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Abstract; Modeling the mean and covariance simultaneously has recently received considerable
attention when efficiently analyzing the longitudinal data. An unconstrained and statistically
interpretable reparameterization of covariance matrix itself was presented by utilizing a novel
Cholesky factor. The entries in such decomposition have moving average and log innovation
interpretation and can thus be modeled as functions of covariates. With this decomposition and
the consideration of model flexibility, new semiparametric models for jointly modeling the mean
and covariance itself were proposed, rather than its inverse as commonly studied in literature. A
spline based approach using generalized estimating equations was developed to estimate the
parameters in the mean and the covariance. It was shown that the estimators for the parametric
parts in both the mean and covariance are consistent and asymptotically normally distributed, and
the nonparametric parts could be estimated at an optimal rate of convergence. Simulation studies
and real data analysis illustrate that the proposed approach could yield highly reliable estimation
of the mean and covariance matrix.
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0 Introduction

Longitudinal data is characterized by the fact
that repeated observations for a subject tend to be
correlated. This correlation presents additional
opportunities and challenges for analysis.
Regression models are widely used and provide
general and versatile approaches to analyzing such

datal?,

Liang et al.™ introduced the generalized
estimating equations ( GEE) for fitting such
repeatedly measured data. Although GEE could
yield a consistent estimate of the mean parameter
by using “working” correlation, such misspecified
within-subject correlation may lead to a great loss

[3]

of efficiency*. Therefore, modeling the mean and

covariance simultaneously has received

considerable interest when efficiently analyzing the
However,

longitudinal  data. modeling  the

correlation matrix is more challenging than
modeling the mean as there are usually more
parameters in the correlation matrix and the
positive definiteness of the matrix has to be

M) proposed an unconstrained

assured. Pourahmadi
and statistically interpretable reparameterization of

Cholesky

decomposition. This decomposition is attractive,

precision matrix by modified
as the entries in this decomposition can be
interpreted as autoregressive parameters and log
innovation variances Iin a time series context.
Regression models can then be applied to these
entries in a manner similar to the mean models,
thus permitting parsimonious characterization of
the covariance structure just like the mean. See
Refs. [ 5-8] for further details.

In many

applications, the problem of

estimating the covariance matrix and precision
matrix are usually considered separately, since
inversion may be computationally costly, noisy and
does not preserve some structural characteristics.
Regression methods have been extensively studied
by decomposing the precision matrix. But when
the covariance matrix itself, rather than the
precision matrix, is of interest, the modified
Cholesky factor of covariance matrix also has a
natural regression interpretation, i. e. , the entries
in this decomposition have moving average
interpretation (see Ref. [ 9]), and therefore all
Cholesky-based regularization methods can be
applied to the covariance matrix itself instead of its

099 proposed a BIC

inverse. Recently, Zhang et al.
based variable selection technique by decomposing
the covariance itself rather than the precision
matrix. However, it is necessary to relax the
parametric and normality assumption proposed in
Ref. [10] as model misspecification may result in
biased estimation, a problem even more severe
than misspecification of the covariance. An

attractive alternative is the semiparametric
regression model, which provides an excellent
trade-off between model interpretability and
flexibility. Such a model is also called a partially
linear model (PLM), since it relates the response
variable with key covariates linearly and with the
rest of the covariates nonparametrically. A
comprehensive theory about PLM has been well
explored (see e. g. Refs.[11-16] and others). For
modeling the covariance matrix, Wu et al. '™
proposed nonparametric estimations of the
covariance matrix, but their method only focused

on balanced measurements, instead of dealing with
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irregular observed measurements. Fan et al. [

estimated the marginal variance via kernel

smoothing and proposed a parametric model for the
correlation matrix. Leng et al.®™ proposed
semiparametric models in the mean-covariance
based on

modeling for longitudinal data

decomposition of
(]

Pourahmadi’s autoregressive
precision matrix and regression splines

In this paper, we utilize a new Cholesky factor
model to analyze the within-subject variation by
decomposing the covariance matrix itself rather
than its inverse into a sequence of moving average
coefficients and log innovation. Based on this
decomposition, we propose semiparametric models
for the mean and covariance itself simultaneously,
and wuse the generalized estimating equation
technique for parameter estimation. Apart from
unbalanced

dealing  with  irregularly  and

longitudinal data, our semiparametric models

perform quite well both theoretically and
computationally. The GEE estimators for the
linear parts in the mean and covariance models are
consistent and asymptotically normally
distributed, and the nonparametric parts can also
be estimated at the optimal convergence rate by
taking advantage of regression splines.

The outline of this paper is as follows. Section
1 introduces the models and estimation methods.
Section 2 provides the asymptotic properties of the
proposed estimators. Extensive simulations and
data analysis are discussed in Section 3. The proofs

of the
Appendix.

asymptotic results are given in the

1 Models and estimation methods

1.1 Models
Denote the n; repeatedly measured response of
the ith subject by yi= Cyis=*s yin, )" and covariate

’ ’ ’ .
vector as a; = (xy =+, a3, ) respectively, whose

/

components are observed at times ;= (1 s+, ;)

for i=1,+-,m. The total number of observation is

n= 2 ni. In a more general setting, t; does not
i=1

have to be time, but can be any time-dependent

covariate  being modeled nonparametrically.
Without loss of generality, we just assume that all
the t; are scaled into the interval [0, 1 ].
Furthermore, we assume E(y; | x, t;) = p; and
Var(y:| x;,t;) =3, where x; is p-vector covariate,

[1]

To parameterise 2;, Pourahmadi first

proposed to decompose its inverse as ;' =
T!D;'T.. The lower triangular matrix T;is unique
with 1’s on its diagonal and the below-diagonal
entries of T; are the negative autoregressive
parameters ¢, satisfying

i—1
Vi T M — Z b Cyu — ) + &

ko1

The diagonal entries of D, are the innovation
variances as ¢; = Var(g;).

By letting L,="T7", a lower triangular matrix
with 1’s on its diagonal, we can write 3= L;D;L.
The entries Iy in L; can be interpreted as the

moving average coefficients in

il

Yi T M — ; Ljrew + & (D
where €5 = ya — pa and E(g) =0, Cov(g) =D,
for e=C(¢gy "+, €in, ) ’. Note that the parameters Li
and log (6;%) are unconstrained and statistically
meaningful, thus regularization methods can be
applied to the covariance matrix itself instead of its
inverse. For regular and balanced data, Rothman
et al.® provided a banded estimator of the
Cholesky

decomposition in high dimensional cases, but

covariance  matrix using such
didn’t consider building regression models for
statistical analysis, and they also commented that
their method is not fully efficient.

Since the main difference between our
decomposition and that in Ref. [4] is whether to
use T; or its inverse, it is helpful to examine these
two decompositions for commonly used covariance
matrices. If X is a compound symmetry p X p
matrix given by & {(1—p) I+ pJ}, where J is a
matrix of ones, then the decomposition in Ref. [4 ]

=p{l+ (j—2)p} ' while for our
If ==

gives i

decomposition [ = p{1+ (k— 1) p} .
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Pourahmadi’s decomposition gives ¢;; 1 =ps ¢p =

2 — . :
oo™’ )k— is an matrix, then

0, ~<j—1 and ours gives [,v;\,:p“*k .

To avoid model misspecification as well as
parsimoniously parameterize the mean-variance
structure in terms of covariates, we impose the
regression models

gCu;) = I;]’B+ foCty)s 1

Lin = "w;jk}’, > (2)

log(&) = z;j)\Jrfl(t,-j)J
motivated by Refs. [4-6,8]. Here a;, wy, and z;
are the pX1, ¢gX1 and dX1 vectors of covariates
respectively, and may contain baseline covariates,
polynomials in time and their interactions as well.
B is regression coefficients in the marginal mean
model, 7 and A refer to dependence and variance
parameters, and f,( * ) and f,( ¢ ) are unknown
smooth functions. The link function g ( ¢ ) is
assumed to be monotone and differentiable, log is
the logarithmic function with base e. For
convenience, we refer to these three regression
models collectively as moving average models, and
the regression models in Ref. [4] as autoregressive
models.
1.2 Estimating equations

Following Refs. [12,20], we approximate f;,
fi1 by a regression spline, as splines can provide
optimal rates of convergence for both the
parametric and the nonparametric parts in the
semiparametric model with a small number of

Lz.21] - Furthermore, we could utilize any

knots
computational algorithm developed for general
linear models to fit the semiparametric extension of
general linear models, since they treat the
nonparametric function as a linear function with
the basis functions as covariates.

For simplicity, we assume that f;, and f; have
the same smoothness, and let 0 = 5 < g <+ <
5,1/‘<s,¢’, 1 =1 be a partition of the interval [0, 1].
Using the s; as internal knots, we have K=k, + 1
normalized B-spline basis functions of order [ that
form a basis for the linear spline space. Let [, (1),

f1(0) be approximated by () e and =’ () @ where

() = (B, (1), , Bgk ()" is the vector of basis
functions and a, a€R", note n; = x(t;), then the
nonlinear regression models in (2) can be linearized
as follows:

gCuy) = B+ 7' (1) a:= b0,

log(d)) = ia+ ' (t)a:= h'yp
where b’ij = (1',/,-,» R Tl',ij‘ ) h’ij =( z’,j , Tf/ij ), and 0=
() p= (X a)" Let = Cpns oees Uin, )",
glp) = Cglua) sy gCua, )y Bi=(by s ’bi",),:

(x;sm) and define t;, 2 and H, in a similar way for

(€D

i=1, -+, m. With this notation, using the GEE
method from Ref. [ 2], we can construct the
estimating equations for 0, ¥ and p as follows.

S = DIBABOE (y,— w(BO) =0,

i=1

m (’)E/
SZ(y): [*‘]Dllslzo’
2oy

S, (0 = >JHD.(HW' (¢ — &(Hp) =0

i=1
4
where A=A (B,0) =diagl{g '(b;0) .+, g (b, 0}

and g ' ( + ) is the derivative of the inverse

[
function g ' ( + ). When j =1 the notation E

k=1
means zero throughout this paper. Let &= (ey .+, €, )’
—1

4 .
= r; — E lir€ss we can see dg/dY is a
k=1

Wlth €

qX n; matrix with the first column zero and the
jth (;>>2) column

L
9e; /Y =— X Leww + Ludew /7]
ko1

which indicates that ¢; and d ¢;/d v are defined
recursively as is usual in moving average models.
Additionally, W; is the covariance matrix of &,
i.e. W,=Var(&). As in Refs. [7-8], a sandwich
“working” covariance structure W;= A?R; () AY?
is used to approximate the true W;, where A, is a
diagonal matrix with 24} along the diagonal, and
R;(8) mimics the correlation between ¢ and &
(i#k) by introducing the new parameter .
Typical structures for R; () include compound
symmetry and AR(1). As with the conventional

generalized estimating equations for the mean, the
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parameter 6 may have little effect on the estimation
of v and p. Our real data analysis and simulation
studies also confirm this point very well. It implies
that the resulting estimators of parameters in the
mean, moving average coefficients and innovation
variances are robust against misspecification of
R; (&), as is the efficiency of the estimation in the

mean parameters only. At last, we define the

solution of generalized estimating equations 0, ¥
and p. as the generalized estimating equation
estimators of 0, 7 and p.
1.3 Main algorithm

An application of the quasi-Fisher scoring
algorithm on Eq. (4) can directly yield the
numerical solutions iteratively for 0, 7 and p by
fixing the other parameters respectively. More
specifically, the algorithm works as follows.

@ Set k=0, initialize the parameters as 6,
Y and p(m.

(k)

@ Compute = using ¥” and p". Then given

>, update 0 by

0rY = 0P +[ D) BA(BOHSA(BOBI -

i=1
DUBIAS  Cyi— ) ey (5)
i1

@ Given 6=0""" and p=p" ., update 7 via

m

YD = b [{ZGM)PZ {%]D?&}

i=1

13
v "/(>

(6)

where

n.

i j 1
Gy =) %(WU D W -
j ko1

j 2 y

i1
D,(W,j + E azjkW,k),;

k=1

v, 0)isa gXmn
matrix and a;, is the (j,k)th element of L;'. The
dX n; matrix W; =0.

@ Given 0= 6" and y= """,

o using

Wi]: (“Uvi,'la s WiG—n s 0,

update

P(H“ — p(k) Jr[z H'DW,'D,H.] " -
i1

ZH:D,W?(S%*U?) ‘n K (71

i=1

® Set k<~ k+1 and repeat Steps @~® until a
prespecified convergence criterion is met.

Note that a proper initial value is vital to
A good

starting value for 0 is to choose 3 as an identity

making the algorithm converge well.

matrix. According to the theory of GEE, this
initial value of 3{” guarantees the consistency of
the initial estimators in the mean, which in return
guarantees consistency of the moving average
parameters and innovative parameters after the
first iteration. We update 0, ¥ and p iteratively
until a pre-chosen convergence criterion is met. In
our numerical study part, convergence was usually
obtained within several iterations of this algorithm
Euclidean norm of the

when choosing the

successive difference less than 107° as the
convergence criterion.
1.4 Khnots selection

Knots selection is important in spline
smoothing. Because the number of distinct knots
k, has to increase with m for asymptotic
consistency, but too many knots would also
increase the variance of estimators. Similar to
Refs. [ 8, 22 ], we use the sample quartiles of
{t;» i=1,sm; j = 1, ==, n;} as knots. For
example, if we use four internal knots, they are
taken to be the four quartiles of the observed {t;}.
We use cubic splines (splines of order 4) in the
numerical simulation section, and the number of
internal knots is taken to be the integer part of
iﬂ

n/”, where n, i1s the number of distinct values in

{t;» i=1,+,m;j=1,++,n}. This particular
choice is consistent with the asymptotic theory of
Section 2 and for the purpose of simplicity, it
works well in a wide variety of problems according
to our experience. Data-adaptive methods such as
cross-validation can also be used for knots selection
but are computationally more demanding, which is

beyond the scope of the article.
2 Asymptotic properties

In this paper, for a vector a, its Euclidean

norm is denoted by || a ||, and for any square



612 T EAFHERKRF FR

F 43 %

I Al

largest singular value of A. To study the rates of

matrix A, denotes its modulus of the

convergence for Bv Y. A and fo , fl , we first give a
set of regularity conditions and explanations. If the

estimating Eq. (4) has multiple solutions, then
only a sequence of consistent estimators (0. 7.p) is
considered in this section. A sequence (0,7, p) is

said to be a consistent sequence if (0", 7, A —

(0,7 sx)" and sup, | © () a— fo (o) | =0,

sup, | ' (0 a— f1 (|0 in probability as n—>co.

The following assumptions are required for
our asymptotic results;

(A 1) The number of independent subjects n
goes to infinity and max;n; is bounded. We also
require the dimensions p, q, d of covariates xy .
wy, and gz are fixed, and assume without loss of
generality that the tis are all scaled into the
interval [0, 1]. The first four moments of 1y;
exist.

(A1l ) The sth derivatives of f, and f, are
bounded for some s=2.

(Alll) The covariates w;, and matrices W, *
are all bounded. The function g~'( * ) has locally
bounded second derivatives.

(ANN) The parametric space ® is a compact
subset of R, and the true parameter value
(B)+ 7 »A)" is in the interior of the parameter space
.

(AT)~C(AIV) are

standard. The existence of first four moments of

The assumptions

the response is needed for consistently estimating
the parameters in the variance. The smoothness
(ATD

convergence of the spline estimates.

conditions determine  the rate of
Condition
(ATl) is satisfied as ¢ is bounded. Assumption
(A1) is routinely made in linear models.

To study the asymptotic properties of
estimators, we assume the dependence between
ik s i and t; as follows:

T = g (ty) + Ojrs k=1, p (8
2= (1) + 0y L= 1,.d (9

j: 17"'9711'; ’1: 17"'977/1;

where &, and é,ﬂ are mean zero random variables
independent of the corresponding random errors
and of one another. Let A, and /K,I be the nX p and
nX d matrices with n= 2 n; whose kth column are
O = (Oupps *=
definition to &, We

’ . .
» Olyrs s Oy ) and a similar

make the following

assumptions:
(AV) @ (EA,=0, sup, —E || A, [ *<e),

and so as to A,.

@ kM =M and k,M’'W°M are nonsingular
for a sufficiently large n, and the eigenvalues of
k.M 'Z°M/n and kM W°M/n are bounded away
from 0 and infinity, where M= (n .. 7,), ' =
diag{>},++, 3} with
Sl = Aol Ao =
ACXBo 4 fo D Z (Vo s Ao s FACKBs + fo (1))
and W’ is defined in a similar way.

We take the number of knots k, as the integer
part of NY*'!'V | swhere s is defined in (Al ) and
taken as @ in this work. For this knot number,
Condition @ of (AV) is expected to hold as this is

a property of the B-spline basis functions™*.

The asymptotic properties of (‘é,,,a Vs M)

involve computation of the covariance matrix Q,,=

1

Kl ’ ’ ANV

(On) it 1.2.5 Of F(Sma Sa0s Sio) s where Sigs Sy
m

and S;, are defined by

S =S Bs%sA) = E :XI*VAOlEOll(yi — i)
i=1
m asél
Sy = 82(70;,809}\0) = E: Dy

i1

—1
] Dq; e s

Sio = S5 (A3 %) = Z Z;,%’Do;Wo;,l (& —d)
i1

10>

where X" =(I—P)X, P=M(M'S°M) ' M'S’ and
a similar definition to Z* , p;= B+ fo (1), &=
L' Cyi— ) and log(dt) = /A, + f1 (1).

We also assume the covariance matrix £,
satisfying the following property:

(A VI) The covariance matrix (2, is positive
definite, and there exists a positive definite matrix
Q such that
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11 12 13 ) ) ) .
w e estimator of the covariance matrix of 8, named the
limQ, = Q= | & o (1D “ i . . R
= . ‘,9 N sandwich” estimator of Cov(f,) as follows:
3 32 33
W w w

Additionallys lim = > Gy(%) = o = 0.

m > N 1
If Assumptions (A [ )~ CAV])
k, =

Theorem 2. 1
hold and the
Oy | then

number of knots

l‘nz Z {j‘o(tlj) - f(;(t,j)}z - OP<7172'\'(2'\ ]))

i1l

12

DID A — [} = 0,2 )

i1l

1
n

13

where fo(D=r"(Daand fi(D=7r"(Da
As pointed out in Ref. [22], (12) and (13)

imply that [ (7.(0 — £,(0)*dr= 0, Gr*®1")., i=

0,1, under general conditions (see, e. g. , Lemmas
8 and 9 in Ref. [23]). This is the optimal rate of
convergence for estimating f,, f1 under the
smoothness Assumption (ATl).

Theorem 2.2 Under Assumptions (A1) ~
(AV[), the generalized

estimating equation

. A =7 S 7. .
estimator (8,, ¥ .» A")" 1s Vm-consistent and

asymptotically normal, that is

B,,,,Bo“F(XX,ZOXX)ISm‘FOP{ ] QY]

s
S

R m 1
Y = %+<2 G 'St oy || (15)
- . 1
)\m - { (ZY ‘RI”ZX ) ]SS {J (16)
AO+ (J+OP \/;
Consequently,
(=~ )
Bn— B
m }A’m* Yo | ™ N(O’Qil\QQil)
A — ko

in distribution as m—>°°, and the diagonal block
matrix Q=diag(w'" ,@" s ™).

From Theorem 2.2, we see that the
asymptotic variance could reduce to a diagonal
matrix for the normally distributed response

variables. For statistical inference, we use a robust

Cov(B,) = M,"M, M, an
where

M= >0 X7ASTAX

i=1
M, = D) X/ AS Cy,— o) Cyi— )| 3TAX
i1

The estimated covariance matrices of ¥, and A, can

be obtained in a similar way.

3 Numerical studies

For brevity, we refer to our proposed
approach as semiparametric modeling by moving
average (SMA) decomposition approach, and the
methods in Ref. [ 8] as semiparametric modeling by
autoregressive (SAR) decomposition approach. In
this section, we first study the performance of our
approach through extensive simulations. Finally,
we apply our approach to the CD4+ cell number
dataset, and the comparison between our approach
and the conventional GEE and SAR is conducted.
3.1 Simulation study

In this section we investigate the finite sample
performance of our proposed statistical estimation
and inference methods. For each setup, we
generate 1 000 data sets, and consider subject sizes
m=100, 200 or 500, respectively. Each subject is
supposed to be measured n; times with n, — 1~
Binomial(12,0.8), and the measurement time s
are generated from the uniform distribution,
leading to different numbers of repeated
measurements n; for each subject, which is an
unbalanced longitudinal dataset.

Study 1

model to investigate the finite sample performance

We first consider the following mean

of our proposed approach and the impact of
working covariance parameter J:
Vi = i+ a2 + fo ( L)+ ey s

i=1ywryms j= Lyoem

(18

where x; =1;+8;» 8; follows the standard normal

distribution and x;; follows a Bernoulli distribution
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with success probability 0.5. As for the
nonparametric function in the mean, we take f,=
cos(m ), and the errors Cey s **, €, )" follow a
multivariate normal distribution with mean 0 and
covariance 3; satisfying 3;= L:D;L, where L; and
D; are modeled by Eq. (2) with wy, = (1, t; — 1) s
2z =, and f, (1) =sin(x ). We utilize AR(1)
structure for R; (&) in W, = AYZR, (&) AY?, the
working covariance of €. For each simulated data
set, we use 60=0, 0.2, 0.5 and 0. 8 to study the
robustness of our approach with regard to 6. Since
the compound symmetry (exchangeable) structure
has the similar results as AR(1), the details are
omitted here. Also, we set the true value of these
parameters as B=(1,0.5)",y=(0.2,0.3)" and A=
(—0.5,0.2); the expected sample size is about
1 060, so the number of knots in B-spline is taken
to be 4221 060'%,

Tab.1 shows that our SMA method yields
unbiased estimators of the parametric parts in both
the mean and covariance models. Meanwhile, we
can see the parameter 6 used in the working

covariance structure for the innovations has little

effect on either the estimation of B, 7, A or the

mean square errors in f, and fi;. These results

SMA s

misspecification of the structure of R; (). Fig. 1

confirm that our robust against

demonstrates the true and fitted curves for
nonparametric functions f, and f; when R; (&) is

specified by AR(1) with §=0. 2. The three curves

]2}),]2})(, and f}m represent the fits which are 5%,
50% and 90% best in terms of the mean squared
errors in 1 000 runs, respectively. All these curves
show a good agreement in fitting the true
nonparametric functions.

Study 2 With the simulation setup in Study 1,
we verify the performance of the asymptotic covariance
Eq. (17) in Theorem 2.2. We refer to the sample
standard deviation of 1 000 estimates as SD, which can
be viewed as the true standard deviation of the
resulting estimates. Meanwhile, we define SE as the
sample average of 1 000 estimated standard errors
using Eq. (17), and std as the standard deviation of
Tab. 2 shows that the

standard error formula works consistently with SD

these 1 000 standard errors.

under AR(1) correlation structures with different 8=

0, 0.2, 0.5, 0.8.

Tab.1 Simulation results for Study 1 over 1 000 replications. The estimates of parametric parts

in both the mean and covariance models with sample standard errors in parentheses

true 6—0 5=0.2 5=0.5 6=0.8
; Lo 0.999 2 1.001 1 1.002 6 0.994 2

! : (0,035 7) (0. 035 8) (0. 035 4) (0.038 7)

, o 0.501 7 0.499 5 0.499 2 0.491 1

g 7 (0.067 9) (0. 069 6) (0.071 8) (0.078 6)

, o 0.196 7 0.196 1 0.196 4 0.197 5

! : (0.024 3) (0.023 2) (0. 024 4) (0.022 9

y. 0.3 0.305 4 0.308 0 0.307 2 0.302 2

: : (0.055 4) (0. 054 9) (0. 059) (0. 054)

. o —0.504 8 —0.505 2 —0.509 4 —0.502 3

! -7 (0. 047 9 (0. 048 5) (0. 046 6) (0. 045 4)

. o 0.199 2 0.197 6 0.202 4 0.203 7

: : (0.095 7) (0.091 4) (0.095 0) (0.091 5)

- - 0.023 0 0.023 3 0.023 1 0.022 1

MSE( o) (0,021 8) 0.0217) (0.0215) (0,021 8)
- 0.020 9 0.0211 0.020 9 0.020 8
MSEC(/1) (0.011 6) (0.011 4) (0.011 3) (0.011 3)

[Note] MSE(f;).i= 0,1, is the mean square error for the estimate f; over all time points in the data
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Tab. 2 Comparison of the standard errors using Eq. (17)

0.54

Solt)

—0.54

=1.04

—1.54

T

0.2

0.4 0.6
time

(a)

with sample standard deviation

0.8

0=0 0=0.2 0=0.5 0=0.8
SD 0.0357 0.035 8 0.035 4 0.038 7
A SE 0.033 6 0.033 6 0.033 7 0.033 4
std  (0.003 2)  (0.003 3) (0.003 3) (0.003 2)
SD 0.067 9 0. 069 6 0.071 8 0.078 6
R SE 0.068 2 0.068 1 0.068 1 0.067 6
std  (0.0052)  (0.0054) (0.0055) (0.005 8)
SD 0.024 3 0.023 2 0.024 4 0.022 9
n SE 0.023 0 0.023 0 0.023 0 0.023 0
std ~ (0.001 3)  (0.001 3) (0.001 3) (0.001 3)
SD 0.055 4 0.054 9 0.058 6 0.053 8
7:
’ SE 0.053 0 0.053 0 0.053 1 0.053 0
std ~ (0.0054)  (0.0053)  (0.0050) (0.005 3)
R SD 0.047 9 0.048 5 0.046 6 0.045 4
A
' SE 0.044 0 0.045 2 0.051 0 0.054 7
std  (0.004 9)  (0.0051) (0.0057) (0.006 5)
. SD 0.0957 0.091 4 0.0951 0.091 5
A
’ SE 0.088 7 0.091 5 0.101 9 0.108 2
std  (0.006 7)  (0.007 7)  (0.009 6)  (0.011 5)

0.4 5

B .

e o W

0.2 1

Sile)

—0.2 1

~0.4 -

0.2 0.4 0.6 0.8
time

(b)

Fig.1 Nonparametric function f, and f, and their fitted curves } s ]250 . f'go s

for AR(1) structure with 6 = 0. 2

Study 3 In this study, we compare SMA
approach and Leng et al. ’s SAR approach™ under
different data generating processes. The main
measurements for comparison are the differences

between the fitted mean f; and the true mean g,

the fitted covariance matrix 3; and the true 3. In
particular, we define two relative errors as

err(p) = lp—pll /1l

err(Z) = |3 =31 /12 1.
We compute the averages of these two indexes for
1 000 replications with n = 100, 200 for each
dataset.

Case |. We take a similar model in Study 1
to generate data sets except that Y= ¢(0.1,0.2)
and w;, = (1, (t; — 1)), In this case. SAR
model is mis-specified.

Case [I. We generate data from SAR model.

A similar model structure as in Case [ is
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implemented by changing the [, in Eq. (2) to ¢;.
In this case, our SMA model is mis-specified.
Case [l. The main difference in our SMA
model and the SAR model in Ref. [8] is that we
decompose the covariance matrix itself instead of
its inverse, the precision matrix. Therefore, to
compare these two methods when models are mis-
specified for both approaches, we take the mean
model as in Case [, but the covariance matrix

Lo]

with the blocking structure The diagonal entry

oy of 2 satisfies log (o) = 252+ f1 (t;) with the
same settings in Study 1; for Léjékéj*l where

| a | denotes the largest integer less than or equal
to a. the (j, k) th element in 3 equals to o °
0.5 *; and other elements are zeros.

Tab. 3 provides the average errors for SMA
model and SAR model under these three cases. For
Case | where the data are generated from our
model, our approach is substantially better than
the alternative one in all comparison criteria. For
Case [[ where the data are generated from the
autoregressive decomposition model, our approach
still ~ works  reasonably  well. The  error
measurements by our approach only inflate slightly
compared to the alternative approach that fully
exploits the model information. Therefore, when
the true covariance matrix follows the moving
average structure, the errors in estimating ¢ and 3
both increase when incorrectly decomposing the
using the autoregressive

covariance matrix

structure, and vice versa. The magnitude of

m

Tab.3 Average of relative errors err( ;1) = Z err( ;}, )/ m

=1

and err(i) = 2 err(j, )/ m
=

fit SMA SAR

n

true err()  err(S)  err(p)  err(3)

100 0.096 1 0.1526 0.0987 0.1600

SMA
200 0.0691 0.1030 0.0689 0.1214
100 0.100 3 1575 0.0987 0.1398
SAR
200 0.066 3 1198 0.0700 0.099 1

blocking covariance 100 0. 106 6
structure 200 0.073 8

3726 0.107 2 0.4053
3504 0.0743 0.3974

inflation in the errors totally depends on the data
generating process. However, model misspecification
seems to affect the moving average decomposition
to a less degree in this simulation. But in other
simulations not reported here, it could affect the
moving average decomposition to a great degree.
For Case [l where a model is mis-specified for both
approaches, our method works satisfactorily.

3.2 Real data analysis

In this part, we restudy the CD4+ cell data
with our proposed estimation method. The HIV
causes AIDS by reducing a person’s ability to fight
infection, which could decrease the number of
CD4+ cells in infected individuals. Thus, an
infected person’s CD4+ cell number can be used to
monitor disease progress. This dataset includes
2 376 values of CD4+ cell number for 369 infected
men, and is highly unbalanced since each individual
has a different number of repeated measurements
and unequally spaced time points. Here, we use
the square root transformation of the response by
the suggestion in Ref. [11] to relate the CD4+
counts to six covariates including time since
seroconversion t;, age (relative to arbitrary
origin) x; » packs of cigarettes smoked per day
X2 s recreation drug use xj;» number of sexual
partners x;; » and mental illness scores xys.

The objectives of the longitudinal analysis in
this dataset are to identify factors which influence
CD4+ cell changes and the covariance structures
for the CD4+ cell data. For the mean model,
we consider

Vij :Iljl.el + Iljz.Bz + Igsﬁs -+
Tija ,81 -+ Ijjsﬁﬁ —+ fo(t,]-) —+ ;.
covariance

For the

covariates for the moving average coefficients as

structure, we take

wye = (1yty =ty (t; — t)% (t; — t3)*) similar to
the points in Ref. [7], and for the log-innovation
variances as z; = x;» which allows us to examine
whether the innovations are dependent on the
covariates. Here, the number of knots is taken to
be [(2376)"° =7, which is the optimal number of
knots that

promise the convergence for the
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nonparametric parts f;, f1 in Theorem 2. 1.

Tab. 4 shows the estimating results for § by
our SMA, where the working structure R; (&) is
used as AR(1) with §=0. 2 for the innovation. For
comparison, we list the conventional GEE method
for the partly linear mean model using different
working correlations, including independent,
AR(1) and exchangeable structures. Additionally,
we also compare the SAR method in Ref. [ 8] with
our current SMA model. The results show that
both  SMA and SAR provide estimators with
generally smaller standard errors compared with
conventional GEE. SMA is in accord with SAR
that smoking and drugs are highly significant
variables, while mental illness score is marginally
significant. But in the GEE results, the
significance of smoking is missed under the AR(1)
covariance structure; drug use is also missed under
either AR(1) or exchangeable variance structure;
furthermore, the estimators under the independent
working correlation indicate that mental score is
not significant, which contradicts the results using
other working correlations.

Tab.4 CD4+ cell data

GEE
SMA SAR
independence  AR(1)  exchangeable
3 0.027 4 0.005 0.015 0.016 0.002
o (0.0338) (0.030) (0.035) (0.034) (0.032)
f 0.620 2 0.768 0.981 0.262 0. 596
© 0,136 1) (0. 130) (0.184) (0.190) (0.136)
4 0.849 1 0.821 1.075 0.471 0.494
rj (0.320 3) (0.345) (0.528) (0. 350) (0. 358)
& 0.049 3 0. 044 —0. 064 0. 050 0. 060
T (0.0364) (0.038)  (0.059)  (0.041)  (0.043)
—0.034 9 —0.030 —0.031 —0. 046 —0.048
& (0.013 57) (0.014) (0.021) (0.014) (0.015)

[Note] The estimates of parametric parts in the mean model
based on square root CD4-+ cell numbers, with

standard errors in parentheses

For the moving average and log innovation
parameters, our model yields estimators with
standard errors in parentheses as ¥, = 0. 5877 (). 0443 »
Y= — 0.1622¢.0665r» Ys = 0.0467 0 02060+ Va4
70' 0047(&0037) ’ Al = - O' 0003(0.0070) 2 )\9

0. 084202800 » As = 0. 042300872 » Ay = 0. 0095, 0128) »

As = — 0.0061¢.003y. Then we can calculate the
covariance matrix using ;= L:D;L..

Fig. 2 illustrates the fitted curves for fo,
moving average coefficients, and f; as a function of
time and time lag. Here R () in the working
covariance structure of log-innovation variances is
specified by AR(1) with 6=0. 2. Fig.2(a) shows
the nonparametric part of mean function changes
slowly during the time since seroconversion, which
indicates that the trajectory of the mean curve is
Fig.2 (b)

moving average parameters [ against the time lag

consistent. displays the estimated
between measurements in the same subject, and as
the figure shows, is a cubic polynmial, which
decrease more clearly in the time lag less than two
years, then slightly as the time lag becomes
larger. As for the changes of innovation against
time, it seems more fluctuating based on Fig. 2(c).
We also compare our method with SAR
approach in terms of prediction. Using leave-one-
out method, we split the data into two parts, the
first part is used for training data sets to fit the
model, and the second part which only has one
sample is called the testing data set. We repeat the
process 369 times to make sure each subject could
be treated as testing data. To justify whether the

models are appropriate, we apply the predictive

m

mean errors defined as 2 Z(y;,- — y;)°/n, and
i 11
m

predictive covariance error 2 I Zi*i Il /m. Here
i1

5=, —m(®) « (Y, — (0 and 3, = L,D,L".
Then we have the average mean errors for SMA is
37.113, and SAR is 36.936; the
covariance errors for SMA is 220. 761 and SAR is
229.069. From this we can see both SMA and

SAR approaches are reliable in the mean model,

average

and our method in estimating the covariance matrix

outperforms the other.

4 Discussion

In joint semiparametric modeling of mean and

covariance, we proposed using a new Cholesky
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n
(=]
L

4
(=]
1

s
=
1

20 4

CD4+ number

=2 0

time /a

(a) the nonparametric part in mean against time

moving average coef.

time lag

(b) the moving average coefficients against time lag

nonpara, part in log-imnov.var

-2

= -
o =
.

time /a

(c) the nonparametrc part in log-innovation variances against time

All the dashed curves represent asymptotic 95% confidence intervals

Fig. 2 The fitted curves with confidence intervals for the CD4+ cell data

decomposition with moving average interpretation
the

instead of its inverse by Leng et a

covariance matrix itself

1 8]

to reparameterize
Obviously,
our work provides an alternative approach to
analyzing covariance matrix. The main advantage
of our work is that, estimating the covariance
matrix directly is computationally efficient, and
preserves the structural characteristics. Especially
when the covariance matrix itself has a certain
like

decomposing the covariance matrix itself instead of

structure, banding or blocking, directly

its inverse could retain such structural

characteristics, thus achieving a more efficient

estimation.

The preference of our model over that by Leng

1 [8]

et a is likely dependent on data. In practice,

we may rely on a combination of graphical tools
L, which

such as regressograms -, is suitable for
and numerical tools such as

balanced data sets,

cross validation to choose an appropriate

More
needs to be done in this direction. If a clear trend
the the

corresponding factorization may be preferred.

factorization and parametrization. work

is spotted in sample regressogram,

Quantitatively, we can always employ cross

validation for comparing the predictive performance
the the

A more accurate prediction is

for estimating mean and observed

covariance, an
indication to use the corresponding decomposition.

In this paper, we only consider the classical
setup when the covariates are finite dimensional
and continuous responses. It will be interesting to
investigate the statistical properties with diverging
numbers of parameters both in the mean and the

variance and extend the approach to categorical

longitudinal data analysis.
Appendix

The following lemma, which follows easily

from Ref. [ 24, Theorem 12.7 ], is stated for easy
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reference. have
Lemma A1 Under Assumptions (A [ ) and mo M -
1 E: E:{n/(: @)}
. < < — i la— o =
(A1l), there exist constants C, and C; such that nsl 0

sup_ | fu() — (Do | < Gk,

€ [0,1]

§Up | f‘l(t) - Tf’(t)(i) ‘< Cl k,l'\.

€ [0,1]
Proof of Theorem 2.1 Here we only prove
Eq. (13), and assume all W, are known as W,;,
Similar asymptotic results hold when all W,; are
replaced by consistent estimates. The proof of Eq.
(12 ) could be from Ref. [ 22 1.

Throughout the following proof, suppose that C,

obtained

Gy, C, always stand for positive constants and they
may denote different values even within the same
expression. From Lemma Al, for sufficiently

large m, we can easily get

L EZ UG — [ ) =
i=1 j=1
%ZZ < md mhd (1)) <
EZ @) 4 2C ke (A1)
Let
(A“lr? *A,,LZZ/WOM(M/WOM) I
“:[o kQ, ’
where
A, =72"WZ 24 ATAS

=(I—P) 7,
P= M(MWDM 'MW,
Q& = kLMW' M.
Direct calculation shows that

m

T.H ‘W HT:,: T, 2 H,;D(),»W(J;l D()iHiT,rz: Liks

i1
where 1, x stands for a (d+ K) X (d+ K) identity

matrix. Further more, let
(o) = El} — (T "(p—p) =
“ AP (A=)
]knl’ZQ,xa &)+ EFQU MW Z(a— &)
and ¢'=¢(X, @ = (g, €)', then by Assumptions

lgl we

(AT, (AV) and the fact that | ﬁg | <

n | MGa—a) || <
Cn V7 | k7 Qu(a— @) |l (A2)

<G gl + I EPQ MW ZGa— ) || )

Co g+ A=
sup | nla’ MW ZbkL?

lal=1.Tbl=1

| (A3)

where A, is the minimum eigenvalue of kM W’M/n.

Then by Ref. [12, Lemma 6.2 ], it suffices to

verify || ¢ || = O, Ck/*). The rest of the proof

follows the same arguments as those of Ref. [8].

Computation of the Hessian matrix and its

expectation
Since
7S? 1[dey; [de; ey
8 = 535 1[0 [B] + s
— o LIdy Iy aYIy
where
e S Jey, ‘7% 9’ &
373;/’ = kz; [wlﬂ /Jr :ijr thk 37&)7/]’

it is easy to show that

n

aS) : 1 (’)8“ /
v = Iz = 711—[*”J (AD)
; o, JdyLdY

Noting that

1
aS,j/37 = 2 [Ezl\’wzﬂe + [zjk(’)eih/;)’YJ
=1

can be re-expressed as

—1
e L
— =— W,"E;* (l;'/\,W
] 4 i
k=1

Jvy iksjvj:27°"vni

(A5)
where
& = (ensmrvey ) s
W, = Gy

is a ¢ X n; matrix and a; is the (j,k) element of

s Wii(j 1 705”’70)

lower triangle matrix L', it then can be obtained

DD E i Wil -
i=1 i=1 j=2 sz
r)Ol,l:Wij + 2 a{)jkwik]’r (A6)
ko1

with aoj being the (j, k) element of lower triangle

matrix L7 evaluated at 7.
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Proof of Theorem 2. 2

Eqgs. (14) and (16) are exactly same as that in
Ref.[8]. We only give a proof of Eq. (15). For
this purpose, it is sufficient to prove it when all D,
By Taylor expansion and the

are known as Dy;.

second estimating equation in Eq. (4), we have

. (198
ﬁR747%>4—[ 2y

1
jAL&mx
v m
where Y= 1w, + (1 —w) ¥ with some 0<Zw<1.
According to the computation of the Hessian

matrix and its expectation, we have

(')So(}’) 22 1 (’)Sij a_si]/+
11 Gj'} ay ay
1 9?
2 81
== 9777’ a
Let

1 / aZS
[Te 5y ) + e ]
flér( 97 Iyay <

7

where
—1

3281']’ _ < Jeg Jew_ 9% &
E)}la}/’ = ;[wuk ay/Jr ayuzijr [/ijk 37&)7/]’

a5, (Y
Jy

then

E T,. It has been shown that

E(T, ‘(ﬂo'yo’}\v)) - (Io, < o,

2

€

dydy

can be re-expressed as

I | rxers
a;’/} Wik:|:

Further, noting that

ey . Je
W - ; |:a1]kW1k a7 + Qijk

J k1 l !
/ / ! 4
- E Qi E Cwi ( 2 aie; Wi + ( 2 ais Wise:) wi ).
ko1 [ rol s o1

Therefore, it can be obtained that

T,' 2 2 al}kW,;,S (E i € ; W,]e ) —

jl‘fm)kl k1

U.‘&, }

where
i k1 !
’ ’
U; :[E Aijr 2 Cwp ( E ane;W3) +
ko1 [t ro 1

1
( 2 ag Wie;) 'UU/;M ) :|
=1

Hence Var(T;| Bty oi) ) 18 bounded for each i=1,

2.+, m, it is verifiable that EVar( T/ << oo,
i1

By the Kolmogorov’s strong law of large numbers

we have that

%43 %
1 9S;(» 1{HS§(V>}
ERALFAN Can S ol e AR E8 _
m dy m dy Bty )
19S5y 1~ A
— e = = -0 A7
w5y m;(m, (AT)

almost surely as m—><o,

(')5:
[ P ]D(Nlel] -
4 =%

DLt ) @ L+ (Ll V) @ 1) -
i1

Clearly,

S, (%) = i[

i=1

Q;Eoi‘l (r; +V ;l,-)

S+ D0 (Lt V) @ 1D QST s +

i=1

DL V) @ I QS0 v =

i1

SZO+JM +.IIZ (AS)
Lm‘DmLéi s Toi— Ni~ Mois Vv Wi = Moi ™ Mo
I, is the ¢X ¢ identity matrix, {; is n; X n,q matrix

where 3, =

with the jth row

i (— w’,jl? - w,,jZ 9ttty T ’w,g(j e Oy ooy 0).
Let a€ R satisfy a'a=1, then
| Ea,]u ‘<
E | a,((LJ,‘IV#l),@) Iq)‘ngOilvﬂt ‘<

i1

CO I Vpll®
i=1

Similarly, we have J;; =

— 0, ) = o,(m).

0, ( Jm) . thus S, (v,) =

S+ 0,(Vm). The proof is then completed by an
Slutsky

asymptotic normality can then be obtained by

application of the theorem.  The

following the Liapounov form of the multivariate

central limit theorem.
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