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Distributed bayesian compressed spectrum
sensing based on mutual information

WANG Zhen-xing, YANG Tao, HU Bo
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Abstract: When compressive sensing is applied in cognitive radio network, spectrum sensing
precision by every cognitive radio user is greatly different due to different channel environments
between them. Consequently information fusion methods in network and the efficient data
processing manner by compressive sensing can be combined to improve sensing precision. First,
CS (compressive sampling) is performed independently by every cognitive radio user for rough
sensing, and then the sensing information between different users is exchanged for their spatial
diversity. Here, mutual information is taken as a measure to evaluate the sensing difference
between two cognitive radio users, and those users with large difference are related. The sensing
information of every cognitive radio user will be shared under this kind of relationship. After
sensing information is shared, Bayesian inference for CS construction in every cognitive radio user
is re-built to update the local sensing. The simulation results show that the proposed scheme has
advantage both in sensing accuracy and in sensing speed over the conventional scheme.
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0 Introduction

If the signal is sparse in a certain transform

domain, then perfect reconstruction can be
acquired through a sub-Nyquist sampling rate,
which underlays the currently most innovative
signal processing technology — compressive
sampling (CS). Since the introduction of CS by D.
Donoho'” and E. Candes, T. Tao*, a great
number of exciting results both in theoretical
analysis and experiment have been published. On

[3]

the theoretical side, Dror Baron“* proposed the

idea of distributed compressive sampling and
Carin-"

method to

Lawrence extended generic Bayesian

probabilistic model  compressive
sampling. Is there any possibility to fuse these two
attractive methods in a distributed cognitive radio
system together? This is the intuitive idea behind
this paper.

According to compressive sampling theory',
let X be an N X1 sparse signal, that is, most of its
coefficients are zero, then consider the following
measurement system

Y = HX +n @b
where M X 1 linear vector Y corresponds to the
measurement of the unknown signal X, the MXN
s hy ], with

M<N and nyx, represents the acquisition noise as

measurement matrix H =1 hy, hy, **

compressive sampling devices do not have infinite

precision””.  Under these conditions, an
approximation to the original signal X can be
obtained with overwhelming probability by solving

the following optimization problem

X = argxmin{ lY—HX |+ XI].} @
where || ¢ ||, denotes the I,-norm. Till now a
number of methods have been proposed to solve
the above CS reconstruction problems, typically

[5.6]

including the linear programming algorithm and

constructive algorithm' =%,
Cognitive radio (CR) emerged from the fact
that the utilization of the current spectrum bands is

inefficient. A large span of spectrum for the

authorized users stands idle, so these spectrums
can be sensed and utilized by cognitive radio
interference to the

sneakily, without any

authorized users. Due to the sparsity existent

inherently in these spectrums, CS can be
introduced to model the sensing process. Due to
the random distribution of the CR users, CS
measurements differ greatly from each other.

Attenuation, multipath effect etc. can cause

measurement errors. Lhis

paper

uniform model to characterize these elements and

proposes a

utilize mutual information to evaluate these effects

on each cognitive radio user.

1 System model

Consider the following acquisition system in

the cognitive radio system
Y=H(TX+v)+n 3
where X = [ 21, 225 ***» 25 |T is N-length signal
vector in the frequency domain that represents the
frequency state in one cell. X has the same value
for all cognitive radio users. X depends on how
many channels are occupied by the authorized users
at one time. T is the transmission matrix that
represents characteristic of channel such as
attenuation, multipath effect etc. due to different
locations of cognitive radio users. H 1is the
compressive sampling matrix statistically generated
by cognitive radio user terminal. Hyxy should

RIP")

sampling theory. This requires that column vectors

satisfy the according to compressive
taken from arbitrary subsets be nearly orthogonal.
n is a small amount of noise as compressive
sampling devices don’t have infinite precision. v is
the additive Gaussian channel noise,

Assume X,Y,n are vector Gaussian signals.
Let X~N(0,S..), and without loss of generality,
assume n~ N (0, S,,). S,.. and S,, are covariance
matrices of vector Gaussian signal and vector

Gaussian noise respectively.
2 Bayesian scheme analysis

In Bayesian modeling, all unknowns are
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treated as stochastic quantities with assigned
probability distributions.
Expression (3) can be rewritten as
Y = HIX +w (4)
where @ = Hv+n = [wis ***s wy |' 1s a set of
independent zero-mean Gaussian variables with
variance ¢°. Define §=1/5", then the likelihood
function is formed as
pY | X, = N | HIX.5") =

<?)%exp<§||YHTX H%)) (5)

With a Mamma prior placed on f as follows
pP(Bla.b) =T a.b) (6)
The signal X being observed can be assigned a
prior distribution

N
pPX |y =] N |0,7), (7)

i=1
This models our knowledge on the nature of X.

Based on the work in Ref. [11], Laplace
In Ref. [12 7],

hierachical way was proposed to model the priors

priors are preferred. a new

by using the following hyper-priors on 7v;,

_ _ A — XY
P D =T | 1,4/2) = Zexp<—2 )

PX | = jp(X 9 p(y | Ddy =
1L pte | 7op0r | Dy, =

N/2
%exp(—ﬁz | 2 )

Finally take mode A as the realization of the
following Gamma hyper-prior
PQ W =TQ|v/2,v/2) (9)
Integrate the above expressions, the joint
distribution can finally be defined as
PXLY By ) = p(Y | Xup) « p(B) »

PX Y e py [ pQO (10
Where p(Y | X8, p(B, p(X|1)s p(¥[2) and
p ) are defined in Eqgs. (5), (6), (7), (8), (9
respectively.

Through
hyperparameters, Bayesian inference is performed

to obtain estimation of X by MAP standard"*.

iterative updates of

3 Mutual information modeling

For a cognitive radio users’ network, the
aforementioned compressive sampling model can be
extended to all nodes. Assume that K cognitive
radio users are considered.

Y, =HTX+owo l

: 1D

Y = HTX —Q—wk(

Assume X,Y,,n; are all Gaussian signal vectors and

every H; is an M XN vector, where i=1,-+,K,
PO ~ | pX | D pQd (12)
i =1,2,,K

the above assumption,

o, ~ N,¢*D
Based on mutual
information between X and Y; can be calculated as
follows!

p(X,Y)

o 1 dxd
I(X,Yl) - Jiwjﬂm[)(XaY,') nm Y,-
(13)
Where
px¥) = [[[ pxo¥. 20 dpdyda 1
s (1D

pY) = HH;D(X,Y, ,ﬁ,y,/l)dXdﬁdyd/\J

and p(X,Y;,B3,7,A) is described as Eq. (10).

After each cognitive radio holds its mutual
information evaluation value, a matrix can be
generated by the following rules.

For every element m;; in matrix Mgk, its
value satisfies:

MG,j) =| I(X;Y) —I(X;Y,) |, 0<i,j<<K
(15)

Apparently, M is a symmetrical matrix. That
is, M"=M, where M" is the transpose form of M.
Meanwhile,

M(i,j) =0 wheni=7j (16)

Covert the above matrix to another matrix A
through the following way:

Ay = [0 M=o (17)

1, MG,.j) >0
Matrix A can be seen as the connection matrix
defined in mathematical graph theory. Here, when

A(i,j) equals 1, it means that the ith and the jth
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cognitive radio users are logical “neighbors”. By Y, = HT X + o;
logical neighbors it is not meant that these two Y, =H, T X+ o,
(18)

cognitive radio users are located close to each other
but that these two cognitive radio users need to
information. Finally, the

exchange individual

network structure is formed (Fig. 1).
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() cognitive radio user
Fig. 1 Illustration of cognitive radio user network

The connection between two cognitive radio users
shows the need to exchange individual information
between them. So whether two cognitive radio
users are linked in the network does not depend on
their distance directly, it depends on how many
authorized users are located around each cognitive
radio user that should be monitored by the
cognitive radio user and how far away between the

authorized users are from the cognitive radio user.

4 Distributed bayesian inference

In section 3, a graph that represents the
connection relationship between cognitive radio
users is given (See Fig. 1 for example). This graph
determines how these cognitive radio users share
their individual information among each other.
Any cognitive radio user will transmit its
information to those connected with it.

When a

information from its neighbors, Bayesian inference

cognitive radio user receives
is updated through re-computing expressions (5),
(6) iteratively.

label the

“neighbors” of the ith cognitive radio user as C=

For illustration, collection of
{iys ===y is }+ where 4, +-+, is are tokens of the
corresponding cognitive radio users. S; is the
number of neighbors of the ith cognitive radio
user. Then in the ith cognitive radio user, the

following equations are available.

Y, =H T X +o, J

ig.
i

Integrate these equations to the following one:

Y, = AX + o,
v . 1
Y = S, +1
1 19

A=

S;+1
CT)[ ﬁ(w, + 2(0,

Intuitively,
1Y X = 1Y 55X (20)

After information shared, Egs. (5), (6) are
updated as follows:

P(Yl | Xvﬁ[ 7@'1 s [3i, ""yﬁ,‘s_ - N(ﬁ ‘ i 7B;1) -

(2—”) 'exp( fiuy D) 21

Where

= SH<HT +2HT )Xl

(22)
B = <s+1>2(ﬁr+2[’r) [

Where p(B: | a;sb,) ~T'(a;s b)) p (ﬁ,vj | a; s b,j )~
(a , ,b ), j=1,2,--,S,.

Then p(X,Y;.3.7.A) is re-computed through
expression (10) using Egs. (13), (17), (7), (8),
(9) instead. After p(X.Y:.f3.7.A) is calculated,
Bayesian inference still should be performed as
Ref. [13] describes.

The algorithm procedure is summarized as

follows:

Step 1  Each cognitive radio user performs
Bayesian compressive sampling independently
initially.

P(X.Y,
Bs7s 1) is calculated through (10) and a virtual

Step 2 Through each user’s sensing,

graph is formed as Eq. (17) describes.
Step 3 Transmit information among cognitive
radio users following the direction of the graph.
Step 4 After shared information, p(X,Y;,8;,
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Y.A) is re-computed using Egs. (21), (22), (7),
(8), (9), and then Bayesian inference is performed
as Ref. [ 13] describes.

Step 5

convergence, which means that matrix A in Eq.

Repeat Step 2, 3, 4 until

(17) changes slowly enough.

S Simulation results and analysis

In this section, we test the performance of the
proposed algorithm in the distributed network, in
which each wuser suffers different channel
attenuation and distortion.

Simulation parameters are set as follows:

Number of cognitive radio users: 10

Signal length: 512

Number of spikes (sparsity): 80

Firstly, the reconstruction performance is
compared between the Bayesian scheme and the
Bases Pursuit (BP) scheme, and the simulation is
given in Fig. 2. In this scenario, no information
between cognitive radio users is shared. The result
indicates that generally the reconstruction error for
the Bayesian scheme gets smaller as the samples
increase, but occasionally a large fluctuation occurs
in some samples. Nevertheless, it has an average

lower reconstruction error over the BP scheme.

2.6 T T " . . .
1
2 4} —Reconstruction of C'§ based on bayesin | |
<N -=- Reconstrucnon of €5 using covex oplimization
522t |'
2 20} ewoosss ]
R 9 #0080, .
g 18f et
z N f 7&
E L6l b \ u/\\ \
3 I| LA
S L4y \
1.2
1.0

45 50 55 60 65 70 75 8O
number of compressive sensing points (V=312)

e
-

Fig. 2 BP and Bayesian scheme

Next, one cognitive radio user (SNR=10) is

selected randomly to verify the effect of
cooperation based on mutual information. The
improvement on reconstruction performance is

Here,

each cognitive radio user perform compressive

given in Fig. 3. “no cooperation” means

sampling as well as the reconstruction
independently, “with mutual information” denotes
the performance of proposed algorithm, that is, to
get information from 4 certain cognitive radio users
correlated by mutual information, and “no mutual
information” means that the underlying cognitive
radio user randomly selects 4 cognitive radio users
for cooperation. From Fig. 3, we known that the
cooperation scheme based on mutual information
greatly eliminates the fluctuation of reconstruction
error existing in the Bayesian scheme. Meanwhile,
the mutual information scheme can effectively
improve the precision of recovery when compared
with the randomly selected neighbor scheme.
Also, the simulation examines whether more
in better performance.

neighbors can bring

Obviously, in the scenario where the channel
(SNR=7), a

performance improvement can be gained from this

quality ~ worsens marginal

kind of cooperation (Fig. 4).

b f

-=-no cooperation :
6 + with mutual information {
5 4 —=—no nmitual information
g5
o i
g | :
g
g
[=]
b=
o

0 .
40 50 60 70 B8O 90 100 110 120
number of compressive sensing points (¥=512)

Fig. 3 Effect of cooperation using MI (SNR=10)
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<|[ne cooperation :
451 o with murual information
- -=-no mutual information
= 4.0¢
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3.5
5300
- S
Z2.5¢,
B2.0f
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1.0 ) -

40 45 50 55 60D 65 7O 75 RO
number of compressive sensing points (N—=512)

Fig. 4 Effect of cooperation using MI (SNR=7)

In Fig.5, simulation also examines whether

sharing information from more cognitive radio
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users can bring in  better performance.

“Reconstruction based on full cooperation” means
every cognitive radio user receives information
other 9 cognitive radio

from the users.

“Reconstruction based on MI” means every
cognitive radio user only gets information from its
neighbors (4 cognitive radio users) via mutual
From Fig.4, involving

information. more

neighbors for more information does not
necessarily offer better precision of reconstruction.
Conversely, getting information from unfavorable
cognitive radio users makes reconstruction error

even more severe,

16
-e- reconstruction of C8 hased on full coaperation
| |—— reconstruction of C5 hased on M1

—
£

12
T

—
=
T

reconstruction crror

40 50 60 70 80 90 100 110 120
numbcr of compressive sensing points (A=512)

Fig. 5 Full-cooperation and mutual information

Finally, the computation efficiency for the
proposed algorithm is analyzed. In practice, the
reconstruction of compressive sensing through BP
scheme is performed by recursion algorithm until
the given recovery precision is reached. BP scheme
takes longer in searching for an appropriate base as
sampling points increase, whereas, the Bayesian
scheme gets the result through an iterative
computation framework. We can give a comparison
through the simulation in Fig. 6, where the
computation time for Bayesian scheme is greatly
less than BP scheme and changes slowly as
sampling size increases.

The total computation time cost involves two
parts; One is the computation of the mutual
information between cognitive radio users. The
other is the computation of formulas (19), (21),
(22).

grows approximately linearly as the number of

The computing time of these two parts

——reeonstruction of CS based on bayesian mcthod‘
-e-regonstruetion of €5 based on B

20F ]
o f

computing time { §
L
p
e

40 45 50 55 60 65 70 75 80
number of sampling points

Fig. 6 Computation time for Bayesian and BP scheme

cognitive radio users increases (See Tab.1). The
other time expense of this algorithm is exhibited in
interactive communication between linked cognitive
radio users, and is a minor part compared with the

former ones.

Tab. 1 Algorithm efficiency

number of CR users time/ms
10 28.5
20 50. 5
30 70.0
40 86. 7

Besides, since we only consider a slow-varying
channel, the procedure described in the end of
section 4 converges fast. However, constituting
matrix A in Eq. (17), involves computing mutual
information using the afore-mentioned formula,
which has a

relatively high  computation

complexity.
6 Conclusion

Research on compressive sampling from the
Bayesian inference perspective has been proposed
Here,

cognitive

in many researchers’ works. a mnovel

algorithm is introduced into radio

technology. The new idea that extends Bayesian
inference to distributed network is emphasized so
that compressive sampling reconstruction is
accomplished cooperatively through the shared
information among cognitive radio users. Mutual
information is preferred for evaluating each
cognitive radio user’s sensing ability. Experimental
excellent  performance.

results show an
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Meanwhile, three major tasks remain to be done:
fusing the shared information more effectively,
(21),
selecting the threshold ¢ in Eq. (17), and, more

namely, how to generate expression

importantly, reducing computational complexity.
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