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Abstract: Querying for the shortest path from a source vertex to a sink vertex in real time is a
fundamental problem in numerous applications. Several lower-bounding schemes have been
proposed to solve the problem so far, such as A" search and ALT algorithm. But these schemes
adopted loose valuations on distance so that there are great potentialities for improving the lower
bounds. A novel two-stage goal directed lower-bounding approach, called ACT algorithm, was
proposed, which combined A” search, centers and triangle inequality with no prior domain
knowledge. Unlike previous schemes, the new algorithm can obtain excellent distance bounds by
exploiting a large number of pre-computed data. The experimental results on real road networks
show that ACT algorithm significantly outperforms all previous algorithms. In some instances,
the vertices scanned by ACT algorithm are only about 25% more than those on optimal paths.
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0 Introduction

The shortest path problem is a fundamental
problem with numerous applications. In this paper
we study the following P2P problem: To find a
point-to-point shortest path in a weighted directed
graph.

To solve the P2P problem, many algorithms
have been proposed (see Ref. [1]). Almost all the
algorithms are two-stage algorithms including an
offline preprocessing stage and an online query
stage. The input to the preprocessing stage of
these algorithms is a directed graph G(V,E, w)
with = vertices, m arcs, and nonnegative arc
weight. The preprocessing algorithms have to be
executed once for each graph, thus taking a lot of
time and outputing some auxiliary data. Then,
after preprocessing, online search algorithms get
queries specified by a source vertex s and a sink
vertex t. The answer to a query is the shortest
path from s to t. At the query stage, for each pair
should

using

of queries, online search algorithms

respond very fast ( real time ) by
preprocessed data.

These algorithms fit into several categories.
In this paper, we focus on lower-bounding
algorithms. Generally speaking, lower-bounding
algorithms select a labeled vertex ©» with the
smallest value k(v), where k(v) is an estimate on
distance from source to destination via v The
better the quality of estimates, the smaller the
search space. Several lower-bounding algorithms
have been proposed so far, such as A" search,
reach and ALT algorithm.

In this paper, we propose a novel two-stage
goal directed approach to solve the P2P problem,
called ACT algorithm for it is based on A~ search,
centers, and triangle inequality. Its fundamental

to ALT

preprocessing stage, it selects a small subset of

idea is similar algorithm. At the

vertices as centers, computes the shortest

distances between each pair of centers, and, for

each vertex v, computes the shortest distances to

and from several centers which are correlated by .
At the query stage, it uses A™ search. Lower
bounds can be computed in constant time using
these pre-computed distances in combination with
the triangle inequality. It can also be directly
combined with reaches.

Our first contribution is a new preprocessing-
based technique for computing distance bounds.
Unlike previous schemes, the new algorithm can
obtain excellent distance bounds by exploiting a
large number of pre-computed data. Here we are
talking about the triangle inequality with respect to
the shortest path distances in the graph, not an
embedding in Euclidean space or some other
metric, which need not be present. Our
experimental results show that ACT algorithms
are much more efficient than previous algorithms.

Proper center selection is important to the
quality of the bounds. As our second contribution,
we give a greedy algorithm for selecting centers
with no domain knowledge required. We study the
relationship between query performance and the
choice of each parameter of center selection.

Our third contribution is an experimental
study comparing the new and previously known
algorithms on real road network graphs taken from
9th DIMACS Implementation Challenge. We study
which variants of ACT algorithms perform best in
practice, and show that they compare very well to
previous algorithms. Our experiments give insight
into how ACT algorithm efficiency depends on the
number of centers, the number of correlated
centers, and graph size. Some of the experimental
methodology we use may prove helpful in future

work in this area.

1 Related work

Usually, to solve the P2P problem, one can

run Dijkstra’s algorithm until the target is
reached. However, its performance is very poor
since the search space is huge.

Pohl®™ presented A~

searches a small area by estimating distances to the

search, which only
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destination to guide vertex selection in a search
from the source. It selects a labeled vertex v with
the smallest value k(v) =label(v) + m (v), where
7, (v) is a lower bound on the distance from w to ¢,
to scan next vertices at each iteration. Original
variant of A search to the P2P problem uses
information implicit in the domain, such as
Euclidean distances for FEuclidean graphs, to
compute lower bounds with no preprocessing required.

There are some works on pre-computation

B1 introduced the notion of

processing. Gutman
“vertex reach”. Informally, the reach of a vertex v
is large if ©v is close to the middle of some long
shortest path and small otherwise. For example,
on road networks, local intersections have small
reach and highways have large reach. Gutman
showed how to prune an st search based on (upper
bounds on) reaches and (lower bounds on) vertex
distances from s to ¢, using Euclidean distances as
lower bounds. He also observed that efficiency
improves further when reaches are combined with

Euclidean-based A"~

bounds of the distance to the destination to direct

search, which uses lower
the search towards it.

Goldberg and Harrelson™ presented a different
two-stage approach called ALT algorithm. They
have shown that A™ search performs significantly
better when landmark-based lower bounds are
used. Their approach is named ALT algorithm.
The preprocessing algorithm computes and stores
the distances between every vertex and a small set
of special vertices, called landmarks. Queries use
the triangle inequality to obtain lower bounds on
the distances between any two vertices in the
graph. Furthermore, Goldberg etc. ™ have presented
significant improvements to ALT algorithm which

is combined with the reach-based pruning.
2 Preliminaries

We define a potential function =: v€ V>R is a
function from vertices to reals. For a given
potential function n, the reduced cost of an arc

Cusv) is defined as w, Cus v) = w(u, v) — w(u) +

n(v). We replace w by w,. Then for any two
vertices s and t, the length of any st path, denoted
by &Cs, 1), is modified by the same amount. Thus a
path is a shortest path in G(V, E, w) if and only if
it is a shortest path in G(V, E, w,), that is, the
two problems are equivalent.
We define that = is feasible if w, is
nonnegative for all arcs. The following facts are
well-known for any feasible potential function:
Lemma 2.1 If = is feasible and for a vertex
1€V, we have (1) <0, then for any v€ V,
7(0) <80, 1),
Lemma 2, 2 If m and m are both feasible
potential functions, then max(m ,m) is feasible.
Lemma 2. 1 implies that we can often think of
n(v) as a lower distance bound from vto t. Lemma
2.2 allows us to combine feasible lower bound
functions into a function that is also feasible, whose
value at any point is at least as high as any original one.
It is easy to see that A" search is equivalent to
Dijkstra’s algorithm on G(V, E, w,). So that, A~
search scans vertices in nondecreasing order of
their distances from the source and scans each
vertex at most once if m,(v) is feasible.
Theorem 2. 1

potential functions such that m (1) = m (1) =0 and

Let m and m be two feasible

7 (v) =m (v) for any vertex w If ties are broken
consistently when selecting the next vertex to
scan, the following holds. The set of vertices
scanned by A" search using m is contained in the
set of vertices scanned by A" search using m.
Proof  Suppose vertex v isn't scanned by
search using m , then:
ooo(s, ) +m (o) = 0Cs, ) + m (D)
S 0Cs, )+ m (o) = 0Cs, 0
If 6Csov)+m (v)>06Cs,t), then 8Cs, v) +
7w (0v) >8(Cs, t). Obviously, v will not be scanned
with m. Otherwise, (s, v) +m (v) = 8(Cs, 1),
which means v lies on another shortest path from s
to t. But the search has terminated before scanning
v, since it has found a shortest path. So in this

case, either 0(s, v) +m (v) >08Cs, t) or 8(s, v) +

() =38(s, 1), v will not be scanned with .
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3 A" search based on landmarks

At present, the best lower-bounding
algorithm is ALT algorithm. Its basic idea is to
use landmarks and triangle inequality to compute
feasible lower bounds.
Theorem 3. 1 (Triangular inequality) For any
edge (u,v) € E, we have 8(s, v) <<8Cs, w) + w(u, v).
At the preprocessing stage, it selects a small
subset of vertices as landmarks and, for each
vertex in the graph, pre-computes distances to and
from every landmark. At the querying stage, it
uses A" search. The lower bounds are given by
pre-computed data and triangle inequality. For
example, given a set L&V of landmarks and pre-
computed distances 6(wv, 1), 6(l, v) for all vertices
vEV and landmarks [ € L.
inequality, the following expression holds:
W8, v A+ 0Cu, 0 = 0L, D
Sooom(w = 0L — 8L, v) < 8(u.t)
8o ) +0(t, D = 6Cu, D
Sooom(w = 8(v, D) — 8t D) < 8Cu.t)

Therefore, m () =max,e; max{m (v)} provides a

by the triangle

lower bound for the distance 6(wv,t).

4 ACT algorithm

Although the distances bounds based on
landmarks are significantly more efficient than
those based on Euclidean distances, we still think
there is great potential promotional space for the
quality of the lower bounds. It is an intuition that,
the more landmarks are preprocessed, the better
are the lower bounds obtained. But in practice, the
number of landmarks is very small, because, most
of landmarks are non-helpful for a special st path.
Goldberg stated that efficiency is best when
selecting 16 landmarks for a graph and using a
subset during a query. Despite the fact that using
fewer landmarks may lead to more vertex scans,
this increase is very small relative to the improved
efficiency of the lower bound computations for a
large set of landmarks and a small set. One

downside of ALT algorithm seems to be that more

landmarks do not automatically lead to greater
efficiency in querying. Thus we propose an
enhanced algorithm called ACT (based on A”
search, centers and triangle inequality). Our goal is to
obtain better query performance which is proportional
to the amount of preprocessing computation.

The main idea of ACT algorithm is similar to
ALT

procedures are described below. First, we select a

that of algorithm. The preprocessing
large number of vertices as centers which are far

more numerous than landmarks. Generally
speaking., centers are distributed in interior while
landmarks are located on border of graphs. Then,
for a selected set of centers, we calculate the
shortest distance between each pair of centers
using Dijkstra’s algorithm. Finally, for each
vertex v, we find the nearest A centers surrounding
v, correlate v with these centers and compute the
shortest distances to and from correlated centers.
All pre-computed results are stored in the main
memory.

The lower bounds are given by pre-computed
data and triangle inequality. For example, for a
given pair of vertices vand t, centers ¢, and ¢;. are
correlated by wand t, respectively. Let 6Cv,c;) be
the distance from v to ¢ and 8(¢, v) be the one
from ¢ to t. Then by the triangle inequality, the
following expression holds.

0Ca»v) +8Cut) +8Cty ) = 6Ccr»z)
m(v) = 0(c,c) —8(q,v) — 8ty ) < 6(wv, b)
(D)
Therefore, it provides a lower bound for the
distance 6Cv, ). According to Lemma 2. 2, one can
take the maximum m (w), over all correlated
centers to v and ¢, to compute the tightest lower
bound. It is easy to see that, the smaller the
values of 6(C¢» v) and 6(t, ), the better the
quality of lower bounds, and further, the smaller
the search space.
4.1 Centers selection
As noted above, finding good centers is

critical for the overall performance of online search

algorithms. But finding the optimal set of centers
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is an NP-hard problem. In this subsection, we
present a polynomial greedy scheme to select
centers. At the initialization, all vertices are listed
at random. For each vertex, one checks if it has
been scanned. If not, one picks it as a center, and
then scans vertices nearby until the radius of the scan
area is greater than A, where A is an input parameter.
4.2 Search

The online search algorithm uses A" search.
At each iteration it selects a labeled vertex v with
the smallest key, defined as k(w) = label (v) +
(v, to scan next. This guides the search
towards t effectively.
4.3 Pruning

Pruning may reduce the time and memory
requirements of search algorithms. In our
algorithm, we use the reach method to pruning.
Given a path P from sto t and a vertex von P, the
reach of v with respect to P is the minimum of the
lengths of the s-v and vt subpaths of P. The reach
of v, denoted by r(wv), is the maximum of the
reach of v with respect to P over all shortest paths
P through v In short, r(v) encodes the lengths of
shortest paths on which v lies. We combine online
search and reaches in the following way: when
scanning a vertex v, one can prune the search at v
if r(v) <<min (label[ v], m (v)) because v will
certainly not lie on the shortest path from s to t in
this case.
4.4 Complexity analysis

Basically, our ACT algorithm is divided into
two phases: off-line and on-line. In the off-line
phase, a center set C is found using O(mlog n)
time and O(nlog n) space, where n is the size of
vertice set V and m is the size of edge set E in
G(V,E). After that, all distances of pair vertices
in C are computed by Dijkstra’s algorithm with
time complexity of OCen(m=+ nlog n)) and space
complexity of O(c¢), where ¢ is the size of center
set C. Specifically, we can run this procedure on
reverse graph so that we can find the correlated
centers for each vertex.

The computation complexity of the online

search algorithm is equal to that of the
implementation variant of Dijkstra’s algorithm. In
spite of this, our algorithm outperforms previous

algorithms in practice.

S Experiment

5.1 Setup

We experimented with five real road networks
9th DIMACS
1. New York City, San Francisco Bay,

extracted from implementation

challenge®
Colorado, Florida and Northwest USA. We use
road segment distances as arc lengths. Tab.1
reports the graph sizes.

Tab.1 Road networks used in the experiments

graph description nodes arcs

NA New York City 264 346 733 846
BAY San Francisco Bay 321 270 800 172
COL Colorado 435 666 1 057 066
FLA Florida 1070 376 2712 798
NW Northwest USA 1207 945 2 840 208

Our code was written in C and compiled under
GCC 4.6.2 with O3 flag. All experiments were
run under Debian Linux 7.0 on a workstation.,
which has 16 GB of memory and a 3. 30 GHz Xeon
E3-1230 processor.

5.2 Preprocessing

In this section, we attempt to evaluate the

We ran ACT

preprocessing algorithms on each of graphs. We

cost of the preprocessing stage.

set A=3 because it has the best efficiency for next
test cases. About the other parameter, A, we set
an appropriate value for each graph to roughly
maintain the number of centers at 55 000 is the
maximum number that fits in memory for our
experimental platform. Because of the huge
amount of calculation the algorithm required, we
pre-computed in parallel with 8 threads except
serially selecting centers. As a contrast, similar
computations were made for ALT algorithm. On
landmarks via

each graph, we generated 16

maxcover scheme because Goldberg stated that its
7,

efficiency was excellen Results for preprocessing

are presented on Tab. 2.
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Tab.2 Experimental results for Preprocessing

ACT algorithm

ALT algorithm

graph minutes minutes
GB GB
selection  compute-8x correlate-8x total selection compute total
NY 12 0. 000 25 3.93 0.13 4.06 0.033 0. 38 0.03 0.41
BAY 12 0. 000 29 4.55 0. 54 5.09 0.041 0.40 0.04 0. 44
COL 12 0. 000 40 6.46 1.29 7.75 0. 056 0.57 0. 06 0.63
FLA 12 0.001 12 17. 04 3.82 20. 86 0.137 1.42 0.12 1. 54
NW 12 0.001 31 20.97 5. 11 26.08  0.150 1. 80 0.22 2.02
Evidently, the cost of preprocessing of ACT NY graph. Tab. 3 shows the results. From this

algorithm is higher, both in terms of time and
But

algorithm, the number of centers increases by

space. note that, compared with ALT

roughly three orders of magnitude. However,
there are only one or two orders of magnitude
increases in terms of time and space requirements,
respectively.

A further observation is that preprocessing of
ACT algorithm is more efficient. All in all, despite
having an increase in the cost of preprocessing, we
think it is feasible and worthwhile.

In the

experiments to test several variants of the lower-

following sections, we designed
bounding algorithms. For each graph, we picked a
random set of 10 000 st pairs and ran the lower-
bounding algorithms on it for all variants tested.
For consistency, each graph is tested with the
same set of 10 000 pairs on all experiments.

To parse the experimental results of querying,
we use two measures of performance. One is running
time and the other is efficiency that is a machine-
independent measure. The efficiency of a run of a
P2P algorithm is defined as the number of vertices
on the shortest path divided by the number of vertices
scanned by the algorithm, reported in percentages.
Note that an optimal algorithm scans only the vertices
on the shortest paths whose efficiency is 100%.
5.3 Design choices

Our algorithm has two parameters: A and A
In this section, we study the relationship between
query performance and the choice of each parameter.

Let A=4, we ran experiments with A=3 000,
4 500, 6 000, 7 500, 9 000, 10 500 and 12 000 on

table one can find that, when the value of A
decreases, the number of centers and efficiency
increase, and the running time decreases. It is easy
to see that the quality of lower bounds becomes
better and better with an increase in the amount of
centers. Thus the performance of query is directly
proportional to the quality of lower bounds. In
other words, it is also directly proportional to the
amount of centers. Experimental results coincide

with Theorem 2. 1.

Tab.3 Experimental results with various A

A ratio of centers time/ s Eff.
3000 21.06% 289 62.52%
4500 12.68% 350 48.12%
6 000 8.55% 423 38.35%
7 500 6.16% 514 30.97%
9 000 4.69% 589 25.73%
10 500 3.67% 680 21.63%
12 000 2.94% 759 18.61%

Next we discuss the other parameters. Let
A=3 000. We run the same experiments with A=
1,2,3,4,5,6 and 7. Results are shown in Fig. 1.

It is obvious that, as the value of A increases,
so does algorithm efficiency. The algorithm can
choose a tightest one from more candidates when
But when A>3, the

little efficiency improvement but

computing lower bounds.
search offers
hurts the running time because more loops and
comparison operations are executed for computing
lower bounds. As shown in Fig. 1, the version of
A=3 outperforms all other versions.

In summary, choosing as many centers as

possible and correlating with appropriate centers
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Fig. 1 Experimental results with various A

will yield a good query performance.
5.4 Comparison

We compared four variants of lower-bounding
algorithms: ALT C ALT), ACT
algorithm (ACT), ALT algorithm combined with
reach (REALT) and ACT algorithm combined
with reach (REACT) in this section. Results are
reported in Tab. 4.

algorithm

Tab. 4 Experimental results for query

NY BAY COL FLA NwW
ratio of centers 21.06% 17.45% 12.97% 5.35% 4.55%
1793 ps 2552 pus 2875 pus 8578 ps 7 135 ps

ALT
12.35% 10.08% 13.01% 7.24% 8.64%
ACT 319 ps 388 us 698 us 1446 ps 2 505 ps
’ 59.06% 54.14% 34.41% 25.98% 17.80%
441 ps 481 s 695 s 1281 pus 1291 ps
REALT K °o0ms s e
32.63% 36.71% 41.88% 37.34% 37.43%
REACT 133 s 159 ps 232 s 400 ps 496 ps

80.68% 81.48% 74.04% 72.54% 63.68%

Comparing ACT with ALT, we note that
ACT usually outperforms the other by more than a
factor of two in efficiency. While in the term of
running time, the reduction is more than three
times. It is evident that the effect of ACT is
unstable. This is to be expected as shown below.
Due to the restriction on memory size, the number
of centers is about 55 000 for each of the graphs.
With the increasing of scale of graph, the ratio of
centers to vertices decreases from 21.06% to 4.55%.
Meanwhile, the quality of lower bounds becomes worse.

Combining lower-bounding algorithms with

reaches yields a major performance improvement,

both in REALT and REACT. REACT is the

algorithm with the highest efficiency and

performance. It usually outperforms ALT by one
order of magnitude in running time. Even on the
largest scale graph, its efficiency is still excellent.
The vertices scanned are only about 25% more

than those on the optimal path in some instances.

6 Conclusion

In this paper, we have presented a novel

preprocessing lower-bounding algorithm. The

proposed algorithm can obtain much tighter lower
bounds than previous ones. And the performance
with the amount of preprocessing is directly
proportional. Despite the time and space requirements
are larger, we think it is still feasible and worthwhile.
Our experiments have confirmed the statements

mentioned above.
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