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0 Introduction

We follow Ref.

terminology and notation not defined here. Let

[1] for graph-theoretical

G=(V, E) be a simple connected graph, where
V=V(G) is the vertex-set of G and E= E(G) is
the edge-set of G. It is well known that when the
underlying topology of an interconnection network
is modeled by a connected graph G, the edge-
connectivity A(G) of G is an important
measurement for reliability and fault tolerance of
the network. In general, the larger A(G) is, the
more reliable the network is. Because the
connectivity has some shortcomings, Fabrega and
Fiol®* generalized the concept of the edge-
connectivity to the h-extra edge-connectivity for a
graph.

Definition 0.1 ILet h=0 be an integer. A
subset FE E(G) is an h-extra edge-cut if G— F is
disconnected and every component of G— F has
more than h vertices. The h-extra edge-
connectivity of G, denoted by A’ (), is defined as
the minimum cardinality of an h-extra edge-cut
of G.

Clearly, A (G) =A(G) and A" (G) =X (G
for any graph G, the latter is called the restricted
edge-connectivity proposed by Esfahanian and
Hakimi®™ , who proved that for a connected graph
G of order n==4, A'(G) exists if and only if G is not
the star K;,, ;. A graph G is said to be
A% -connected if A (G) exists, and to be not
A% -connected otherwise. For a A‘”-connected
graph G, an h-extra edge-cut Fis called a A’ -cut if
[ Fl=2" (6.

For two disjoint subsets X and Y in V(G),
use [ X, Y] to denote the set of edges between X
and Y in G. In particular, E;(X)=[ X, X] and let
do(X) = | E;(X) |, where X=V(G)\X. For a
subset XC V (G), use G[ X] to denote the

subgraph of G induced by X. For a A’ -connected

graph G, there is certainly a subset XCV(G) with
| X|=h—+1 such that E;(X) is a A’ ~cut and, both
G[ X7 and G[ X] are connected. Such an X is called
a A" -fragment of G. Let
(G = min{ds(X): XC VB, | X|=h+1
and G[ X is connected}.
Clearly, & (G)=06(G), the minimum vertex-degree
of G, and & () =&, the minimum edge-degree
of G defined as min{d;(x) +dc(y) —2: xy€E
E(G}. For a A’-connected graph G, Whitney’s
inequality shows A” (G) << & (G); Esfahanian and
Hakimit showed AV (G) << & (G); Bonsma et
al. ™) showed A” (G)<<& (G). For h=3, Bonsma
et al. ' found that the inequality A" (G)<<&,(G) is
no longer true in general. Zhang and Yuan'™
proved that A" () exists and A" (G) <<, (G) for
any graph G with h<{8(G) except for a class of
special graphs.
Definition 0.2 A X" -connected graph G is

super h-extra edge-connected ( super-A” for
short), if every A”-cut of G isolates at least one
connected subgraph of order h+1.

Definition 0.3 The edge fault-tolerance of a
super-A” graph G on super-A"’ property, denoted
by " (G), is the maximum integer m for which
G— Fis still super-A"” for any subset F& E(G)
with | F|<m.

It is clear that the edge fault-tolerance o™ (G)
is a measurement for vulnerability of a super-A"
graph G when its edge failures appear. For
convenience, we write A, A’ A", pand p for A",
AV AP, 0 and 7, respectively. In this paper,
we only focus on o' (G) for a super-A" Cartesian
product graph G.

Very recently, Hong et al. I”? have shown

min{é, +6& — 1, vy& — 86 — & — 1,
wo, — O — 0 — 1} <<
oG X G) <o +8&—1,

where G; is a d;-edge-connected graph of order v,

with 0(G;) =8,=2 for each i€ {1,2} and G, XG;, is
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the Cartesian product graph of G, and G;. The
edge fault-tolerance p of super edge-connectivity of
three families of networks has been discussed by
Wang and Lu®,
In this paper. we consider p' for Cartesian
product of regular graphs and obtain
min{k; + k; — 1, ks — 2k — 2k, + 1,

whk — 2k — 2k + 1) <

(G X G) < by +ky — 1.
where G; is a k;-regular k;-edge-connected graph of
order v; with k; =4 for each i€ {1,2}. We also
show that the bounds on p' (G; X G,) are best
possible and give some sufficient conditions such

that ‘O/(Gl X(}z):kl+k271.
1 Preliminaries

The Cartesian product is a very effective
method for constructing a larger graph from
several specified graphs, and plays an important
analysing large-scale

role in designing and

interconnection networkst Section 2]

The Cartesian product of graphs G, and G, is
the graph G, X G, with vertex-set V(G,) X V(G;),
two vertices x; a2z and y; y»» where a1,y € V(G)
and a3, y, € V(Gy), being adjacent in G; X G; if and
only if either ;= 1y, and 13y, € E(Gy), or xz =y,
and 1y € E(Gy). For any y&€ V(Gy) (resp. x€
V(Gy)), we use Gi (resp. G;) to denote the
subgraph of G; X Gy induced by V(G;) X {y} (resp.
{x} X V(G ).

isomorphic to G, (resp. Gy).

Clearly, G{ (resp. Gji) is

To investigate the edge fault-tolerance o' for
Cartesian product of regular graphs, the following
lemmas are needed.

100 Corollars 43 1 ot G, be a ki-regular

Lemma 1.

ki-edge-connected graph for each i=1,2. Then
MG X Gy) = ky + ks.

The following result gives a necessary and
sufficient condition for a graph to be super-A’.
1. 20t Theorem 2.5] Let G be a
A'-connected graph and A" (G) exists. Then G is
super-A" if and only if "(G)>&(G).

In Ref. [12], Ou obtained a sufficient and

Lemma

necessary condition for the Cartesian product of

regular graphs to be super-A’.
3[12. Theorem 2. 2. 1]

Let G,‘ be a k,“
regular k;-edge-connected graph with k; = 2 for
each i=1, 2. Then G, X G, is super-A" if and only

if it is not isomorphic to the Cartesian product of a

Lemma 1.

complete graph and a cycle.

Lemma 1.4 Let G; be a k,-regular ki-edge-
connected graph with k; =4 for each i=1, 2 and
G=G; X G;. Then ds-r(X)>&(G— F) holds for
any FEE(G) and any X&V(G) such that | F|<<
kit+k—1, | X| =3, G[ X]— F is connected, and
XCV(GP ) with v € V(Gy) or XCV (G ) with
a, € VIG).

Proof Suppose, to the contrary, that there
exist a subset F of E(G) and a subset X of V(G)
satisfying the specified conditions, but

do (X)) < &G— (D
By Lemma 1.1, A(G) =k; +k;. Since
| FI<k+k—1=xMGC —1,
we have G— F is connected and
QG—F < aG (2)
Since G is (k; + ky)-regular, &(G) =2k, + 2k, — 2.
By (1) and (2),
2k +2k; — 2 = dor (XD =
de(X) —| F = dg(X) — (k) + k; — 1),
Thus
de(X) << 3k, + 3k, — 3 (3)
Let | X| = a. Without loss of generality, assume
that XC V(G ) with vy, € V(G,). Then
de(X) = deo (X) +] [X. VIO\VG) ] [ =
dop (X0 4+ D) do (2 = dep (XD + ake.
= (mg€X
Combining this with (3) and noting that a==3 and
k; =4, we have
dep (X) < 3k — (a—3)ky —3 < 3k —4da+9

€Y
Since
dep (XD = D7 (de (2 — deorx () =
€ X
alk, —a+1),
by (4), we have
(a—3Dk < d —5a+9 (5)
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Since G is isomorphic to G, | X[ =3 and
XCT VG, dan (XD = MG = ky.

By (4), by <3k —4a+9 and so 2k =4a— 9.
Combining this with (5) and a =3, we have
(a—1)(2a—9)<0 and so 3<<a<<4. Consider the
following two cases.

Case 1 a—4.

Note that kb + k, ==8. Since G is (ky + ks )-

regular,

de(X) =D (de() — dyx () =

=€ X
4Cki + k) —2 | ECGLXD]) |.
Therefore, d¢(X) is even and dg(X) =4k +4ky —
12. If do(X)>>4k +4k,—11, then, by k +k,=8,
d; (X)) >3k, + 3k, — 3, a contradiction to (3).
Thus
dhy 44k, —12 < do(X) < 4k) + 4k, — 11,
Since d;(X) is even, we have
do(X) = 4ky + 4k, — 12.
Thus G[ X]=K,.
If
| FNLX.X] [ < b+ ke — 2,
then, by k + k=8,
dos(X) = de(X) —| FN [X,X] | >
3ky +3k; —10 = 2k, 4+ 2ky — 2 =
g€G =2 4G— B,
a contradiction to (1),
If by + ke —2<|FN[X.X]| <k +k—1,
then
do-r(X) = 3k + 3k, — 11.
Since
| FNLX.X] [=hi+h—2 =6,
[IFNE(GLX] <1 and G[ X]=K, , there exists
an edge in G[ X]—F, say uwv, such that
| F N Hw o XT =3,
Therefore,
HG— B <
do(w +do(v —2—| FN [usohs X1 | <
2Ck; + k) —2—3 <3k + 3k — 11 <
de r (XD,
a contradiction to (1),
Case 2
Since G is (k;+ ky)-regular,

a=3.

de(X) = 3Ck; + k) —2 | ECGLXD .
Since G[ X is connected, 2<<| E(G[ X]) | <<3 and
so dg(X) is equal to 3k +3k, —6 or 3k, +3k, —4.

Subcase 2.1  d(X) =3k, +3k, —6.
In this case, G X]=K,. If
| FA XX [ < b+ ke — 4,
then
dos(X) = de(X) —| FN [X,X] [>
2k + 2k, —2 = 8(G) = &G— ),
a contradiction to (1). Next suppose that
btk —4<| FNI[X.X]|< h+kh —1.
If
btk —4<| FNI[X.X] < b+ b — 2,
then
do ¢ (X) =de(X) —| FN[X.X] |=
2k + 2k — 4.
Since G[ X]—F is connected,
0| E(GLX]D N F < 1.
Note that
| FNIX.X] [ =k +h—4=14
and G[ X|=K;. If
| ECGLX]) N F|=o0,
then there exists an edge in G[ X ], say uwv,

such that

| FNuwosX] = 3.
Thus,
(G—F <

do(w +do(v) —2—| FN [{u o, X][<
2k +2ky —2—3 <2k + 2k — 4 <
do—r (XD,
a contradiction to (1), If
| ECGLX]D N F =1,
say
E(GLXD N F= {u},

then there exists an edge in G[ X]— uv, say uws,

such that

| FN [uswhs X] [ =2
Thus,
§QG—F <

do(w +do(w —2—] FN Hwor X] |—| {w) |<
2k +2k —2—2—1<
2k1 +2kz *4 < d(; p‘(X)a
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a contradiction to (1),
If
| FNLX.X] [ = ki + ko —1,
then FZ[ X. X] and
dor(X) =de(X) —| FN[X.X] |=
2k + 2k, — 5.
Since | FNLX, X1 =7 and GLXJ=K;, there
exists an edge in G[ X, say uv, such that
| F N [{w o XT [=5.
Thus,
HG—F) <
do(w +do() —2—| FN [{us o) X |<
2k +2ky —2—5 <
2ky + 2k, —5 = dg r( XD,
a contradiction to (1),
Subcase 2.2 d;(X) =3k, +3k, —4.
In this case, G X]=P, and FNE(G[ XD =
0. If
| FNLX.X] < b4k — 2,
then
do #(X) = de(X)—| FN [X,X] |>
2ky + 2k, —2 = &(G) = &(G— B,
a contradiction to (1). Next suppose that
ki+h—2<| FN[X.X] <k +hk — 1.
Then
do 7(X) = de(X) —| FN[X,X] [ =
2ki + 2k, — 3.
Since
| FNLX.X] =k +k—2=6
and G[ X]=P., there exists an edge in G| X, say
wus such that | FN[{u v}, X]|=3. Thus.,
HG—F) <
do(w + do(o) —2—| FN [{usop, XJ [<
2k + 2k, —2—3 <<
2k + 2k, —3 < di (XD,
a contradiction to (1), U]
Lemma 1.5 Let G; be a k;-regular ki-edge-
connected graph with k=4 for i=1,2 and G=
G, X Gy. Then
der(Xs U Xo) > &(G—F)
holds for any FE E(G) and any X;, X, &SV (G)
such that |FI<k +k—1, X NX,=0, | X[ =

L IXl=1 [ XiUXe [ =3, GLX U X, ] = Fis
connected, X;CV(G) ) (resp. X;CV(Gy)) and
X, CV(GE2) (resp. XoCV(Gs2)) with {y, v &
V(G;) (resp. {x1, 22} SV(G)).

Proof

exist a subset F of E(G) and two subsets X; and

Suppose. to the contrary, that there

X, of V() satisfying the specified conditions, but
do »(Xi U X)) <&G— B (6)
By Lemma 1.1, A(G) =k; +k,. Since
| FI<k +k—1=xMG —1,
we have G— F is connected and
§G— PP < &6 7
Since G is Ck; + ks )-regular, &(G) =2k, + 2k, — 2.
By (6) and (7),
2k + 2k — 2= dep( Xy U Xy) =
de(X; U Xo) —| F|=
do(X; U X3) — (k) + ky — 1),
Thus
de(X; U X5) < 3k + 3k —3 (8)
Let | Xy|=a, and | X;| =a;. Then a;, a;=>1 and
a T+ a; = 3. Without loss of generality, assume
that X, CV(G1) and X, CV(Gi2) with {y .y, )&
V(G;). Then
do(Xy U Xp) = den (X)) + de (Xp) +
[X U Xo  VAONVGH) U (VGEND ] [ =
don (X)) +dee (X)) +| Xi U Xo | (ky — 1) =
den (X)) +dep (X)) + (ar + az) (ky — 1),
Combining this with (8), we obtain
den (X1) + dep (X)) <
3k —(ar + @ —3) (ks — 1 9)
Since a1+ a; =3 and k,—=4, by (9) we have
don (X)) + dee (Xp) < 3k —3(a; + ap) +9

(10)
Note that
dop (X1 = >, (don (2 — donpx () =
=
aCh —a + 1

and dey: (Xy)=a, (ky — a; +1). Combining this
with (10), we have
(ay+az—3Dk < d +dd—4Ca +a)+9
an
Since dgn (X1) = A(G) =k and dg» (X)) =
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AMG)=kFk s by (10), 2k <<3k —3(a +a,)+9 and
so ky=3Ca; + a; —3). Combining this with (11),
we get

(ar+a)' —7Car+a)+9+ aa; <0,
that is,

(e +a—D(ag +a—6) +aas +3<0

a2
Since a1 5 a;=>1 and @ +a;=3, by (12), we have
(g +a;,—D(aqy +a. —6) <0
and so 3<Ca; T a; <5,

If s +a; =5, then, by (12), we have a a; <<
1, a contradiction to a; + a;=3.

If aq+a; =4, then {a,a ) equals {1,3} or
{2,2}. Since G[ Xy U X;] is a connected subgraph
of G=G X G, |ECGLXiUX: D |<4. By

ki + ky, =8,
de (X, U Xp) =
4Cky+ k) —2 | E(GLX, U Xo D | =
dk) +4ky —8 > 3k + 3k — 3,
a contradiction to (8).

If s+ a; =3, then {w,a}=1{1,2}. Since
GLX UX,] is GLXs U X1 is
isomorphic to P;. Let X=X, U X,, then

do(X) = 3k + 3k — 4.

Since G [ X] — F is
FNEWGLXD=0. If

| FNLX.X] [ <k 4k — 2,

connected,

connected,

then
dos(X) = de(X) —| FN [X,X] [ >
2k + 2k —2 = 8(G) = 8(G— F),
a contradiction to (6). Next suppose that
kit bk —2<| FN[X.X] <k +k —1.
Then
de ¢ (X) =2k + 2k, — 3.
Since
| FNIX.X] 1=k +k—2=6
and G[ X]=P., there exists an edge in G| X, say
wos such that | FN[{u.v},X]|=3. Thus,
(G—F <
de(w + deCv) —2—| FN [{u v} ,i] | <<
2k + 2k —2—3 <
2k + 2ky — 3 << de-r (XD,
a contradiction to (6). U]

2 Main results

In this section, we give the lower and upper
bounds on p'(G) for Cartesian product of regular
graphs and show that the bounds are best possible.

Theorem 2.1 Let G; be a ki-regular ki-edge-
connected graph of order v; with k, =>4 for i=1,
2. Then

min{k, 4+ ks — 1. ks — 2k — 2k, + 1,
ki — 2k — 2k, + 1) <
0 (G X Gy) < Ry + ky — 1.

Proof Let G=G, XG,. Then G is super-A’ by
Lemma 1. 3. Note that G is (k, + ky;)-regular and
ki +ky,==8. Let F be a set of edges incident with
some vertex of degree k; + k;. Since G— F is
disconnected, G— F is not super-A’. By definition
of p'(G), we have

0 (G) < ki + ks — 1.
Let
m=min{k + ky — 1, ks — 2k, — 2k, + 1,
wky — 2k — 2k, 4+ 1}.
To show that o' (G) = m. we only need to show
that for any FE E(G) with | FI<<m, G'=G—Fis
super-A". By Lemma 1.1, A(G) =k, + k;. Since
| FI<m<k+th—1=xG —1,
G’ is connected. It is easy to find that G’ is not a
star, since G’ is a spanning subgraph of G, X G,
with v,=>4. Thus, G' is A'-connected. If G’ is not
A"-connected, then every A-cut of G’ isolates one
edge and so G’ is super-A’. Next, suppose that G’
is A™-connected. Then, by Lemma 1.2, we need to
show X'(G")>&G"). Let X be any A’-fragment of
G’ such that | X|=|X[=3. By do (X) =2"(G)
and the arbitrary of X, it suffices to prove
do (X) > &(GH (13
Since
de (X)) = de(X) —| F|= de(X) — m
and &(GH<X&G), if de(X)>&(G) + m, then dg
(X)>&G"). In the following, we assume that
de (X)) < E(G) +m (14)
and prove that (13) holds.
Let
I, ={x: x € V(G)) and
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Gs — [ X. X7 is disconnected} .
I, ={y: y&€ V(G;) and
Gy — [ X, X is disconnected}.

Claim 1 [ L;|<<v, for i=1,2.

Suppose, without loss of generality, that
|L|=w. Then G — [ X, X] is disconnected for
any x€ V(Gy) and so do (X) =0 A(Gy) = v ks,
Combining this with (14), we have

vk < EG) +m<<

2ki +2ky — 2+ viky — 2k — 2k, +1 =
vk, —1,
a contradiction.
Claim 2 || =1 for i=1,2.

Suppose, without loss of generality, that
|| =0. Then G; —[ X, X] is connected for any
x&€V(Gy). By Claim 1, there exists at least one
vertex y € V (G;) such that Gf — [ X, X7 is
connected. Thus we have that G — [ X, X is
connected, a contradiction,

Claim 3 [I;[<<2 or | L[=<2.

Suppose that | I; |==3 and | I,|=3. Then

do(X) = 3k + 3k, =

ky +ky —1+2k +2k —2+3=
m—+ &(G) + 3,
a contradiction to (14).

By Claim 2 and Claim 3, we assume, without
loss of generality, that 1<{| I, | <<2. Since G'[ X]
and G'[ X] are connected. G[ X] and G[ X] are also
connected. We consider the following two cases.

Case 1 |L|=1.

Let I, = Then Gy — [ X, X is
disconnected and Gy —[ X, X] is connected for each
yEVIGH\{ 3 ).
one vertex x € V(G,) such that G — [ X, i] is
connected. Thus GfU (U seviGn iy G — [X,?j is

{yo }

By Claim 1, there exists at least

connected and it is completely contained in G[ X
since | X[ =1 X|. It follows that X& V (Gp).
Since G — [ X, X ] is disconnected, XC V(G ).
Note that G'[ X]= G[ X] — F is connected. By
Lemma 1.4, we have do— (X)) >&(G— F). Hence,
(13) is proved.

Case2 |L,|=2.

Let L = {ms v ). Then Gv—[X,X] is
disconnected for each j=1,2 and Gy — [ X, X] is
By Claim
1, there exists at least one vertex € V(Gy) such
that G — [ X, X ] is connected. Thus G5 U
(U e VGl yy s GT) [ X, X] is connected and it is
completely contained in GL X] since | X|=|X]|. It
follows that X&=V(Gr UG). Let X, =XNVG!)
and X, = XN V(G). Then X= X; U X, with
XiNX,=0 and | X; UX,|=3. Since G —[ X, X]
is disconnected, | X;|=1 and X;CV(G?) for each
j=1,2. Note that G'[ X, U X, ]=G[X,UX;]—F
is connected. By Lemma 1.5, we have

der(Xs U Xo) > &(G— B).
Hence, (13) is proved. L]

The following result presents some sufficient

connected for each y€ V(G )\ { v, y ).

conditions for p’ of a Cartesian product graph to
attain the maximum value. This result also shows
that the lower and upper bounds on p' given in
Theorem 2. 1 are best possible.

Corollary 2.2 Let G; be a ki-regular k;-edge-
connected graph of order v, with k, =>4 for i=1,2,
Then

(G X G) =k + ks — 1,
if one of the following conditions holds:

@ G, and G; are not complete graphs;

@ kit k=10

@ k=4, k=5 and G, is not complete.

Proof By Theorem 2.1, it suffices to
prove that

vk — 2k —2k; +1 =k + ky — 1,
whki — 2k —2ky +1 2= ki + k — 1,
that is
vk, = 3k + 3k; — 2 (15
whky =3k + 3k — 2 (16)
If G, is not complete, then v = k + 2.
Combining this with ki, k=>4, we have
ks = (ki +2)k, =
3k +3ks — 2+ (kg — D) (ky —3) — 1 >

Skl + 3122 - 2
Similarly, if G, is not complete, then (16) holds.
Therefore, (15) and (16 ) hold under
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Condition @.
If ky+ky;, =10, then (ky —2) (k; —3)=4 and
(ky—3)(k;—2)=4 and so
vky = Cky + 1)k, =
3ky +3ky — 24 (k) —2)(ky —3) —4 =
3ky + 3k, — 2 an
By substituting w for v, and exchanging k; with ks
in (17), we can get (16). Therefore, (15) and
(16) hold under Condition @.
If k=4 and k;, =5, then
wky = (ky + 1)k, = 3k + 3k, — 2.
If G; is not complete, then (16) holds. Thus, (15)
and (16) hold under Condition . U]
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