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Abstract; The quantum game of the classical Bertrand’s duopoly model was generalized to

N-player case. In a quantized game, the more entanglement is involved, the higher maximal

profits it will be. It monotonously increases until the optimal collusive profit, which is restricted,

and cannot be achieved in its classical game. With partial information entanglement between two

adjacent firms, the generalizing evolutionary N-player Bertrand’s model not only solved the

Bertrand paradox, but also achieved a practical result.
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0 Introduction

Quantum game, as an application of quantum
computation, is very different from classical game,
and attracts broad interest. In initial paperst®,
we see the quantum characters, such as the

quantum entanglement, break bounds of classical
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rules and primarily cause the improvement of

results["%’m'm’m] )

In our previous work, we discussed the
quantum market game of Cournot’s duopoly*?,
That is about two homogeneous-product firms,
based upon the premise that each firm holds
Warranted with this

outputs as variables.
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assumption, each oligopolistic firm maximizes its
profit by considering the outputs of the other
constant. In Cournot’s duopoly, the price in the
market depends on the outputs. It is considered
that the market requirement quantity adjusts

As the

market requirement is determined by factual

according to the price of the market.

outputs of the producers in the oligopoly, there
will be a price variable dominating the whole
competition, and the output of the firms should be
adjusted to follow it. Another important oligopoly
model is Bertrand’s duopoly model™*™. Tt
assumes the price as its initial variable, which
accords to the situation shown above. Comparing
to the Cournot’s duopoly, we could get more
practical results through Bertrand’s duopoly
model. Therefore the Bertrand’s duopoly is more
factual and more applicable.

We compared quantum market game to
classical market game mainly on the profits of
Nash equilibrium based upon the same duopoly
model. The reason is for maximizing each firm’s
profits, the non-cooperative competition ultimately
However,

Nash

equilibrium yields a maximized but not optimal

forms a Nash equilibrium situation.

based on non-cooperative competition,
profit result, which is less than that of cooperative

competition. Analogously, for market
competition, when participating firms increase in
number, it is difficult to collaborate for higher
profits. In this case the final situation will also be
a Nash equilibrium. We can regard it as multiple-
player game. Being a little different from duopoly,
Nash

spontaneously, and with less

it forms this equilibrium more
adscititious
assumption. However, it still has the same
dilemma. The classical non-cooperative market
game, unlike the cooperative one, cannot achieve
the optimal profit result since it encounters an
upper limit.

In the present study. firstly, we give a
quantized Bertrand’'s duopoly to see what can be

gained from this quantizing. Then, for generalized

discussion, we consider a multiply-player market,
and the corresponding classical game is evolved
from Bertrand’s duopoly model with the same
symmetric rule. Correspondingly, a theoretical
multiply-player quantizing structure is given. Like
Ref. [11], we use the entire unitary operator to
entangle different firm’s information, and change
the initial state before gaming. The entanglement
degree ¥y is also used to represent the

intercommunion degree.

1 The quantum game of Bertrand’s

model

In a duopoly market competition, we suppose
firm 1 chooses p, as the price of its products, and
firm 2 p,. Due to practical supply and demand
relation, the production quantity ¢; can be
determined by each firm’s variables p; and p;.
Expressions are as follows:

qiCpis p;) = a— pi+ bp;. (D
All of these are based on the condition that a>0,
0<<b<l. We use i,j to distinguish different firms
(i, j=1,2). In this equation, a is a parameter
determined by the actual market conditions, and b
indicates the negative interaction since the
productions are homogeneous. Suppose that the
same unit cost of production is ¢, the profits will
be quantity multiplied by profit per unit
production:
U;Cpisp;) = Ca— pi+bp;) (pi — o). (2)
At the unique Nash equilibrium, each firm can get
its maximal profit p; ., p, by setting p = p; =

atc _ . ._atc
g p And =P =5

the two firms are

Then, the profits of the

USCpi s pi) = Uipi »p) =

U2<pf,p;>=(“<*2i7+b;{f>z (3)

The superscript “ C” means “ classical ”
condition"*,

In the quantized Nash equilibrium of

Bertrand’s duopoly, we suppose the symmetrical

profits are
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Ui o »y) = UR(a a0 »¥) = UNY).
The superscript “Q” means it is for “Quantized”
condition. Then the profits of the two firms are

Uy = (a— ¢+ be)? -
"+ D[ —we"+1+
4=+ 17
which is monotonously increasing for

U
Iy

bl— o, 1

> 0. (5

The profit U(y) reaches its minimum when
Y>—c°2, and reaches its maximum when y—> o,
Profits of equilibrium are monotonously increasing
when 7 increases. That is the strongpoint of this
model. Therefore we can change the results. For
example, to improve the profit U® (y), we can
control the parameter ¥, which is involved in the
overall operation J(¥) and J(y)'. And the extent
of increase is mainly determined by parameter b.
The dominating trends of profit U® ( ¥) when
parameter 7 and b increases are given in Fig. 1. For

U (y)

pithiness, we consider this 5 part.

(a—c+bo)

Fig. 1 The profit of quantized Bertrand’s Duopoly U (),
with respect to tanh( ) , which monotonously maps
Y € (—o°,009) into tanh(y) € (—1,1), and the parameter b ,

Uty

using tanh <

For the information is symmetric in this
Bertrand’s duopoly, we generalize the quantizing
structure from two-player to N-player, using the
same symmetrical model. Then we use it to
quantizing an evolutionary Bertrand’s duopoly

which is different from Ref. [ 10 ], and give the

comparing conclusion at last.
1.1 A generalized N -player game structure

We assume that there are symmetrical N firms
in the market. The sales of firm j are affected by
the other N—1 firms for they all sell the
homogenous products. We use parameter j to
denote firm 0, firm 1 to firm N—1, respectively.
Suppose that the influence of the other firms are
faint, the total effect of the other N—1 firms is
less than the firm j itself. Then, we give the
symmetrical function of g;:

o b,
q,'(poypla 9PN1)*a p7+N71

Cpo+pr+ "+ pj1+ pm++pyid). (6)
Analogously, the profit is

b
N—1

Uj(Po’pls”’vp)J 1) == |:a*pj+

(PO+P1+'”+P;1+Pr1+"'+PN1)](Pj*C)-

7))
There are N firms and N equations of profit Uj.
At the Nash equilibrium,

pP= Py = Pl o= = P = _gir;),
and the maximal profits of firm j are
nC % x « ( J— + b )2
U( e :UJ(PO s P1os "'aprl) :W

8)
It is positive on the condition a=>0 and 0<Tb<1.
We can see U™ is independent of the number of
players N. But if we consider a Collusive Profit G,
(pospise*s px 1)» which indicates the whole profit

of all the firms, there is

GoCposprs s pna) = Usg(pos prs =*s pna) +
UiCposprs oo pn 1)+ o0+
UI\FI(PO?plv "‘7PN71). 9)

It is a symmetrical situation, and the prices of each

firm are equal at the maximal profit situation: p,=

pr=+"= pn—1. We denote it by price p,. For the
maximal Collusive Profit,
. _atc—bc
Po = q =
and the individual profits are
WD Ut ey = La— et b0’
U, U;(pa s bos s pa) 11—
(10)
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All of that has been considered above are under the
condition 0<b<1, and there will always be

(a— ¢+ be)? a— ¢+ be)?
4(1—b) (2 — b)?

It means that at the point of the maximal Collusive

>(

Profit, the individual profits of participants are
always better than those at the Nash equilibrium of
the non-cooperation game:
Uy > uee. an

In other words, the maximal profit of the non-
cooperation game is not the optimal one. This
result is obvious. The difference coming from that
“ collusive profit 7 is based on cooperative
competition, while “ Nash equilibrium” 1is the
maximum of noncooperation — For most actual
conditions, Nash equilibrium describes the realistic
competition state rightly. When there are N firms
in the market, the game participants prefer to
depart from the cooperation, and trend to achieve
its maximal profits selfishly. This will cut down
the opponents’ profits.
1.2 The N -player quantizing structure

We use the quantizing structure as shown in
Fig. 2, which is an expanding N-player’s version of
Ref. [11]. Quantum entanglement is involved as
partial information entanglement between two
adjacent firms. This will lead to a quantizing result
different from Ref. [10]. And we will discuss the
the superiority of this model later. Consider using
N single-mode electromagnetic fields as N parts to
implement this quantum structure, of which the
quadrature amplitudes have a continuous set of

eigenstates, to represent the continuous-variable in

the Bertrand competition. In this figure, a series

[vac)o Dy
hach —doy ooy :
v | &
[vacin-1 ba.r_l

Fig. 2 The quantizing structure of N -player

of operations are listed in turn.

This structure starts from the state | vac)y®
[ vacy1 &+ | vac) v—1» which is a tensor product
of N vacuum states. They represent N different
parts; firm O, firm 1, -+, and firm N — 1,

respectively. Consequently, there is an exoteric
unitary operation J (¥) , implemented on every

part. In electromagnetic fields, J(¥) is symmetric
with respect to the interaction of different abutting

electromagnetic fields. For conciseness, we choose

J() in the following form to describe this tangly

action:

J(p = GXP{W(XoleFXleJF
szsJF"'JFXNﬂPo)}y (12

where the “position” functor X;= (al+a;)/ 2 is
an observable variable, which can be measured

the “ momentum ”

Correspondingly,
iCal —a)/ 2. alCa;)) is the

creation (annthilation) functor, related to the

finally.

functor P; is P; =

electromagnetic fields. In this J(), the “position”
functor of firm j is only entangled with the
“momentum” functor of its abutting firm J+1,
and we overlook the interaction between the

“position” functor and the “momentum” functor of

firm j itself. After this operation J(7) . we get an

entangled initial state | ¢;) :

| ¢ = TN wacds | wae) =+ | wac)y 1),
(13)
which can also be regarded as the beginning for

this market competition. After this, firms undergo

an operation D,- on their state, respectively, which
is used to express different information of private
strategy. These operations hold privately. With
the strategy form D; ( ;) = exp ( — ix;P;),
different firms choose different strategies from the
strategy set:
S, = (Dy(x) = exp(— ix;P)) | 1y € (—o0,00)},
(14)

in which, Pj is also the “momentum” operators,
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yet x; (not the “position” functor) a strategy
parameter, which is classical and continuously

changed. Subsequently, we use another unitary

operation, denoted by functor J( ', to meet with
the operation of the first step. Finally, the whole
state comes to
¢ = TN (D, @ Dy @+ @ Dya)

T wac, | wacyi+ | wac)ng. (15)
Through detailed calculation, we get a formal
result for N-player model. For convenience, we
use an expression F (7), instead of complicated
progression expression:

,yh*mN

FOo = 2] (h= mN)1’

m 0
as ;L:()yl""?Ni

final state is

1, respectively. Therefore, the

N 1

| ) = exp{— 1[2 2 F (V) Comoa N]po} | wac)e &

k=0

N—1
exp{— 7[2 o F (P q k)modN]Pl} | wc); & - @
E 0

N—1

eXp{i 1[2 IkF(y)(]*k)mudN]pj} | wc>} ® i ®
k=0

N1

expl— 1[2 . F (D v 1 k)mod,\']pN DI TO SN

k0O
(16)
After measurement, we denote measured results
with the price variable p; of quantized market

competition for j=0,1,2,--, N—1.
N—1

L aN) = E 2 FCY) (Gmymea n.(17)

k=0

piCxosars *
1.3 The quantized N -player game

Using the quantizing structure we introduced,
the price p; can be expressed with the
entanglement degree 7. Then, in the quantized N-

player competition, the quantized profit U{”? is

(
Uin)Q(IO s X1 9% 9 IN—1 ) =

La— bttt
bt et by ) [ — 0 =

N—1
I:ai wz Ik}“(y)(jfk)mod)i +

AN k=0

N—1 N—1

V }i 1672 l‘k} ( E lkF( 7) (j—kmod N ~ C)-

k=0 k=0

(18)
At the Nash equilibrium, there is

x = o = X1 = *** = XIN-1>

while the formal value of x” is

%

x =

alN—DF, +d(N—1+bF(y, — be"]
(2N—2+4+2b— Nb)e’F(y), — be*” ’

Then, the profit of firm j is
U (y) = (a— c+ be)? «

(N—DF[(b—14+ N)F(y), — be’]
[be’ + (BN — 2N+ 2 —20) F(y),

>O’

a9v
which is the same for these N firms when yY=0.
The competition is the same as that of the
corresponding classical N-player game. There are

(a— c+ be)?
(2 —b)*

When y—<o, F(7y), tends to a non-progression

UPUY) |y = (20)

expression:
e}’
F()’)(J"N. 21
In this condition, the profit U{”? (y) of firm j

will be

(a— ¢+ be)?
4(1—0b)

which is equal to the classical optimal Collusive

UPUy) | = . @

Profit U’ in the cooperative situation.
When the positive entanglement Yy — <o,
quantized competition reaches the optimal profit,

which Nash

equilibrium. Hence, the Bertrand Paradox is

cannot be reached in classical
solved. Similar to preterit quantum games, we
improved profits by quantizing the model, and
achieved the optimal profit results. In our
particular quantizing structure, what has been
quantized is the initial state by a unitary tangly
operation. Since this operation is totally public
before game, we can regard the entanglement
degree ¥ as the intercommunion among different
firms, which is determined by external restriction.
The strategies x; are still classical. Based on an

applicable N-player market competition, we give
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one quantum algorithm to improve the optimal
profit from the one in the non-cooperative market
game to a cooperative case. Further, we find there
is no parameter N in the profit. U”? () ;...
meaning that with the maximal positive
entanglement, profit remains unchanged whatever
N is.

Our quantizing model is with partial
information entanglement between two adjacent
firms, while the quantizing model in Ref. [10] is
complete information entanglement existing
between each two firms. And this leads to
different results. Let’s focus on the special case; ¥
—>co, According to Eq. (5) in Ref. [10], the price
of each firm is the same at this time, no matter

which of the price strategies each firm takes. This
N

price is Yp; = %\] 2 x;. When N—>oco, p,—0 and U;
V=1

<C0. This is not rational as the price p; should be
constraint by the cost of production ¢ at least ( p;>
o). In contrast, we used a different quantizing N-
player Bertrand game, and the problem did’'t exist
in such results. In y>o° of our results, no matter
how much N is the profits of each company are
kept to

_ la—c+ be)®
4(1 —b)

result is the

U (D) | e

This profit same as the full
cooperation in classical game, which is more like a

win-win competition result.

2 Conclusion

We generalized a quantized Bertrand’s duopoly
For the

maximal positive entanglement y—><°, the profit in

quantum game to the N-player case.

quantized Bertrand’s duopoly is always better than

its classical counterpoint. As the original
Bertrand’s duopoly is practical and the N-player
model is general, it is an applicable optimized
algorithm for market competition. In another point
of view, the quantized equilibrium at y—>°° can be
improved to a maximal collusive profit, which is

just the same as the classical cooperative situation.

Different from Ref. [10], this is much more like a
win-win competition result. This generalizing
model not only solves the Bertrand paradox, but

also achieves a practical result.
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