Vol. 44, No. 12 Dec. 2 0 1 4

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2014)12-0975-07

On partially s-permutable subgroups of finite groups

YU Xiaolong¹, HUANG Jianhong²

School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China;
 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China)

Abstract: Let H be a subgroup of G. H is said to be partially s-permutable in G provided G has a subnormal subgroup T such that G = HT and $H \cap T \leq H_{sT}$, where H_{sT} is the subgroup of H generated by all the subgroups of H which permute with all the Sylow subgroups of T. Here, partially s-permutable subgroups were used to study the structure of finite groups and some new criteria of p-nilpotent groups and p-supersoluble groups were obtained.

Key words: finite groups; partially s-permutable subgroups; p-supersoluble groups; p-nilpotent groups

CLC number: O152 **Document code**: A doi:10.3969/j.issn. 0253-2778. 2014. 12. 002 **AMS Subject Classification (2000)**: 20D10; 20D15; 20D20

Citation: Yu Xiaolong, Huang Jianhong. On partially s-permutable subgroups of finite groups [J]. Journal of University of Science and Technology of China, 2014,44(12):975-981,985.

有限群的局部 5 置换子群

余小龙1,黄建红2

(1. 中国科学技术大学数学科学学院,安徽合肥 230026; 2. 江苏师范大学数学与统计学院, 江苏徐州 221116)

关键词:有限群;局部 s置换子群; p 超可解群; p 幂零群

0 Introduction

Throughout this paper, all groups are supposed to be finite and our notation and terminology are standard, as in Refs. [1-2].

Recall that a subgroup H of a group G is said to be s-permutable (or s-quasinormal) in G if it

permutes with every Sylow subgroup of G (that is, HP = PH, for an arbitrary Sylow subgroup P of G). This concept was introduced by Kegel^[3] in 1962. The s-permutability of a subgroup of a finite group G often yields some information about group G itself. Some studies^[4] have since been conducted. On the other hand, in 1996, Wang^[5] introduced

Received: 2014-03-24: **Revised:** 2014-06-07

Foundation item: Supported by NSFC (11371335, 11401264).

Biography: YU Xiaolong (corresponding author), male, born in 1984, PhD. Research field: finite group theory. E-mail: yxlzxs@mail.ustc.edu.cn

the so-called c-normal subgroup: a subgroup H of G is said to be c-normal in G if there is a normal subgroup K of G such that G = HK and $H \cap K \le$ H_G , where H_G is the core of H in G. Also, many results were obtained by using this concept^[6-7]. Later on, Skiba^[8] gave the concept of weakly spermutable subgroup: A subgroup H of G is called weakly s-permutable in G if G has a subnormal subgroup T such that G = HT and $H \cap T \leq H_{sG}$, where H_{sG} denotes the subgroup of H generated by all subgroups of H which are s-permutable in G. Obviously, every s-permutable subgroup and every c-normal subgroup are weakly s-permutable in G, but the converse is not true [8, Example 1, 2]. By using this conception, Skiba achieved many results about the structure of finite groups. In order to unify all the conceptions mentioned above, now we introduce the following notion:

Definition 0.1 A subgroup H of a group G is said to be partially s-permutable in G provided G has a subnormal subgroup T such that G = HT and $H \cap T \leq H_{\mathfrak{F}}$.

Here H_{sT} is the subgroup of H generated by all the subgroups of H which permute with all the Sylow subgroups of T.

It is easy to see that every weakly s-permutable subgroup is also partially s-permutable. However the converse is not true in general. Here comes an example.

Example 0.2 Considering

$$G = C_{A_{\circ}}((12)(34)(56)(78)) = M \rtimes S_4,$$

where

 $M = \langle (12)(34)(56)(78), (12)(34), (12)(56) \rangle$ is an elementary abelian subgroup. Let

 $H = \langle (135)(246), (12)(34), (34)(56) \rangle \cong A_4$ and

$$T = \langle (12)(34)(56)(78), (12)(34), (34)(56), (13)(24)(57)(68), (15)(26)(37)(48) \rangle.$$

Then we can see that $T \subseteq G$, G = HT and H permutes with every Sylow subgroup of T. Hence $H \cap T = V_4 = \langle (12)(34), (34)(56) \rangle \leqslant H_{sT} = H$. This means that H is partially s-permutable in G.

On the other hand, let $Q = \langle (357), (468) \rangle$, then Q is a Sylow 3-subgroup of G. Obviously, $HQ \neq QH$, and so H is not s-permutable in G. In fact, we can prove that $H_{sG} = 1$. Hence, $H \cap T \nleq H_{sG}$, and so H is not weakly s-permutable in G.

This example shows that in general the set of all partially s-permutable subgroups is wider than the set of all weakly s-permutable subgroups, and of course, also wider than the set of all s-permutable subgroups and the set of all c-normal subgroups. In this paper, we characterize p-nilpotency and p-supersolubility of finite groups under the assumption that some subgroups are partially s-permutable. Some former results are generalized.

1 Preliminaries

Let *p* be a prime. Recall that a group *G* is said to be *p*-nilpotent if it has a normal *p*-complement and *G* is called *p*-supersoluble provided every *p*-chief factor of it is cyclic. It is easy to see that a *p*-nilpotent group is also *p*-supersoluble.

Besides, we use \mathcal{U}_p to denote the class of all p-supersoluble groups. The symbol $G^{\mathcal{U}_p}$ denotes the \mathcal{U}_p -residual of G, that is, the intersection of all normal subgroups of G whose relative quotient groups belong to \mathcal{U}_p .

We also need the following Lemmas:

Lemma 1.1 Let $A \leq K \leq G$, $B \leq G$. Then:

- ① Suppose that A is normal in G. Then K/A is subnormal in G/A if and only if K is subnormal in $G^{[9,A,14,1]}$.
- ② If A is subnormal in G, then $A \cap B$ is subnormal in $B^{[9,A,14,1]}$.
- ③ If A and B are both subnormal in G, then so is $\langle A, B \rangle^{[9,A,14,4]}$.
- ④ If A is subnormal in G and B is a minimal normal subgroup of G, then $B \leq N_G(A)^{[9,A,14,5]}$.
- ⑤ If A is subnormal in G and B is a Hall π -subgroup of G, then $A \cap B$ is a Hall π -subgroup of $A^{[10]}$.
- ⑥ If A is subnormal in G and A is π-subgroup of G, then $A \leq O_{\pi}(G)^{[10]}$.

Lemma 1.2 Assume that H is s-permutable in G, $X \le G$ and $N \triangleleft G$. Then:

- ① H is subnormal in $G^{[3]}$.
- ② HN/N is s-permutable in $G/N^{[3]}$.
- \Im $H \cap X$ is s-permutable in $X^{[3]}$.
- 4 H/H_G is nilpotent^[4].

Lemma 1. 3 Suppose that A and B are subgroups of G. Then:

① If H is a p-subgroup of G for some prime p, then H is s-permutable in G if and only if $O^p(G) \leq N_G(H)^{[4, \text{Lemma A}]}$.

② If A and B are both s-permutable in G, so are $\langle A,B\rangle$ and $A\cap B^{[4,\operatorname{Corollary} 1]}$.

Now we provide some basic properties of partially s-permutable subgroups:

Lemma 1.4 Assume that $H \leq G$ and H is partially s-permutable in G, $K \leq G$ and $N \triangleleft G$.

- ① If $H \leq K$, then H is partially s-permutable in K.
- ② If $N \leqslant H$, then H/N is partially s-permutable in G/N.
- ③ If (|H|, |N|) = 1, then HN/N is partially s-permutable in G/N.

Proof If H is partially s-permutable in G, then by the hypothesis, there exists a subnormal subgroup T of G such that

$$G = HT$$
, $H \cap T \leq H_{sT}$.

① Obviously, $K \cap T$ is subnormal in K by Lemma 1.1 ② and

$$K = K \cap HT = H(K \cap T).$$

Besides,

 $H \cap (K \cap T) = H \cap T \leqslant H_{sT} \leqslant H_{s(K \cap T)}.$ Hence, H is partially s-permutable in K.

2 It is easy to see that TN/N is subnormal in G/N by Lemma 1.1 1 and

$$G/N = HT/N = (H/N)(TN/N)$$
.

Besides,

$$H/N \cap TN/N = (H \cap TN)/N =$$

$$(H \cap T) N/N \leqslant H_{sT}N/N =$$

$$H_{sT}/N \leqslant (H/N)_{s(TN/N)}.$$

Thus, H/N is partially s-permutable in G/N.

③ Since (|G;T|, |N|)=1, we have $N \le T$. Then similarly as in ②, T/N is subnormal in G/N and

$$G/N = HT/N = (HN/N)(T/N)$$
.

On the other hand,

$$(HN/N) \cap (T/N) = (H \cap T) N/N \leqslant$$

 $H_{3T}N/N \leqslant (HN/N)_{s(T/N)}.$

Hence, 3 holds.

Lemma 1. $\mathbf{5}^{[11,\text{Lemma 2.6}]}$ Let G be a group. Assume that N is a non-trivial normal subgroup of G and $N \cap \Phi(G) = 1$, then the fitting subgroup F(N) of N lies in Soc(G) and therefore F(N) is the direct product of the minimal normal subgroups of G which are contained in F(N).

Lemma 1. $6^{[12,\text{Theorem 2.1.6}]}$ If G is p-supersoluble and $O_{p'}(G) = 1$, then the Sylow p-subgroup of G is normal in G.

Lemma 1. $7^{[2, 1][3,5]}$ Let G be a group and $N \subseteq M \subseteq G$ be two normal subgroups of G satisfying $N \subseteq \Phi(G)$. If M/N is nilpotent, so is M.

Lemma 1. $8^{[13,\operatorname{Chap} 6,\operatorname{Theorem} 3,2]}$ If G is π -separable and $\overline{G} = G/O_{\pi'}(G)$, then $C_{\overline{G}}(O_{\pi}(\overline{G})) \subseteq O_{\pi}(\overline{G})$. In particular, if $O_{\pi'}(G) = 1$, then $C_{G}(O_{\pi}(G)) \subseteq O_{\pi}(G)$.

Lemma 1. 9^[2, \mathbb{I} 4.5 (Gaschütz)] Let G be a group, then $F(G)/\Phi(G) = F(G/\Phi(G))$ is a direct product of abelian minimal normal subgroups of $G/\Phi(G)$.

Lemma 1. 10^[13,Chap 8,Theorem 3,1 (Glauberman-Thompson)] If P is a Sylow p-subgroup of G, p odd, and if $N_G(Z(J(P)))$ has a normal p-complement, so does G (Here, J(P) is the Thompson subgroup of P).

2 Main results

Theorem 2.1 Let p be a prime dividing the order of a group G and L a p-soluble normal subgroup of G such that G/L is p-supersoluble. If there exists a Sylow p-subgroup P of L such that every maximal subgroup of P is partially

s-permutable in G, then G is p-supersoluble.

Proof Assume that the assertion is false and take *G* as a counterexample with minimal order. We derive a contradiction via the following steps:

① G is p-soluble.

This is obvious since L is p-soluble and G/L is p-supersoluble.

②
$$O_{b'}(G) = 1$$
.

Suppose that $D := O_{p'}(G) \neq 1$. We consider (G/D, LD/D). First of all,

 $(G/D)/(LD/D) \cong G/LD \cong (G/L)/(LD/L)$ is p-supersoluble since G/L is p-supersoluble. Besides, let M/D be a maximal subgroup of PD/D, then we can find a maximal subgroup P_1 of P such that $M = P_1D$. By the hypothesis, P_1 is partially s-permutable in G, then M/D is partially s-permutable in G/D by Lemma 1.4 ③. Hence G/D is p-supersoluble by the choice of G, and so is G, a contradiction.

③ $N = O_p(L)$ is the unique minimal normal subgroup of G contained in L such that $G/O_p(L)$ is p-supersoluble and

$$G = NM = O_b(L)M$$
,

where M is a maximal subgroup of G.

Let N be a minimal normal subgroup of G contained in L. Then by ① and ②, N is an elementary abelian p-group, and so $N \leq O_p(L)$. On the other hand, obviously, $N \leq P$ and P/N is a Sylow p-subgroup of L/N. Let P_1/N be a maximal subgroup of P/N. Then P_1 is a maximal subgroup of P/N. Then P_1 is a partially S-permutable in S, and so S and so S partially S-permutable in S by Lemma 1.4 ②. Besides,

$$(G/N)/(L/N) \cong G/L$$

is p-supersoluble. Hence (G/N, L/N) satisfies the hypothesis of our theorem. By the choice of G, G/N is p-supersoluble. Since the class of all p-supersoluble groups is a saturated formation, N is the unique minimal normal subgroup of G contained in L.

If N is contained in all maximal subgroups of G, then $N \leq \Phi(G)$ and so G is p-supersoluble, a contradiction. This contradiction shows that there

is a maximal subgroup of G, M say, such that

$$G = NM = O_{\rho}(L)M, O_{\rho}(L) \cap M = 1.$$

This means that

$$O_p(L) = O_p(L) \cap NM = N(O_p(L) \cap M) = N.$$

Hence ③ holds.

- $\bigoplus |O_{\nu}(L)| > p$ (This is clear by \Im).
- ⑤ Final contradiction.

Let G_p be a Sylow *p*-subgroup of G containing P. Then by \Im ,

$$G_{\flat} = G_{\flat} \cap NM = N(G_{\flat} \cap M),$$

and $G_p \cap M \leq G_p$. This means that we can find a maximal subgroup G_1 of G_p such that $G_p \cap M \leq G_1$. Setting $P_1 = P \cap G_1$. Then

$$|P: P_1| = |P: P \cap G_1| = |G_1P: G_1| = |p|$$

and so P_1 is a maximal subgroup of P. Since $P = G_p \cap L \triangleleft G_p$, we have

$$P_1 = P \cap G_1 =$$

$$(G_b \cap L) \cap G_1 = L \cap G_1 \triangleleft G_b.$$

By the hypothesis, P_1 is partially s-permutable in G. Hence, there is a subnormal subgroup T of G such that

$$G = P_1 T, P_1 \cap T \leqslant (P_1)_{sT}.$$

Since |G:T| is a power of p, we get $O^p(G) \leq T$ by Lemma 1.1 \bigcirc . We know that $G/O^p(G)$ is a p-group, and so it is p-supersoluble. Therefore

$$G/N \cap O^p(G) \lesssim G/N \times G/O^p(G)$$

is also *p*-supersoluble. By the minimality of N, we get $N \leq O^p(G) \leq T$. Now we try to derive a contradiction. Firstly, we assume that $P_1 \cap T = 1$. Then $P_1 \cap N = 1$, too. However, this means that

$$| N | = | N_{:}P_{1} \cap N | =$$

 $| NP_{1}_{:}P_{1} | = | P_{:}P_{1} | = p,$

contradicts 4.

Hence we can assume that $P_1 \cap T \neq 1$. This means that

$$1 \neq P_1 \cap T = (P_1)_{sT} \cap T$$

is s-permutable in T by Lemma 1.3 ②. Then by Lemma 1.2 ① and Lemma 1.1 ⑥, it is easy to see that

$$P_1 \cap T \leqslant O_b(L) = N$$
.

On the other hand, taking G_q as an arbitrary Sylow q-subgroup of G, where q is a prime divisor of |G|

with $q \neq p$. Since $O^p(G) \leq T$, $G_q \leq T$. Hence

$$(P_1 \cap T)G_q = G_q(P_1 \cap T)$$

is a subgroup of G. Therefore

$$P_1 \cap T = N \cap (P_1 \cap T)G_q \triangleleft (P_1 \cap T)G_q$$
.

This means that $G_q \leq N_G$ ($P_1 \cap T$). By the arbitrarity of q, $O^p(G) \leq N_G(P_1 \cap T)$. Hence

$$N = (P_1 \cap T)^G = (P_1 \cap T)^{G_p O^{\rho}(G)} = (P_1 \cap T)^{G_p} \leqslant (P_1)^{G_p} = P_1.$$

However, this means that

$$P = P \cap G_p = P \cap NG_1 = N(P \cap G_1) = P_1,$$

a contradiction. The final contradiction completes the proof. $\hfill\Box$

If we choose L to be some special subgroups of G, for example, G or $G^{\mathbb{Q}_p}$, then we can get some corollaries from Theorem 2.1.

Corollary 2.1 Let P be a Sylow p-subgroup of a p-soluble group G, where p is a fixed prime dividing the order of G. If every maximal subgroup of P is partially s-permutable in G, then G is p-supersoluble.

Corollary 2.2 A *p*-soluble group G is *p*-supersoluble if all maximal subgroups of any Sylow *p*-subgroup of $G^{\mathbb{Z}_p}$ are partially *s*-permutable in G.

Remark 2.1 We point out that the assumption that L is p-soluble in Theorem 2.1 cannot be omitted. Taking A_5 , the alternating group of degree 5, as an example. Obviously, the maximal subgroups of the Sylow 5-subgroups of L are trivial, and so are partially s-permutable in G. However, G is not p-nilpotent, and hence not p-supersoluble.

Now we use the *p*-fitting subgroup $F_p(G)$ $(F_p(G) = O_{p'p}(G))$ of a group G to describe the structure of G.

Theorem 2.2 Let p be a fixed prime dividing the order of G and L a p-soluble normal subgroup of G such that G/L is p-supersoluble. If all maximal subgroups of $F_p(L)$ containing $O_{p'}(L)$ are partially s-permutable in G, then G is p-supersoluble.

Proof Suppose that the assertion is false and

let *G* be a counterexample of minimal order. We will derive a contradiction in several steps:

①
$$O_{p'}(L) = 1$$
.

Suppose that $O_{p'}(L) \neq 1$, then

$$(G/O_{p'}(L))/(L/O_{p'}(L)) \cong G/L$$

is *p*-supersoluble. Obviously, $O_{p'}(L/O_{p'}(L)) = 1$, and so

$$F_{b}(L/O_{b'}(L)) = F_{b}(L)/O_{b'}(L).$$

Now let $M/O_{p'}(L)$ be a maximal subgroup of $F_p(L/O_{p'}(L))$. Then M is a maximal subgroup of $F_p(L)$, which contains $O_{p'}(L)$, respectively. By the hypothesis, M is partially s-permutable in G, hence by Lemma 1.4 ②, $M/O_{p'}(L)$ is partially s-permutable in $G/O_{p'}(L)$, too. Thus $G/O_{p'}(L)$ is p-supersoluble by the choice of G, and so G is also p-supersoluble, a contradiction. Hence ① holds.

②
$$L \cap \Phi(G) = 1$$
.

We put $R = L \cap \Phi(G)$ and suppose that it is not trivial. By Lemma 1.7 and ①, we have that

$$F(L/R) = F(L)/R = O_p(L)/R$$
.

Putting $K/R = O_{p'}(L/R)$ and letting S be a Hall p'-subgroup of K, then K = SR. Hence, by Frattini argument,

$$G = KN_G(S) = SRN_G(S) = N_G(S)\,,$$
 so S \subseteq G. This means that S=1 and so $O_{p'}(L/R) =$

1. Therefore

$$F_{p}(L/R) = O_{p}(L/R) = O_{p}(L)/R = F_{p}(L)/R.$$

Now let P_1/R be a maximal subgroup of $F_p(L/R)$, then P_1 is maximal in $F_p(L)$. By the hypothesis, it is partially s-permutable in G. Then P_1/R is also partially s-permutable in G/R by Lemma 1.4 ②. By the minimal choice of G, G/R is p-supersoluble and so is G, a contradiction.

③ $G/F_p(L)$ is p-supersoluble.

Since L is p-soluble and $O_{p'}(L)=1$, we have

$$C_L(O_p(L)) \leqslant O_p(L)$$

by Lemma 1.8. By ②, $\Phi(L)=1$. This implies that $F(L)=F_p(L)=O_p(L)$ is a nontrivial elementary abelian p-group by Lemma 1.9. Thus $C_L(F(L))=F(L)$. On the other hand, in view of Lemma 1.5 and ②, $F_p(L)=N_1\times N_2\times \cdots \times N_r$, where N_i is a minimal normal subgroup of G_r

where $1 \le i \le r$. Let N_i be any of them. We prove that the hypothesis holds for $(G/N_i, L/N_i)$. First,

$$(G/N_i)/(L/N_i) \cong G/L$$

is *p*-supersoluble. Besides, by 1, $O_{b'}(L/N_i) = 1$. Finally, obviously,

$$F_{p}(L/N_{i}) = O_{p}(L/N_{i}) =$$

$$O_{p}(L)/N_{i} = F_{p}(L)/N_{i}.$$

Let H/N_i be a maximal subgroup of $F_p(L/N_i)$, then H is also a maximal subgroup of $F_p(L)$. By the hypothesis, H is partially s-permutable in G. Then by Lemma 1.4 2, H/N_i is also partially s-permutable in G/N_i . Hence, $(G/N_i, L/N_i)$ satisfies the hypothesis of the theorem, and so G/N_i is p-supersoluble by the minimal choice of G. Since the class of all p-supersoluble groups is a saturated formation, we get i=1 and so $G/F_p(L)$ is p-supersoluble. Besides, $F_p(L) = O_p(L)$ is the only minimal normal subgroup of G contained in L.

$$(4) |F_p(L)| = |O_p(L)| = p.$$

Putting $F_p(L) = O_p(L) = P$. Then there is a maximal subgroup of G, M say, such that G = PM. Let G_p be a Sylow p-group of G containing P. Then

$$G_p = G_p \cap PM = P(G_p \cap M)$$

and

$$G_p \cap M < G_p$$
.

This means that we can find a maximal subgroup G_1 of G_p such that $G_p \cap M \leq G_1$. Setting $P_1 = P \cap G_1$. Then

$$|P:P_1| = |P:P \cap G_1| = |G_1P:G_1| = |p|,$$

and so P_1 is a maximal subgroup of P. Since $P \subseteq G_p$, we have $P_1 = P \cap G_1 \subseteq G_p$. If $P_1 = 1$, then we are done. Hence we assume that $P_1 \neq 1$. By the hypothesis, P_1 is partially s-permutable in G. So, there is a subnormal subgroup T of G such that

$$G = P_1 T, P_1 \cap T \leqslant (P_1)_{sT}.$$

Since |G;T| is a power of p, we get $O^p(G) \leq T$ by Lemma 1.1 \bigcirc . We know that $G/O^p(G)$ is a p-group, and so it is p-supersoluble. By \bigcirc 3,

$$G/(P \cap O^p(G)) \lesssim G/P \times G/O^p(G)$$
 is also *p*-supersoluble. By the minimality of P, we get $P \leq O^p(G) \leq T$. This means that $T = G$ is the

only supplement of P_1 in G, and so P_1 is s-permutable in G. By Lemma 1.3 ①, $O^p(G) \leq N_G(P_1)$. Hence

 $P=(P_1)^G=(P_1)^{G_pO^p(G)}=(P_1)^{G_p}=P_1$, a contradiction. The contradiction shows that $P_1=1$ and so \oplus holds.

⑤ Final contradiction.

By ③ and ④, one can easily see that G is p-supersoluble, a contradiction.

Corollary 2.3 Let G be a p-soluble group, where p is a fixed divisor of |G|. If all maximal subgroups of $F_p(G)$ containing $O_{p'}(G)$ are partially s-permutable in G, then G is p-supersoluble.

Corollary 2. 4 Let G be a p-soluble group, where p is a fixed divisor of |G|. If all maximal subgroups of $F_p(G^{\mathbb{V}_p})$ containing $O_{p'}(G^{\mathbb{V}_p})$ are partially s-permutable in G, then G is p-supersoluble.

Remark 2. 2 The hypothesis that L is p-soluble in Theorem 2.2 cannot be omitted, either. Considering the same example of the group $G = A_5$ as in Remark 2.1. Then clearly, the maximal subgroups of any Sylow 5-subgroup of $F_5(L)$ (since $F_5(G) = 1$) are trivial, and thus partially s-permutable in G. However, G is not 5-supersoluble.

Theorem 2.3 Let p be an odd prime dividing the order of G and P a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and all maximal subgroups of P are partially s-permutable in G, then G is p-nilpotent.

Proof We suppose that the conclusion is false and take *G* as a counterexample of minimal order. Then:

① If M is a proper subgroup of G satisfying $P \leq M \leq G$, then M is p-nilpotent.

Firstly, it is obvious to see that $N_M(P) \leq N_G(P)$, and so it is *p*-nilpotent. Besides by Lemma 1. 4 ①, all maximal subgroups of P are partially s-permutable in M. Hence M satisfies the hypothesis of our theorem. The minimal choice of G implies that M is p-nilpotent.

②
$$O_{\nu'}(G) = 1$$
.

Suppose that this is false. We consider the quotient group $G/O_{p'}(G)$. It is easy to see that $PO_{p'}(G)/O_{p'}(G)$ is a Sylow *p*-subgroup of

 $G/O_{p'}(G)$. By Lemma 1.4 3, we can see that all maximal subgroups of $PO_{p'}(G)/O_{p'}(G)$ are partially s-permutable in $G/O_{p'}(G)$. Since

 $N_{G/O_{p'}(G)}(PO_{p'}(G)/O_{p'}(G)) = N_G(P)O_{p'}(G)/O_{p'}(G)$ is *p*-nilpotent, $G/O_{p'}(G)$ satisfies the hypothesis of the theorem. The minimal choice of G yields that $G/O_{p'}(G)$ is *p*-nilpotent and so is G, a contradiction.

 $\bigcirc \bigcirc O_b(G) \neq 1.$

Put J(P) as the Thompson subgroup of P. Then $N_G(P) \leq N_G(Z(J(P))) \leq G$. If $N_G(Z(J(P))) \leq G$, then in view of \mathbb{O} , $N_G(Z(J(P)))$ is p-nilpotent and so G is p-nilpotent by Lemma 1.10, a contradiction. Hence $N_G(Z(J(P))) = G$. This means that Z(J(P)) is a normal p-subgroup of G, and so $1 \leq O_p(G) \leq G$.

4 G is p-soluble.

By ③, we can easily see that $G/O_p(G)$ satisfies the hypothesis of the theorem. Hence $G/O_p(G)$ is *p*-nilpotent by the minimal choice of G. Therefore it is also *p*-soluble and so is G.

⑤ Final contradiction.

Applying Corollary 2.1 and \bigoplus , G is p-supersoluble. Then by Lemma 1.6, P is normal in G. Therefore $G = N_G(P)$ is p-nilpotent, a contradiction.

Corollary 2.5 Let p be a prime dividing |G| and L a normal subgroup of G such that G/L is p-nilpotent. Suppose that there is a Sylow p-subgroup P of L such that all maximal subgroups of P are partially s-permutable in G and $N_G(P)$ is p-nilpotent. Then G is p-nilpotent.

Proof It is obvious that $N_L(P)$ is p-nilpotent. Besides all maximal subgroups of P are partially s-permutable in L by Lemma 1.4 ①. By Theorem 2.3, L is p-nilpotent. Let $L_{p'}$ be the normal Hall p'-subgroup of L. Then $L_{p'}$ is also normal in G. Suppose that $L_{p'} \neq 1$. Now we consider the quotient group $G/L_{p'}$. Firstly,

$$(G/L_{p'})/(L/L_{p'}) \cong G/L$$

is *p*-nilpotent. Besides, it is easy to see that every maximal subgroup of $PL_{p'}/L_{p'}$ is partially s-permutable in $G/L_{p'}$ by Lemma 1.4 ③. Finally,

$$N_{G/L_{a'}}(PL_{b'}/L_{b'}) = N_G(P)L_{b'}/L_{b'}$$

is *p*-nilpotent. This means that $G/L_{p'}$ satisfies the hypothesis of our corollary. By induction, $G/L_{p'}$ is *p*-nilpotent and so is G. So we can suppose that $L_{p'}=1$. Then L=P and so $N_G(P)=N_G(L)=G$ is *p*-nilpotent, as desired.

Remark 2.3 The assumption that $N_G(P)$ is p-nilpotent in the proof of Theorem 2.3 cannot be omitted. To illustrate this, one can also consider the example of $G = A_5$ with prime 5 as in Remark 2.1.

3 Applications

As we have mentioned in Introduction, a subgroup, be it conormal, separatele or weakly separatele, is partially separatele. Hence the following results are special cases of our theorems in Section 2.

Corollary 3. 1^[7,Theorem 3,1] Let p be a prime, G a p-soluble group and H a normal subgroup of G such that G/H is p-supersoluble. If there is a Sylow p-subgroup P of H such that every maximal subgroup of P is c-normal in G, then G is p-supersoluble.

Corollary 3. $2^{[6,Theorem 3.1]}$ Let p be an odd prime dividing the order of G and P a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and all maximal subgroups of P are c-normal in G, then G is p-nilpotent.

Corollary 3. $3^{[14,\text{Theorem 3.1}]}$ Let p be an odd prime dividing the order of G and P a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and all maximal subgroups of P are weakly s-permutable in G, then G is p-nilpotent.

Corollary 3. 4^[14,Theorem 3,3] Let G be a p-soluble group and P a Sylow p-subgroup of G. If every maximal subgroup of P is weakly s-permutable in G, then G is p-supersoluble.

Corollary 3. $\mathbf{5}^{[14,\text{Theorem 3.5}]}$ Let G be a p-soluble group and p a prime divisor of |G|. If every maximal subgroup of $F_p(G)$ containing $O_{p'}(G)$ is weakly s-permutable in G, then G is p-supersoluble.

(下转第 985 页)