generated
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Fig. 1

from the decomposition of AgNO; is transported
At the

same time, Zn and O vapors are adsorbed on the

and Ag droplets form on the substrate.

surface of the Ag droplets which serv as the
ZnO
in the

resulting in the growth of
With O content

droplet, ZnO nanotubes start to form, and the

catalyst,
nanowires. decreasing
liquid droplet is sucked into the hollow cavity due
to the capillarity effect. Zn atoms diffuse out from
the alloy and are oxidized to ZnO, leaving Ag to
{ill the nanotube.

After
obtained. The representative SEM image of the as-

etching, the final products were
obtained samples, as shown in Fig. 2(a), reveals
high density of nanowires with a length of tens of
micrometers on the Si substrate. The inset is a
high-resolution SEM image of the obtained Ag
nanowires, showing that the nanowires have round
cross-sections with a regular polyhedron shape of
Ag nanoparticles attached on the freestanding end.
The length of the wires is up to 50 pm and the
diameter is about 200 nm. The XRD pattern of the
as-grown nanowires is depicted in Fig. 2(b), which
identifies the resulting products as Ag nanowires.
The nanowire ensembles are indexed perfectly to
the face-centered cubic (fcc) crystal structure of
Ag (JCPDS card no. 87-0717) with a lattice
constant of a=4. 085 A.

Fig. 3 (a) shows a TEM image of a typical
silver nanowire. Fig. 3(b) ~ (d) presents selected
area electron diffraction (SAED) patterns of the
Ag nanowire shown in Fig. 3(a), which were taken
separated by several

at various locations

removal of
Zn0 shell
—

Si(100)

Si(100)

The schematic illustration of the growth model for Ag nanowires

1 pm

10 pm

The inset is a higher magnification image.
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Fig. 2 SEM image of the as-synthesized Ag nanowires (a) ,
and typical XRD pattern of Ag nanowires (b)

micrometers. All of the spot patterns can be
completely assigned to the same fcc Ag structure,
further confirming the single-crystallinity of the
This

nanowires grow along the [131] crystallographic

whole nanowire. also shows that the

direction.

The diameters of the Ag nanowires could be
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(a) TEM image of a Ag nanowire.
(b)~(d) SAED patterns taken at various regions
of the Ag nanowire in (a)

Fig.3 TEM image and SAED patterns of a Ag nanowire

modulated by changing the amount of AgNOQO; in
the source. The lower Ag concentration in the
vapor results in smaller alloy particles formed at
the initial growth stage. According to the VLS
mechanism, smaller catalyst particles lead to the
decrease of the solid-liquid interface, so the central
region of the interface is easier to be oxidized to
form ZnO if the oxygen concentration remains the
same. Thus, the diameters of the nanocable and

the core will decrease as the amount of AgNO;

decreases. Fig. 4(a) exhibits the SEM image of the
nanocables grown with reduced amount of AgNO;
of 0. 25 g, but the same amount of ZnO. Fig. 4(b)
shows the SEM image of an Ag nanowire obtained
by etching the nanocables used for Fig. 4(a). It is
clear that the diameter of the Ag core decreased
from 200 nm for nanowires grown with AgNO; of
0.5 g (Fig. 2(a)), to 100 nm in average. The yield
of Ag nanowires also reduced with the decrease in
diameter.

The SERS sensitivity of these Ag nanowires
was tested using Rhodamine B molecules. For
comparison, Si and Ag film with a thickness of 100
nm coated on Si were used as reference samples.
Fig. 5 shows the Raman spectra of 107’ mol/L
Rhodamine B molecules with the 514 nm excitation
for Ag nanowiers, Si and Ag film, respectively. In
comparison with the Si and Ag film, an obvious
SERS effect is observed in the Ag nanowires and
all the observed Raman bands agree well with the
literature reports®”?. The Raman bands at about
1363, 1508, 1559, and 1648 cm™' can be
attributed to aromatic C—C stretching. The
Raman bands at about 1 280 and 1 602 cm
attributed to C—C bridge-bands stretching and
Cc=C

variation in SERS enhancement was observed from

! can be

stretching, respectively. No obvious

one position to another in the same sample.

200 nm

(a) SEM image of Ag/ZnO nanocables with AgNOs of 0. 25 g. The inset in (a) is a TEM image.

(b) SEM image of an Ag nanowire etched from the Ag/ZnO nanocables in (a)
Fig. 4 SEM image of Ag/ZnO nanocables and Ag nanowire with AgNO; of 0.25 g
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Fig.5 Raman spectra of 1 nmol/L Rhodamine B
molecules using Ag nanowires,

Si and Ag film as substrates, respectively

3 Conclusion

High-yield and uniform Ag nanowires have
been fabricated by thermal evaporation route via
the VLS growth mechanism. The single-crystalline
Ag nanowires have an fcc structure. The diameters
can be modulated by changing the ratio of Ag in
the source. SERS of Ag nanowires could reach the
detection of 107" mol/L low concentration of

Rhodamine B molecules.
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Remark 2.4 @ Ref. [3] constructed a system
(X, T) such that (K(X),Tg) is exactly Devaney
chaotic, while the set of periodic points Per( X, T)
is nowhere dense. But this system does have
periodic points.

@ Ref. [8] constructed an HY-system (X, T)
without periodic points. Then (K (X), Tx) is
Devaney chaotic, while the set of periodic points
Per( X, T) is empty.
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