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0 Introduction

Since Hamilton’s introduction, the Ricci

flow equation
Do
Tgf ——2Rc; (@) (1
in Ref. [1], it has proved to be a powerful method
in researching differential geometry problems, and
has produced lots of beautiful results, such as the
proof of the Pioncare conjecture by Perelman.
In 1989, Shi proved the following existence
theorem on a noncompact manifold in Ref. [ 2],

which led to a lot of research on the Ricci flow
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equation itself.
Theorem 0.1 Let (#, g) be an n-dimensional
smooth complete noncompact Riemannian manifold
with its Riemannian curvature tensor Rm satisfying
| Rm | << kos on M, (2)
where 0 <k, << + ©© is a constant. Then there
exists a constant T(n, ky) >>0 depending only on n

and k, such that the evolution equation

d

jtgij(l"t) **ZRij(Ivt) on ,/Z((, (3)
8ij (I,O) = g,-j(x) ) V X e M

has a smooth solution g; (x, ) >0 for a short time

0L t<< T (n, k), and satisfies the following
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estimates: For any integer m = 0, there exist
constants C,, >0 depending only on n, m and &k,
such that

sup | V"Rm(x,0) |* << C,/t"s 0<< t<Z T(nsky).

€ M
4)
In this paper, we consider the existence
problem of the Ricci flow on a 2-dimensional
noncompact manifold with the Gaussian curvature
of the initial metric bounded above only. Under
this dimension, as Ric = Kg, where K is the
Gaussian curvature, the Ricci flow equation turns

out to be

do.
ﬁ :*ZKg,'ja (5)
It

we have more interesting literatures compared to
higher dimensions.

We mainly use the pseudolocality theorem and
the maximal principle theorem to prove the
existence theorem below.

Theorem 0.2 Let M be an open surface
equipped with a smooth metric g, and the Gaussian
curvature be bounded above only. Then, there
exists a constant T > 0 depending only on the
supremum of K(g), such that a smooth Ricci flow
g(t) exists on M for t€[0,T], g(0)=g, and the
Gaussian curvature K(g(t)) is bounded for t€&
[t, TJ, with any & >0.

Actually, it is Topping who first considered
the existence problem of Ricci flow with
incomplete initial metric, as can be seen in Ref.
[3]. However, Topping’s proof is not complete in
detail, especially in making use of the Maximal
principle for noncompact domains. Besides,
Topping used Hamilton’s compactness theorem in
his proof, which made his proof very lengthy.

In this paper, we give a detailed and complete
proof for the existence theorem in dimension 2. As
we just use the pseudolocality theorem together
with the maximal principle, our proof is more
direct.

Since the proof of the pseudolocality theorem
on complete noncompact manifolds that we need is

not found in any references yet, we give a simple

%41 %
proof in the last section for completeness.
1 The construction of Ricci flows

with initial metrics converging

Let ./ be an open surface equipped with a
smooth metric g, and the Gaussian curvature of g
is bounded above only.

In this section, we first construct a sequence
of metrics g; (0) converging to g in the Cheeger-
Gromov sense, the definition of which can be seen
in Chapter 5 of Ref. [4].

For convenience, we define

K= max{sg{pK(g) L0}
in this paper.

We take a sequence of subdomains 4, C C M
with smooth boundaries, so that 4, CC . #;-,, and
Then We have the
following lemma, which is due to Topping’s work
in Ref. [3].

Lemma 1.1

M; exhaust M as 1—> oo,

For each i, We can construct a
complete Riemannian metric g; (0) on M+, , with
curvature bounded above by K and bounded below
by some constant C; depending on i, and each
g2:(0) agrees with g on ;.

Proof

and hence omitted here. []

The proof is the same as Topping’s,

For each Riemannian manifold (A, , g, (0))
constructed above, by Shi’s Ricci flow existence
Theorem 0. 1, there exists a Ricci flow g;(t) on a

The Gaussian

curvature K; (t) is bounded on any time interval

maximal time interval [0, T.).

compactly contained in [0, T;), but blows up when
—>T,.

Now, we have the following maximum
principle Theorem 1.2 for Ricci flow on complete
noncompact manifolds. With this theorem, we can
prove Lemma 1.3 below, which shows that there
exists a uniform time interval [0, T], such that all
g:() exist on it. We refer the proof of Theorem
1. 2 to Corollary 7. 45 in Ref. [5].

Theorem 1.2 Let (M, g()),t€[0,T], be a
complete solution of the Ricci flow with bounded

curvature tensor and let p € M. Suppose ¢ is a
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smooth function satisfying ¢$(0)<X0. Suppose there
exist some C>0 and A, <<c°, such that

%4} < A¢+ C¢p, whenever ¢(x, 1) > 0,

and
¢y t) < &M o (P
for all (x,1). Then ¢(x, V<20 for all € A and 1€
[0, T].
Lemma 1.3  There exists a uniform time
interval [0, T], such that all g, (¢) exist on it.
Furthermore, for any ¢ >0, K(g; (t)) have a

1 1

m,ﬁl when ¢ €

uniform bound [

[t,,T].
Proof Under Ricci flow, the Gaussian

curvature obeys the equation

IK
dt

We simply note K; for K(g; (), A; for

= AK+ 2K (6)

Laplacian with respect to g;(#) and define ¢,(x, ) *=

K,*—%. Then we have ¢;(x, 0)=K,(0)— K<
K *—2t
0. Whenever ¢;(x,1) >0, we see that
dpi(xs O _ IK; 2 _
Jdt It (K'—2p?
AK, 42K — =2 —
o C(KT 2w’
1
Ki*—
Al[ K'! 21]Jr
( 1 N[ 1 Al
2IKit =" || Ki—=——"1|. 7
t K’l—ZtH K*t—2¢ 2
_ R*l
When =< ti<7, we have
K+—1t <K+—"1 (&
K —2¢ K — 21
Since ¢;(x, )= Ki*ﬁ is bounded for
t€[0,47], we can apply Theorem 1.2 to yield
R 1
that, for t€|:0, P )9
[ E T ——— 9)
K —21
On the other hand, let K; := inf K;(0, x),

i1

which we know to be nonpositive, and may tend to —<©

as o0, We define ¢ (xr ) = ————K,(0).

_ﬁi ' —2t
As ¢ (2,0)<<0 and ¢;(x, 1) are bounded when t€
[0.4,], we may use again the maximum principle

to ¢;(x, 1), and deduce that

1

— < K.,. 10
K;! —2¢ 10

Combining (9) and (10), we have

1 1

— K, < =—"—. 11
K'—2t T K'—2s an
From inequality (11), we can see that for all

o1
(€00, T] with >0 and T< 5, K (D €

]. Consequently there exists an

[ 1 _ 1
—2t, K '—2T
Rl

i-independent time interval [0, T], T<< 5 " such
that all g;(t) exist on [0, T]. []
Remark 1.4 For general dimensions, we
note that the scalar curvature obeys the
inequality
IR~ AR+ 2R, (12)
dt n
and the equality could be wvalid only for

dimension 2. Thus we seem unable to get a
uniform time interval [0, T] for any dimension

higher than 2.

2 Pseudolocality and the proof of
Theorem 0. 2

In this section, we will show that on any
subdomain X C ., there exists a subsequence of
g:(t) that converges uniformly on XX [0, T] to
some Ricci flow g (t), and finish the proof of
Theorem 0. 2.

Before doing this, we state some known
results, which are all needed in the proof of
Theorem 0. 2.

The first one is the peudolocality theorem
below for complete curvature-bounded Ricci flow
on noncompact manifolds. A simple proof of this
theorem is arranged in Section 3.

Theorem 2.1 For each n € N, there exists

e>0, depending only on n, such that for all n, >0,
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if g(t) is a complete curvature-bounded Ricci flow
for t€ [0, T], where 0<< T< (er,)?, on an n
dimensional manifold . containing some point x;,

and if, with respect to g(0),

©)
| Rm | o) << 157 on By Caos 1) s
)
VOl(Bg(mﬂ(Io ’ To)) > (1—o ©, »
”’l)
then,

| Rm | Cxst) << (erg) 2,
for t€[0,T] and dist, (s a)<ler.

The following remark advanced by Topping is
important, though the proof is only a direct
computation.

Remark 2.2
01X (en )%,

conclusion remains true for dist, (x, 20)<ern » by

If | Rml Cxst)<<(er) *
X 6 Igg((;) (l‘y €Ny )7 then the

when

a slight reduction of e Actually, we can compute
from the Ricci flow equation to see that if | R/, <<M
for some MER , t€[0,T], then
e CMdist oy (s 1) <K dist,ey (s ap) <
eC(")M’distg( NEAETOR
with t€[0, T].

We also need the following theorem to control
all orders of derivatives of the Riemannian
curvature tensor, which is actually an improved
version of the estimates in Theorem 0.1. The
proof of this theorem can be seen in Chapter 3 in
Ref. [4].

Theorem 2.3 Fix the dimension n of the Ricci
flow under consideration. Let K<{o° and a=>0 be
given positive constants. Fix an integer [ = 0.
Then for each integer k=0 and for each >0 there
is a constant C},= C},,( K, a 7» n) such that the
following holds. Let (U, g(1)),0<< (< T, be a
Ricci flow with T<<«/K. Fix p€ U and suppose
that the metric ball B(p,0,r) has compact closure
in U. Suppose that

| Rm(x,t) | << K,V (x,t) € UX[0,T],

(13

| VPRm(x,0) |[<< K,V x€ Uand B<< L

(14

Then

(15

| V*Rm(y,t) |<t Ch.t

for all y&€ B(p,0, r/2) and all t€ (0, T]. In
particular, if k<<{, then for y&€ B(p,0,r/2) and
1€ (0, T] we have
| VERm(y, 1) |< Ch. (16)

Furthermore, we need the following lemma,
which gives the uniform bounds of all orders of
derivatives of the metrics. For details of the
lemma, we refer to Lemma 1. 4 in Ref. [6].

Lemma 2.4 Let 4 be a Riemannian manifold
with metric G, @ a compact subset of 4, and G, a
collection of solutions to the Ricci flow defined on
neighborhoods of QX[ , ¢ ] with the time interval
LB, (p] containing t= 0. Let D denote covariant
derivative with respect to G and | |the length of a
tensor with respect to G, while D, and | |, are the
same for G,. Suppose that

1) the
equivalent to G at t=0 on K, so that

GC< G < GG

for some constants 0<c¢, C<{c° independent of k;

metrics G, are all uniformly

(II) the covariant derivative of the metrics G,
with respect to the metric G are all uniformly
bounded at t=0 on , so that

| D'G, |< C,
for some constant C,< o° independent of k for p=
0,1,2,,1;

(IM) the covariant derivatives of the curvature
tensors Rm, of the metrics G, are uniformly
bounded with respect to G, on Q X [, ¢] so
that

| D,*Rm, |k < C,,]
for some constants C; independent of k for p=0,1,
2eee, L.
Then the metrics G, are uniformly bounded

with respect to G on QX[ 8, ¢], so that
G< G <CG
for some constant ¢ and C independent of k, and

the covariant derivatives of the metrics G, with

respect to metric G are uniformly bounded on QX

[B.¢]. so that
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| DPG}: ‘< Cp
for some constant C, independent of k with ¢, Cand

E,) depending on ¢, C, C, and C; and the dimension,
for p=0,1,2--,1L

Proof of Theorem 0.2
arbitrary C C .4, Then there exists a positive

We firstly fix an

integer is>>0, so that g;(0)|s=g when i=>is. We
assume that integer i below is taken larger than is.
Then, for any point x; € 3, as soon as the constant
r(x;) is small enough, we have | K;(x,0) | =
| K, (2,0 [ << #(2) 77 for all 2€ B, Cayy r(x)).
The pseudolocality Theorem 2. 1 implies that there
exists some >0, so that
| KiCx, ) [<< Cer()) 2
V(x,) € B(ay,er () X [0,Cer(x))?].

Since X is a fixed relatively compact subset,

we can choose finite many B, (ax,,er(x;)) covering

S Let r(X) ==ir}f r(a,), then

| KiCx, ) | << (er(2) 7,
V(x.t) € SX[0,er(2))?].
On the other hand, due to Lemma 1.3, for
any (x,t) € SX[(er(2))?,T], we have

1 1
o < Ki(x, 0 < =——.
23y = KileD =70

Hence for any (a, 1) € X[0,T], we have

1 1
(er(Z))P "K' —2T]/"

an

Then, from the Ricci flow equations (5) and

| K;(xst) |<< max

(17), we can deduce by a direct computation that

exists a uniform constant C =

1 - ~
C (r(z))z ’K’T >O’ buCh thdt fOr l>7.§’

elg < g < g, V(xn € SX[0,T].
(18

there

Especially,
e ”g < g < eCl;, V(x,0) € SX[0,T].
a9
We arbitrarily take an [>>0. Since condition
(14) holds on any E;(I, r(2)) C M for all integers
k<1, and by inequality (17), we apply Theorem

2.3 to obtain

| VkKi(Ivt) ‘< CL.I’ k:172’°"7l’ (20)
and constant Cy,; is i-independent.

2r(32)
3

and cover it with finite many B, (xz,r(2)). As C,,

Take 2*C C 3 with dist, (92,9 3) =

is a uniform bound, the inequality (20) holds
on >,

Now, according to Lemma 2. 4 and the Arzela-
Ascoli lemma, there exist a subsequence of g; (1)
on 3*X [0, T], which is also denoted by g; (t),
converging uniformly  together  with  their
derivatives of orders lower than [, to a limit metric
g(1). For the uniformity of the convergence, we
surely have g(0)=g.

As 3 is taken arbitrarily and T is independent
of 2, we can use the standard diagonal process to
get a global solution g(t) for Cx,t) € MX[0,T],
while X exhausts /. The limit metric g(t) is also a
Ricci flow, and satisfies the condition that
g(0)=g.

As the integer | above can be taken as any
positive integer, we see that g (1) is actually a
smooth solution.

In the end, the uniform bound claimed in the
theorem for t€ [ t,, T] with # >0 has actually been
assured by Lemma 1.3. Hence we complete the
proof of Theorem 0. 2. L]

Corollary 2.5 The Ricci

constructed above is complete, if the initial metric

flow g C(t)

g is assumed to be complete.
Proof

from the Ricci flow equation (5) to see that

Actually, we can compute directly

glx, ) = e ZJSK('T’ME. @D

As K(t)<ﬁ for t€[0,T], we have

gla, = —2iK)g,t € [0,T], T<<1/2K.
Since the initial metric g is complete, g (1) is
complete for t€[0,T], too. U]
3 Logarithmic Sobolev inequality on
Euclidean space and the
pseudolocality theorem

In this section, we give a simple proof of the
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pseudolocality theorem. We first state Gross L’s

logarithmic Sobolev inequality on Euclidean

spacemz17 .
Theorem 3.1 For any nonnegative function

$€W"*(R", we have

JR”qflog ¢d\u<JR” | V¢ |Pdv+
L[ doetog(| 4dw,

2Jr" R"

where dvt=(2m * ei%tdx.
For an application, we have the following

corollary.
Corollary 3.2 If JR (Ure) *efde=1, with ¢
being a positive scale-factor, then we have
jR”<f| VFIP A f— ) efdr=0.
(22)

. . 1
In particular, taking ==, we have

2
J'Rn% | VIR f—wUm e lde =0,
(23)
with | o eldr = 1.

By scaling, we only need to show Theorem
2.1 is true for r,=1. To show this, we need the
complete

following pseudolocality theorem on

noncompact manifolds, which is due to Theorem
8.1 in Ref. [8].
Lemma 3.3 Let nbe fixed. There exist §,e>
0 with the following property:
Suppose g (x, t) is a smooth complete
Ricci

bounded curvature on 4" X [0, &€ ]. Suppose at

noncompact solution of the flow with
some point x, € M the isomperimetric constant in
By(ay, 1) is larger than (1—90) ¢,, where ¢, is the
isoperimetric constant of R", and R(x,0)=—1 for
all € By(x,1). Then |Rm|(x, )<<t '+¢ ? for
0<t<¢ and x2€ B,(x,9).

Proof of Theorem 2.1
Theorem 2. 1 is a slight modification of the proof of
Lemma 3.3. We sketch the

Actually, the proof of

proof  for

completeness.

Firstly, it is obvious that the lemma still holds
if we reduce e to make it smaller than § and replace
0 by e

By contradiction, we assume that Theorem
2.1 is not correct. Then for any >0, we can find
(M, g (1)) satisfying the following conditions:

(1) g;(v is a smooth solution of the Ricci
flow on [0, & ] with bounded | V*Rm| on A X
[0,€] for all k=0.

(I > The
BS? (p;s1) is lager than (1—38)) c,.

(Il ) There exits 0 << t; < &, and x; €
BS? (pise) and | Rmy| Cayy t) > €.

1
100 ns,"

Tam-Yu did in Ref. [8] to find proper x;s t.

isomperimetric  constant in

Let A, = We can follow what Chau-

Denote w;=(—4xt) 2e¢ ' to be the solutions to

equation (—d, — A+ R) w; = 0, which satisfies

limu (x,0) =3, (x). We take :L,- = h;u; and }',- =

t >0

fi—log h;, where h; is a cut-off function with its
support set contained in B ( x;, J?) Then,
following what Chau-Tam-Yu did in Ref. [8], we

also obtain the inequality at t=0 that

J B [*711 | vi}i |2 *7‘i+n]:6idv, > C> 09

Q24

for big enough 1.
Only in the last step, as we have the condition
@D in Theorem 2.1, can we make a simplification

of the proof of Lemma 3. 3.
We scale metrics g;(t) by the factor L, 1. e.
1

1et éi(S) :igi(zitiﬁ)a Se |:O’7

2 :| Then for

. 1
(N5 g:(0) 5 pi) s with J\'}; B, [Pri ’ JT] we have
t;

| RAm,v | (x,0) < 24, >0, as i > o,

b 1 J>(1 ) [ 1 J 1,(25)
T e WP

The two conditions above imply a uniform lower

Vol B,

bound of the injective radius at p; with s=0. By

[9-10]

Hamilton’s compactness theorem , we can take
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a subsequence of (A, g;(0), p;) that converges to a
manifold isometric to R”".

On the other hand, if we put g—,:%;, W=

(2% w» and define f, by w=(210 e . Then

we have limJ &,-d\?,- = 1, and the inequality (24)
iend

A

turns out to be

3 R . AR ~
[ |51 V0= Tt nfidv, = c>o.

i

(26)
Let i go to +°°, we then have
JR" [*% | VP —F+ n]&dV} C>o0.
@27
This inequality contradicts Corollary 3.2. We
complete the proof of Theorem 2. 1. []
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