Vol. 44, No. 3 Mar. 2 0 1 4

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2014)03-0214-03

Test a perturbative QCD prediction with $e^+e^- \rightarrow D^{*+}D^{*-}$

GUO Han, ZHANG Ziping

(Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China)

Abstract: The differential cross section for $e^+e^- \rightarrow D^{*+}D^{*-}$ process was calculated in terms of the electromagnetic form factors of D^* meson. After putting in the ratios of form factors predicted by perturbative QCD (quantum chromodynamics), the angular distribution obtained was found to be inconsistent with experimental measurement at $\sqrt{s}=10.58$ GeV.

Key words: D* meson; electromagnetic form factor; perturbative QCD

CLC number: O572, 2

Document code: A

doi:10.3969/j.issn.0253-2778.2014.03.008

Citation: Guo Han, Zhang Ziping. Test a perturbative QCD prediction with e⁺ e⁻ → D^{*+} D^{*-} [J]. Journal of University of Science and Technology of China, 2014,44(3):214-216.

用 e⁺e⁻→D*⁺D*⁻检验一个微扰 QCD 预言

郭 晗,张子平

(中国科学技术大学近代物理系,安徽合肥 230026)

摘要:计算了 $e^+e^- \rightarrow D^{*+}D^{*-}$ 过程的微分截面,以 D^* 介子的电磁形状因子表示.代入微扰 QCD 预言的电磁形状因子比值,得到的角分布与中心系能量为 $10.58~{\rm GeV}$ 的实验测量不一致. 关键词: D^* 介子;电磁形状因子;微扰 QCD

0 Introduction

For hard exclusive processes, perturbative QCD predicts the following selection rule^[1-2]:

$$\sum_{\text{initial}} \lambda_H = \sum_{\text{final}} \lambda_H$$
,

i. e., total hadronic helicity is conserved. The equality is up to corrections of order M / Q or higher. This selection rule is implied in a formula for the asymptotic power behavior of any form factor^[3]:

$$\langle \, p' \lambda' \mid \, J^{\mu} \mid \, p \lambda \rangle \sim \left(rac{1}{Q}
ight)^{(\eta_{\min} + \eta'_{\min} - 3) + |\lambda' - \lambda|}.$$

In particular, for processes $e^+e^- \rightarrow \gamma^* \rightarrow hh'$, the hadronic-helicity conservation rule is $0=\lambda+\lambda'$. Angular momentum conservation requires $|\lambda-\lambda'| \leqslant 1$. Therefore for meson pairs $\lambda=\lambda'=0$, and for baryon pairs $\lambda=-\lambda'=\pm 1/2$. Thus angular distributions are $\sin^2\theta$ and $1+\cos^2\theta$ for meson pairs and baryon pairs, respectively. These predictions are nontrivial for vector mesons and for all baryons^[1].

Further, for spin-1 bound states, the dominance of helicity-conserving amplitudes implies that the charge, magnetic and quadrupole

Received: 2013-03-18; Revised: 2013-09-27

Foundation item: Supported by National Natural Science Foundation of China (10935008).

Biography: GUO Han, male, born in 1982, PhD candidate. Research field: Experimental particle physics. E-mail: guohan@mail.ustc.edu.cn Corresponding author: ZHANG Ziping, Prof. E-mail: zpz@ustc.edu.cn form factors have universal ratios, which will be shown in the next section.

Study of the process e⁺ e⁻→D*⁺D*⁻ provides a chance to test this perturbative QCD prediction. It also allows investigation of electromagnetic form factors in the time-like region of momentum transfer.

1 Electromagnetic structure of spin-1 particle

For the matrix element of the electromagnetic current J^{μ} of spin-1 system $G^{\mu}_{\lambda\lambda} = \langle p'\lambda' | J^{\mu} | p\lambda \rangle$, where $|p\lambda\rangle$ is eigenstate of momentum p and helicity λ , conventionally the most general form allowed by parity conservation and time reversal invariance can be written in terms of three Lorentz-invariant form factors [4-7]:

$$\begin{split} G^{\mu}(Q^{2}) =& -G_{1}(Q^{2}) \, \varepsilon^{\prime \, *} \, \bullet \, \varepsilon (p^{\mu} + p^{\prime \, \mu}) \, + \\ G_{2}(Q^{2}) (\varepsilon^{\prime \, * \, \mu} \varepsilon \, \bullet \, q - \varepsilon^{\mu} \varepsilon^{\prime \, *} \, \bullet \, q) \, + \\ G_{3}(Q^{2}) \, \frac{1}{2M^{2}} \varepsilon \, \bullet \, q \varepsilon^{\prime \, *} \, \bullet \, q (p^{\mu} + p^{\prime \, \mu}) \, , \end{split}$$

where q=p'-p and $Q^2=|q^2|$. ε and ε' are initial and final polarization vectors, respectively. M is the mass of the particle.

These form factors are related to the charge, magnetic and quadrupole form factors^[6]:

$$G_{
m C} = G_{
m l} + rac{2}{3} \, \eta \, G_{
m Q} \, ,$$
 $G_{
m M} = G_{
m 2} \, ,$ $G_{
m O} = G_{
m l} - G_{
m 2} + (1 + \eta) \, G_{
m 3} \, ,$

where $\eta = -\,q^2\,/(4\,M^2\,)$ is a kinematic factor. Their static limits are

$$eG_{\rm C}(0) = e,$$

 $eG_{\rm M}(0) = 2M\mu_1,$
 $eG_{\rm Q}(0) = M^2 Q_1$

with μ_l being the magnetic moment and Q_l the quadrupole moment.

By inverting the relationship between current matrix elements and form factors in the standard light-cone frame, and assuming that G_{00}^+ matrix element is the dominant amplitude^[8], it is shown that the charge, magnetic, and quadrupole form factors have universal ratios^[7]:

$$G_{\rm C}:G_{\rm M}:G_{\rm Q}=\left(1-\frac{2}{3}\eta\right):2:-1.$$

These ratios hold for composite systems such as ρ meson or deuteron at large space-like or time-like momentum transfer, i. e. $Q\gg\Lambda_{\rm QCD}$, up to corrections of order $\Lambda_{\rm QCD}/Q$ and $\Lambda_{\rm QCD}/M$. It is argued that there should also be $Q\gg\sqrt{2M\Lambda_{\rm QCD}}^{[7]}$. In addition, these ratios hold for W^\pm form factors at the tree level, which means that the ratios of form factors of bound states become identical to those of elementary particles at large momentum transfer.

2 $e^+e^- \rightarrow D^{*+}D^{*-}$ differential cross section

For $e^+e^- \rightarrow \gamma^* \rightarrow D^{*+}D^{*-}$ process, D^* current matrix element is

$$G^{\mu}(q^2) = -G_1(q^2) \, \epsilon^{\prime *} \cdot \epsilon^* (k^{\prime \mu} - k^{\mu}) + \ G_2(q^2) (\epsilon^{\prime * \mu} \epsilon^* \cdot q - \epsilon^{* \mu} \epsilon^{\prime *} \cdot q) + \ G_3(q^2) \, \frac{1}{2M^2} \epsilon^* \cdot q \epsilon^{\prime *} \cdot q (k^{\prime \mu} - k^{\mu}),$$

where k and k' are momentum of the D* 's, and now $q=k+k'=\sqrt{s}$.

The unpolarized differential cross section in the center-of-mass frame is calculated:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8 E_{CM}^2} (1 + 1/\eta)^{3/2} (C_1 + C_2 \cos^2 \theta),$$

$$C_{1,2} = \pm 3 \mid G_C \mid^2 - 2 \eta \mid G_M \mid^2 \pm \frac{8}{3} \eta^2 \mid G_Q \mid^2.$$

The angular distribution of $D^{*\pm}$ in CM frame is of the form $1+\beta\cos^2\theta$. At the energy of BELLE experiment, $\sqrt{s}=10.58$ GeV, and given the predicted ratios of form factors,

$$G_{\rm C}:G_{\rm M}:G_{\rm Q}=\left(1-rac{2}{3}\,\eta
ight):2:-1,\;\beta=-0.60$$
 is obtained.

It should be noted that although it was mentioned in Ref. [7] that for the time-like reaction $\eta = s/(4M^2)$, its definition, as we have observed, should be coherent in the space-like and time-like region, $\eta = -q^2/(4M^2)$, which is $-s/(4M^2)$ in the time-like case.

3 Discussion

An experimental analysis at BELLE^[9] gives $\beta = 0.79^{+0.34}_{-0.30}$, which is not in agreement with the perturbative QCD predictions: neither $\beta = -1(\sin^2\theta)$ as a result of hadronic-helicity conversation, nor $\beta = -0.60$ assuming the dominance of G_{00}^+ .

BABAR Collaboration has presented an analysis of $e^+ e^- \rightarrow \rho^+ \rho^-$ process^[10] and also reported an inconsistency with the prediction of perturbative QCD with a significance of 3. 1 standard deviations including systematic uncertainties.

A discussion about relations between the Breit frame and the light-front frame $^{[11]}$ has shown that the angular condition in light-front frame, which is derived from conservation of angular momentum in Breit frame, contradicts the hypothesis that the scale of the asymptotic power-law falloff of non-leading amplitudes is set by $\Lambda_{\rm QCD}$. It is suggested that this scale would be of the order of the particle mass. As a consequence, next-to-leading corrections are non-negligible and the underlying assumption in Ref. [7] that G_{00}^+ is dominant at large G^2 needs to be reconsidered.

References

[1] Brodsky S, Lepage G. Helicity selection rules and tests

- of gluon spin in exclusive QCD processes[J]. Phys Rev D, 1981, 24: 2 848-2 855.
- [2] Chernyak V, Zhitnitsky A. Asymptotic behaviour of exclusive processes in QCD [J]. Physics Reports, 1984, 112: 173-318.
- [3] Chernyak V. J/ ψ thoery review, or from J $\rightarrow \psi$ [DB/OL]. arXiv: hep-ph/9906387.
- [4] Durand L. Inelastic electron-deuteron scattering cross sections at high energies: II, final-state interactions and relativistic corrections[J]. Phys Rev, 1961, 123: 1 393-1 422.
- [5] Jones H. Dispersion theory of the deuteron form factor and elastic e-d scattering[J]. Nuovo Cimento, 1962, 26: 790-802.
- [6] Arnold R, Carlson C, Gross F. Elastic electrondeuteron scattering at high energy[J]. Phys Rev C, 1980, 21: 1 426-1 451.
- [7] Brodsky S, Hiller J. Universal properties of the electromagnetic interactions of spin-one systems [J]. Phys Rev D, 1992, 46: 2 141-2 149.
- [8] Lepage G, Brodsky S. Exclusive processes in perturbative quantum chromodynamics [J]. Phys Rev D, 1980, 22: 2 157-2 198.
- [9] Uglov T, et al (BELLE Collaboration). Measurement of the e⁺ e⁻→D^{(*)+}D^{(*)-} cross sections[J]. Phys Rev D, 2004, 70: 071102.
- [10] Aubert B, et al (BABAR Collaboration). Observation of $e^+e^- \rightarrow \rho^+\rho^-$ near \sqrt{s} =10.58 GeV[J]. Phys Rev D, 2008, 78: 071103.
- [11] Carlson C, Ji C R. Angular conditions, relations between the Breit and light-front frames, and subleading power corrections[J]. Phys Rev D, 2003, 67: 116002.