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Abstract: The subspace interference alignment for multi-cell and multi-user cellular networks was
focused. Different from most previous algorithms that are based on a joint design of precoder and
receive filter, the proposed method achieves interference alignment with precoder design only.
This means our algorithm only requires the participation of transmitters, which will alleviate
significantly the overhead induced by alternation between the up and down links. More
importantly, varying from the traditional constrained optimization method, the precoder design
on complex Grassmann manifold with lower dimensions was reformulated and a novel steepest
descent algorithm was derived to achieve perfect subspace interference alignment. Simulation
results suggest that the proposed algorithm has better convergence performance and higher
system capacity compared with previous methods.
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0 Introduction

)[172]

Interference alignment (IA as a novel

MIMO

emerging attention recently. It can achieve much

transmission technique has attracted

higher wireless network capacity than previously
believed™.

precoders in a way that at a particular receiver its

The main idea of IA is to design the

signals and interference are separated spatially and
all of the interference will be overlapped within a
designed direction or space, thus making the
signaling space interference-free for the desired

subspace interference

1[4]

signals. By employing

alignment technique, Suh et al** prove that for the
case of G-cell with K-mobile stations (MSs) per

cell, the sum capacity approaches

Come = ﬁmgu + SNR) + o(log(SNR))

(D
and the degrees of freedom (DoF) per cell can be
achieved as

P l . C,\'l\l’ﬂ P
Dol =% Jim {0osNR) —

K
VK + Do
in Refs. [4,5]. And our early works in Refs. [ 6,7 ]

have derived the DoF region and the corresponding

K—>co (2)

—1 as

precoder design for the two-cell case.

By employing the channel reciprocity, some
previous works such as Refs. [8-13] jointly design
precoder and receiver filter through alternating
between the forward and reverse links to achieve
interference alignment in a distributed way.
However, this alternation needs synchronization at
introduce too much

each node, which may

overhead when the channel varies quickly. On the

([8-15]

other hand, these previous works only focus on

the K-user interference channel and are thus not
applicable to the cellular networks directly. More
importantly, all of their proposed algorithms
employ transitional constrained optimization
methods in high dimensional complex space which
complexity and poor

involve high converge

performance.

In this paper, we focus on the subspace
interference alignment algorithm for multi-cell and
multi-user cellular networks. Our work is different
from most previous algorithms that are based on a
joint design of precoder and receive filter. By
restricting the  optimization only at the
transmitters’ side, the proposed method achieves
interference alignment with precoder design only.
At each receiver, a simple zero-forcing filter is
employed to suppress interference. Therefore it
will alleviate the redundant overhead generated by
alternation between the up and down links More
importantly, we introduce complex Grassmann
manifold to subspace interference alignment for
cellular networks. Our work is not a simple
combination of techniques from different realms,
however. First by exploring the unitary invariance
property of our cost function, we reform the
constrained precoder design to an unconstrained
and non-degraded optimization problem on complex
Grassmann manifold. Then we locally parameterize
the manifold by Euclidean projection from the
tangent space onto the manifold instead of the
traditional method by moving descent step along
the geodesic in Refs. [ 14-17 1.

dimensional steepest descent (SD) algorithm on

Finally a low-

this manifold is derived to approach theoretical
DoF per cell. Furthermore, numerical simulation
shows that the novel low complexity algorithm has
better convergence performance and higher system
capacity. Finally, we prove the convergence of the
proposed algorithms.

Notation: We use bold uppercase letters for
matrices or vectors. X' and X' denote the
transpose and the conjugate transpose (Hermitian)
of the matrix X respectively. Then I represents the
identity matrix. Moreover tr ( « ) indicates the
trace operation. And the Euclidean norm of X is

| X = Vir(X’X). | X | denotes the subspace

X
P represents the

spanned by the columns of X. C
nX p dimensional complex space assuming n> p.

R represents positive real number space. %{ ¢ }
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and 4{ ¢ } denote the real and imaginary parts of a

complex quantity, respectively.

1 System model

As well known, the interfering multiple

( IMAC) the interfering
broadcast channel (IBC) can be molded for the
of
respectively. Ref. [ 4] proved the DoF duality
between the IMAC and IBC. Thus, focusing on

the IMAC is enough to present our method for TA.

access channel and

uplink and downlink cellular  system,

Consider the Interfering Multiple Access Channel

(IMAC) for mutiple cells depicted in Fig. 1.

Assuming there are K mobile stations (MSs) in

each cell. And there are G cells in total. Each MS
Cell &

Va

P

and BS are equipped with M antennas. Finally the
received signal vectors at BS ¢ after zero-forcing

the interference are denoted by:

K

Y, = ULY, = Uj( > HiVyay +

k=1

e €D

2

o

$s0 € {37, ), and¢p#~ o

where the subscripts and superscripts represent

K
Z H&Vokxl,k +W4,)
ko1

transmitter and receiver sides, respectively.

Additionally.,
Gaussian channel coefficients matrix from the kth
MS of cell ¢ to BS 6. And all the channel state
information is assumed priorly known by the

tr.1] And

Hj, denotes the i. i. d. complex

transmitters Xy ~ represents  an
Subspace |
JK +1 Dimensions
k>
o
=1
o
E
£
pr
<
Subspace 2
Subspace 1
Subspace 2
Subspace |
-.\‘ BS y
Subspace 2

communication link

interference link

Fig. 1 Subspace interference alignment for three-cell case
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independently encoded complex Gaussian symbol
with normalized power that beamformed with the
corresponding MX1 precoder vector Vy , and then
transmitted by the kth MS in cell . U, is a zero-
forcing (ZF) filter which projects the desired
signal onto the orthogonal space of interference at
BS ¢. Obviously, the ZF filter is determined by
the interferencet. Finally W, is the i.1i.d.
complex Gaussian noise with zero mean unit
variance.

In addition, if we take the downlink of IBC as
our system model, we can obtain similar signal
model easily by reversing the roles of the
transmitter-receiver pair as well as their
corresponding precoder and ZF vectors, because of
the duality between up and down link as previously
discussed. That is to say if the proposed algorithm
fits the precoder of IMAC, its feasibility for IBC is
then guaranteed by the duality.

2 Subspace interference alignment
and the precoder design

Our previous works in Refs. [ 6-7 ] have
derived the DoF region and the corresponding
precoder design for the two-cell case. However
aligning interferences becomes more difficult for
the cellular networks (more-than-three-cell case).
There are two challenges for interference
alignment in cellular networks. First, due to the
multiple  non-intended  receivers  ( multiple
interferes) , alignment for one receiver does not
ensure alignment at all other receivers. Second,
traditional optimization methods of interference
alignment involve optimization in high-dimensional
complex space, especially for cellular networks.
They will

complexity, slow convergence and large residual
p y g g

suffer from high computational

interference.

By exploring subspace interference

tt7, we solve the first problem and by

alignmen
introducing optimization on Grassmann manifold,
the second challenge is overcome. We will

separately present details in this section and the

following section.

As previous stated, the simple interference
alignment scheme!™ employed in 2IMAC (two-cell-
case) can not be applied straight forwardly to
cellular networks. That is because different from
the two-cell case, aligning interferences into only
one dimension or one space will be unfeasible for
the cellular networks. Thus we align interferences
into multi-dimensional subspace instead of one
dimension. Fig. 1 roughly illustrates the concept of
subspace interference alignment for the three-cell
case (3IMAC). From Eq. (2), it can be obtained
that for 3IMAC, the DoF (per cell) is:

K
(VK+1)°

which means we must reserve K-dimensional

subspace for the desired signal of the ( VK4 1)%-

dimensional total space at each BS. Suppose that
the ( VK + 1)%-dimensional total
JK + 1-dimensional

subspaces such that the product of each subspace’s

4

space is

decomposed into two

dimension is the dimension of the total space. If K

is not a square number, the dimensions of signal

subspace VK is not a integer. We can use time
extension to extent a symbol to T time slots,
making TK a Thus the

square numbert,

dimensions VTK=+1 will become a integer number
to make the subspace interference feasibility.
Similarly, the corresponding precoder vector
is composed into two subspace vectors. Generally
speaking, the key idea of subspace interference
alignment is to design subspace 1 vectors to achieve
subspace 1 alignment at one receiver, and subspace
2 vectors for subspace 2 alignment at the other
receiver. As shown in Fig.1l, we design
corresponding subspace 1 vectors of MSs in cell
so that the interference from cell § spans only one

dimension of subspace 1 (subspace 1 alignment)

but VK-+1 dimensions of subspace 2 at BS a At
the same time we design subspace 2 vectors of MSs
in cell ¥ for subspace 2 alignment so that the

interference from cell 7 spans only one dimension
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of subspace 2 so that it also VK+1 dimensions of
subspace 1. Finally for the desired signals from

cell «» no spaces are aligned., therefore they span
VK interference-free dimensions of subspace 1 and

VK dimensions of subspace 2. Totally, the inter-
cell interference from cell B is aligned into one

dimension of subspace 1, and distinct at subspace

2, thus it spans ( VK+1) X 1 dimensions in all,
the same dimension size as interference from cell 7.

On the other hand, the desired signals from cell «

occupy the reserved JK X VK = K dimensions.
Similar idea is employed at each cell to align
interference. The details of subspace interference
alignment can be found in Ref. [4].

Therefore the question is how to design
feasible subspace precoder vectors to achieve
subspace interference alignment in realistic
wireless channels. Suh et al proved that for both
single-path random delay channel and multi-path
frequency-selective channel, the channel coefficient

matrix HE C*™M can be N-level decomposed as

H:”é H=H QH'X--QH (5
in Ref. [4], where N=G—1, G is the number of
cells and @ represents the Kronecker product™™,
thus H'€ C'™* "™ Thys for the three-cell case as
shown in Fig. 1, the channel coefficient matrix
from the kth MS of the cell o to the BS ¢ is 2-level
decomposable as:

Hfl¢:H&2®H¢;la 0‘94)6 {015897} (6)
And in this case: M=( VJK+1)%. therefore.

Hﬁ; c C(Rﬂ)"x(ﬁﬂr (N
and
ka,l ,H‘f;;z c C(R DXVK 1) ()

Similarly, the precoder vector can be designed with
2-level decomposability as:
Vi = Vi Q) Vy D)
where
Vi € CRDand VALV € R
The received signal at BS « can be

reformulated as:

K
Y, =D (Hi* @ H3H (Vi @ V) xy +
k=1

% 44 K
K
DTCHE @ HE (Vi @ Vi) a +
k=1
K
DUCHG @ HE D (V4 @ Vi) 2y (10)
ko1

Now the question is how to transform the
interference alignment into a mathematical model.
interference

Thus we introduce the subspace

covariance and build the cost function over
precoder vectors.

First the interference covariance matrix Q, €

2 g 2
COR=DTXUEFDT 4t BS o can be expressed as:

K
Q. =2 (Hi® @ Hg") (V4 @ Vh) «
ko1

(Vi3 @ VIO (HE @ HzH +
K

D (HE @ HEH (Vi @ Vi) »

k=1
(Vi @ Vi " (H3? @ HH' an
From Eq. (11), we can see that the first item on
the right hand side of the equation actually is the
inter-cell interference from cell 8 and the second
item is the inter-cell interference from cell 7. By
exploring the property of Kronecker product:
(AR B(CX D) = (AC) ¥ (BD) (12>
and
(AQB'=A" Q@B (13)
the inter-cell interference from cell 3, i. e., the
first item on the right hand side of the Eq. (11) can

be reformulated as:
K

DV(HE @ Hz') (Va @ VE) -

ko1
(V4 @ VO (Hz* @ HzH' =
K
DT(HEVE) @ (HE'Vh) )«
k=1

{(VEHZ) @ (VEHE'D ) =
DU(HE VAVEHE) @ (HE'VRVEHE' =

ko1

K
>0 @ Q3! (10

k=1
Similarly, reformulation is employed for the inter-

cell interference from cell 7. Finally Eq. (11) is

reformed as:

K K
Q= 200 @'+ 20 @i (5
ko1 ko1

It can be obtained that:
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=0 O O A

where
L1 .2 .1 .2 (VK I DXVK D
:’31 ’QQ 1) (; ’Qy 6 C
are the subspace interference covariance
matrices, and
K
) ) .
Qi = D Hy'ViViHy' an
k=1
K
“f = >V HG VL VEHG (18)

k=1

where 1 € {1, 2}.

covariance matrices Q° and Q" at BS B and BS ¥ can

Similarly, the interference

also be represented as the sum of Kronecker
product of corresponding subspace interference
covariance,
Q=0 O L O a9
Q- Q@O+ 0
From Egs. (16)~(20), it can be acquired that
we separate subspace 1 and subspace 2 completely
by its own subspace interference covariance. As
known in Ref. [ 8], the quality of alignment is
measured by the interference power remaining in
the intended signal subspace at each receiver.
Therefore, interference alignment can be achieved
by iteratively reducing the remaining interference
to zero. From Ref. [ 9], it can be obtained that the
eigenvectors of the interference covariance matrices
span the dimensions of interference subspace and
their corresponding eigenvalues indicate the power
of interference along that dimension. Take 3IMAC

for example, as shown in Fig. 1, at BS a, we must

both minimize the sum of VK-smallest eigenvalues
of Qf' and that of Q5° to force the inter-cell
interference overlapping in one dimension at
respectively;

subspace 1 and subspace 2,

meanwhile, similarly at BS 8 (and BS 7) the
corresponding sum of VK-smallest eigenvalues of
subspace interference covariances Q%' and Q** (Q!"!
and QF?) are also minimized to zero. This process

can be described as:

Z Z Sum_eigvalue(Q}’) v

6 g€ {a By j 1,2

Lt

min f =

@D

where
K

Qit = > HE'VLVIHE' (22)

k=1
and here we define Sum _eigvalue (Q%*) yx as the
sum of the VK smallest eigenvalues of Q“#. Thus

we can create K-dimensional interference-free
subspace and achieve subspace alignment.
Now we generalize our idea for G-cell (G=3)

case subspace interference alignment. In this case

the dimension size M= (% VK 4+ 1)¢ !, and the
channel matrix Hj € C™M from the kth MS in the
cell o to the BS ¢ can be G—1 level decomposed as:

G—1

H, =@ Hi* =
HEO ' Q) HEGO 2 (@) veeeee ® HE'  (23)
where
G € {1,2,,G) (24)
and
Hye € ¢ e W (25)

Similarly, we design the beaforming precoder of
the kth MS in the cell o6 with G-level

decomposability as:
G 1 . .
Vi =@ Vi =Vi' ' QVi® @V, (26)
o 1
where
vy € ¢V 27)
Therefore, as previously stated, we can define the

cost function over the set of precoder vectors V& by
G G 1

min f = 2 ZSum_eigvalue(Qf'g)«fWI

o, ¢g=1g=1

o (28)
subject to VEV4 =1 (

and because Q%* is a Hermitian matrix, all its

eigenvalues are real. Finally, the cost function

FVi), f:C"'—>R

that in fact our cost function is the normalized

is built. It is easy to obtain

remnant interference.

3 The steepest descent algorithm on
Grassmann manifold

Since our cost function: f: C”” > R' is
differentiable!™, intuitively the steepest descent
(SD) method can be employed to make the cost
optimal point

function converge to a local
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efficiently. However, as discussed before, the
traditional optimization methods, including the
classical SD algorithm, work in high-dimensional
They will

computational complexity, slow convergence and

complex space. suffer from high
large residual interference.

Thus we introduce optimization on Grassmann
manifold to reduce the dimensions of space while
achieving total computational complexity and faster
convergence. A manifold is a subspace which is
( The broadest

common definition of manifold is a topological

embedded in Euclidean space

space locally homeomorphic to a topological vector
space). It can be informally defined as a subset of
Euclidean space which is locally the graph of a
smooth function™" .

Consequently, different from transitional SD
method, we should notice some problems for
optimization on manifolds. First, in order to define
algorithms on manifolds, these operations above
must be translated into the language of differential
geometry. Second, once the test point moves along
the steepest descent direction for certain distance,
it must be retracted back to the manifold. Third,
we should choose a simple but efficient step size
rule for each iteration. Therefore, after
reformulating the constrained optimization problem
on manifold to a unconstrained one, we will
introduce definitions about project operation and
retraction and gradient

tangent space for

respectively; meanwhile we employ modified
Armijo step rule for each iteration.

The underlying symmetry property can be
exploited to reformulate the original problem as a
non-degenerate optimization problem on manifolds
associated with the original matrix representation.
Thus the constraint condition V4§ V%=1 of our cost
function (28) seems to inspire us to solve the
problem of the complex Stiefel manifold. The

d™™ can be defined as:

complex Stiefel manifol
Sttn,p) = {X€eC.X'X=1 @29
St(n, p) is naturally embeded in C* and inherits

the usual topology of C*’. It is a compact

manifold and from Proposition 3. 3. 3 in Ref. [20],

we can obtain:
dim(StCn. p)) = np—%p<p+1> (30)

and remind the fact that the traditional
optimization methods used by Refs. [ 8-14 ] works
in the multi-dimensional space C™? with the
dimensions:

dim(C™*) = np 3D
From Egs. (30) to (31), it can be obtained that if

we reformulate the original problem of the Stiefel

manifold, the dimensions of space decreases from
nX p to np*% pCp+1). The detailed procedure

can be found in Ref. [21].

Although such dimension-dissension can be
observed clearly, we still intend to reduce the
dimensions of the space which the optimization
algorithm works in. Notice that our cost function
(V) satisfies f(VU) = (V) for any unitary

matrix U. Because
K
QU4 (VAU = D) HE*VEUU'VEHG =
k=1

K
[y o y )1 L of
> HGVEIVEHE Y =

ko1
QU (Vi) (32)
which means that multiplying unitary matrix U
does not change the eigenvalues of the interference
covariance matrices. Thus our cost function f
should be considered on the Grassmann manifold
instead of the Stiefel manifold. The reason is that
the Grassmann manifold treats V and VU as
equivalent points, thus leading to a further
dimension descension of the optimization problem.
The complex Grassmann manifold Gr(n, p) is
the set of all p-dimensional complex subspaces of
C™*, From Eq. (30), it can be obtained that:
dim(Gr(n, p)) =dim(St(n, p)) —dim(St(p, p)) =
p(n— p) (33)
From Eqgs. (31) to (33), the further
dimension descent can be observed clearly which is
optimization on Grassmann

an advantage of

manifold. This is because Grassmann manifold can
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be thought of as a quotient space of the Stiefel
manifold. That is to say, if | X | represents the
subspace spanned by the columns of X, then X& St
(n, p) means| X |€ Gr(n, p). Therefore, there is
a one-to-one mapping between equivalence classes
of St(n, p) and points on the Grassmann manifold
Gr(n, p).

As previously stated, for retracting the test
point back into the manifold, we must define the
project operation. Let X€&€ St(n, p) be a rank p
matrix. The projection operator w:C"”*—>Gr(n, p)
is defined to be

oY) =| arg min [|[Y—X]? | (34)

XE S p)
From Eq. (34), it can be acquired that the
projection of a random rank p matrix Y onto the
Grassmannn manifold can be defined as the
subspace spanned by the point on the Stiefel
manifold closest to Y in the Euclidean norm.
Besides, if the QR decomposition of Y is Y=0R,
(Y) =| Ql, | (35)
The proof of Eq. (35) can be found in Ref. [22].
From Eq. (35), it can be obtained that, if the QR
decomposition of Y is Y= QR, then «(Y) is the
subspace spanned by the first p columns of the
matrix Q.
Consider X€ St(n, p) which implies | X |€
Gr(n, p) and its disturbing point (X + €Y) €
Gr(n, p) for certain directions matrix Y& C"** and
scalar e€ R. I Y satisfies f(x(X+eY))= f(X)+O
(&) which means certain directions Y do not cause
7( X+ €Y) to move away from X as e increases.
The collection of such directions Y is called the
normal space at X of Gr(n, p)P. The tangent
space Tixj (n, p) is defined to be the orthogonal
complement of the normal space. The
mathematical expression of the tangent space
Tix(ns p) at| X |€ Gr(n, p) is defined by:
Tix(n,p) ={2€ C*.Z=X_ B,Be& C™" Pt}
(36)
where X, € C™" ? is defined to be any matrix
satisfying [ X X, J'[X X, J=1 and is the
complement of X€ St(n, p) . Also from Ref. [22],

it can be obtained that the tangent space of

Grassmann manifold involves the gradient of
manifold.

Obviously, the steepest descent algorithm
needs the computation of the gradient. However
the gradient is only defined after T x;(n, p) is given
an inner product

(i Zo) = M2}
7.7, € Tix(n,p). X €& St(n, p) (37)
whose derivation can be found in Ref. [ 16 ].
Therefore, under the defined inner product, the

[22]

steepest descent direction of the cost function

f(X) at the point X€ Gr(n, p) is:
Z—=— (I— XXD Dy (38)
where Dy is the derivative of f(X).
Considering our cost function (V) is f;C"?
—R", we can get the first order derivative by
using two Jacobian matrix blocks:
RD) ,RD; ,-*RD
. RD§17RD§27"'RD§K
df = . .
RD;™ ,RDEL:H »++ RDG!
FAR{VY Y dR{VE e dR{VET)
ARV} dR (V) e d VG

LAV} o dR{VE ) 2o dR{V )
ID}:I ’ ID}:Z [ ID}:I\'
ID} , ID% , -+ ID%

LIDS, IDG - IDE
[dAVy ) dAVE ) d AV

dAVYy ) dAVy ) d VG
. (39)

LdAVc ) d AV - dAVE )

¢ and ID% are the 1 X VM Jacobian
vectors which denote the partial differential
relation of the cost function over the real and
imaginary parts of V, respectively. The detail of
mathematical derivations can be found in Refs.
[14,18]. Thus, the derivative of f over V& is
given by
% = (RD% + jID5) " (40)

Once the formulation of steepest descent
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direction Z on Grassmann manifold is defined, it is
necessary to choose a suitable positive step size
for each iteration. The Armijo step size rule*
states that B should be chosen to satisfy the

following inequalities;
FOV) — F(V 4 @) >%p<z,z> D)

SV) — (V4232 < XZ,2> 42>
Rule (41) guarantees that the step BZ will
expressively decrease the cost function, whereas
function (42) undertakes that the step 28Z would
not be a better choice. A direct procedure for
acquiring a suitable f3is to keep on doubling 8 until
function (42) no longer holds and then halving f
until it satisfies function (41). It can be proved
that such B can always be found™*.

Consolidating all the ideas stated above, the
proposed SD algorithm on complex Grassmann
manifold is presented in Algorithm 3. 1.

Algorithm 3.1 The

algorithm on complex Grassmann manifold

steepest  descent

Start with arbitrary precoder matrices V& ,+++, V&,
and begin iteration.
for 6=1,2,--G
for g=1,2,-G—1
for k=1--K
Step 1 Compute the Jacobian matrix RD¥ and ID%
Step 2 Then get the derivative of f:
Di = (RD% + jID3)”T
Get the steepest descent direction
75 =— (1= V4&VED D
Step 4 Compute A% = n(V5+2B525) »
i fOVE o VED) — [(VE oo Vi s Ak s ot
Z%) , then set 8% :=2f%, and repeat Step 4.
Step 5 Compute B§ = n(VE +.Z5%) .

Step 3

5 =pstr(Z8

i FOVE e Vi — FOVE o Vi 1 B oo ViO < - i

(25 7%, then set B =:%Bf;}¢ , and repeat Step 5.

Step 6 Vi =n(V&+B5Z5)
Step 7 Continue till the cost function f is sufficiently

small.

Inspired by Ref. [22], the structure of the
Here

explanations are presented. In Steps 4 and 5, the

proposed algorithm is intuitive. some

Armijo step rulet®” is performed to find a proper
convergence step length B%. From Eq. (37) and
Eq. (38), it can be easily obtained that the inner
product needed for the Armijo step rule is

(25 . 25) = (28 25 (43)
which is used in Steps 4 and 5; and the steepest
descent on Grassmann manifold of our cost
function is

75 =— (1— VEVE) D5, (44)
which was used in Step 3. Noticing that the project
operation w( * ) in Step 6 (Steps 4, 5) guarantees
the newly computed solution V& (or A%, B%) after
iteration still satisfies V4 € Gr(M, 1). Using QR
decomposition, we can easily compute the project
operation.

Discussion:

(I ) The inner product and the gradient
direction are defined in different topologies in Ref.
[14]. However it is considered to be inappropriate
because the gradient is defined only after the inner
product is given. In other words, the inner product
and the gradient direction must be defined in the
same topology. Our proposed algorithm avoids the
topology flaw in Ref. [14].

(Il ) Some optimization methods on manifolds
such as algorithms in Refs. [15-17 ] are performed
by moving the descent step along the geodesic of
the constrained surface within each iteration.
There are two major disadvantages of these
methods. One is the redundant computational cost
for calculating the path of a geodesic®. Another
disadvantage is that rules for the linear steps, such
as Armijo step rule., can not be employed to make
iteration more efficient. Different from these
methods, in this paper we locally parameterize the
manifold by Euclidean projection from the tangent
space onto the manifold instead of moving along a
geodesic, to achieve a modest reduction in the
computational complexity of the algorithms.

() To sum up, compared with the
transitional optimization methods which work in
C™*, the proposed SD algorithm on Grassmann

manifold obviously has
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dim(Gr(n, p)) _ p(n—p)
dim (C™") np 42

In our subspace interference alignment system

model,
n=M= VK4 D (46)
and p= K. Thus we can get:
dim(Gr(M.K) _ K[("VK+ D' — K]

dim (C™*) K VK +1)6 !
YD)
and if K is large enough, then
dim(Gr(M,K)) __ 1 (18)

dim(C™®) T K

which is clear evidence for dimension-descension.

4 Numerical results and discussion

For  satisfying  feasibility and  simple
computation, firstly we simulate the three-cell case
where four MSs in each cell (G=3, K=4). And
each MS sends one symbol message to its
corresponding BS. Thus the dimensions of desired
signal space per cell is M=9, and the DoF per cell

is % We simulated the SD algorithm on

Grassmann manifold for IA through 100 randomly
generated channel coefficients and initial precoder
matrices. According to the numerical feasibility
criterion of interference alignment in Ref. [9], the
As shown in

cost function must fall below 10 *.

Fig. 2, each curve represents an individual

simulation realization and all results converge after

20 or more iterations.

1E-2

1E-4

1E-6

1E-8

1E-10

normalized remant interference

iterations

Fig. 2 The cost function (normalized remnant interference)

of SD algorithm on Grassmann manifold

Furthermore, in order to compare the

convergence performance, our proposed SD
algorithm on Grassmann manifold for TA and the
algorithm in Refs. [8-9,14 | are executed under the
same scenario including randomly generated
channel coefficients, initial precoder matrices and
convergence step length. The average values are
shown in Fig. 3. It can be observed that the SD
algorithm on Grassmann manifold has better
convergence performance. This is attributed to the
fact that the proposed algorithm reformulates the
constrained

optimization  problem  to  an

unconstrained one on manifold with better
numerical properties. Note that the algorithm in
Refs. [ 8-97] and [14] which employ traditional
methods work in the dimension of np, while our
proposed SD algorithm on Grassmann manifold
works in the dimensions of p(n— p). And by
setting K=4 and G=3 and then taking them into
dim(Gr(M,d)) _ 5
dim(CM™*4) 9"

Obviously., the dimensions reduction will make the

(47), it can be derived that

proposed algorithm converge faster. Moreover,
from Refs. [18,227] and [25], it can be obtained
that the asymptotic computational complexity per
iteration of our proposed algorithm is O ( M)
which is the same as the algorithms in Refs. [ 8-9 ]
and [14]. Since our method needs less iterations to
converge, the total computational complexity is
lower than that of previous methods. In all, it can
better

be obtained that our algorithm has

0 g
8 1E-1}.
5 :
& 1E-2h
e t
5 :
E IE-3}
g
S IE-4§
|~
&
o VE-5prin i i,
ﬁ i:| == lterative LA in [8]
= &L &— AMIA in [9]
2 IE-6 F || —e— Tranditional SD in [14]
8 (B b on O vy,
1E-8 i i i i i
0 5 10 15 20 25 30

iterations

Fig.3 Convergence performance
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convergence performance and lower  total
computational complexity.

The proof of convergence of the proposed
algorithm is intuitive. Our cost function is non-
negative whose low bound is zero and
monotonically decreases within each iteration.
Therefore it must converge to a local optimum
solution which is very close to zero. However,
there is no guarantee that our cost function is

] Thus finding a global optimum is a goal

convex
in our future work.

We also do some simulations by using more
sophisticated algorithm, such as Newton-type
method, to achieve quadratic convergence. Yet,
except for the increased computational complexity,
the Newton method will converge to the closet
critical point®*. Thus the Newton method coupled
with the steepest descent algorithm will be
investigated in our future work, too.

Finally, we compare the system sum-rate per
cell of the proposed algorithms. Fig.4 shows the
scenario of 3 cells and 4 MSs per cell. And Fig. 5
shows the scenario of 4 cells and 8 MSs per cell.
Both simulation results demonstrate that the SD
algorithm on Grassmann manifold outperforms the
other algorithms. More importantly, in the two
scenarios it can be easily obtained that the DoF per
cell of the proposed algorithm at high SNR nearly
approaches 4/9 and 8/27 separately, which are the
Therefore, the

subspace interference alignment is successfully

theoretical maximum values.

8

7 H SD on Sticfel Manifol

Tranditional SD
Tterative 1A

| --E»-- Orthogonal{ Time sharing)

average sum rate per cell / (Bps-Hz")
E=

10 15 20 25 30 35 40 45 50
power per transmiter / dB

Fig.4 3 cells and 4 MSs per cell ( G= 3, K = 4 per celD

4.5 |- | —¢—SDon Stiefe] Manifol
Tranditional SD

4.0F a— lterative 1A

-=E»-- Orthogonal{ Time sharing)

average sum rate per cell / (Bps-Hz"}
]
wn

10 15 20 25 30 35 40 45 50

power per transmiter / dB

Fig. 5 4 cells and 8 MSs per cell ( G= 4, K = § per celD

achieved.

Two reasons leading to the fact that the
algorithms on Grassmann manifold obtain higher
system capacity are presented below:

(1) It is noticed that our cost function
actually is the interference power spilled from the
interference space to the desired signal space. The
SD algorithms on manifolds will have less remnant
interference in the desired signal space within the
Therefore, the SD
algorithms on manifolds will get higher SINRM! .

same iteration times.

signal power

SINR = 49)

noise + remnant interference
which leads to high capacity.

(1) At each receiver, the zero forcing filter is
adopted. It will project the desired signal power
and the remnant interference onto the subspace
which is orthogonal with the subspace spanned by
After

algorithms on Grassmann manifold, it is observed

the interference. performing the SD

that in the Euclidean norm distance, the subspace

spanned by desired signal is closer to the
orthogonal complement of the interference
subspace. Therefore, our proposed algorithm

finally gets the same remnant interference as the
traditional optimization methods results. The
algorithms on manifolds will suffer less from
power lose during the projection operated by zero
forcing filter, hence achieving higher system
capacity.

We notice that better throughput performance
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of our method may be attained by applying power

water-filling in the equivalent non-interfering
MIMO channels or by being combined with other
technologies.

interference suppression

Nevertheless, these methods for increasing
throughputs can be performed as the second step
after the interference alignment is achieved™™ .
Thus in this paper, we only need to concentrate on
the first step to find the perfect solutions of
subspace interference alignment.

Finally, we discuss the difference between our
precoder design method and the methods™ " based
on a joint design of precoder and receiving filter at
both sides of transceivers. By utilizing channel
reciprocity, the joint design methods achieve
interference alignment by alternating between the
forward and reverse links to achieve interference
alignment in a distributed way. The applicability
of their proposed algorithms are limited only to
TDD systems due to the assumption of channel
reciprocity. Moreover, this alternation needs
synchronization at each node, which may introduce
too much overhead when the channel varies
quickly. As previously stated, by restricting the
optimization only at the transmitters’ side, our
method achieves interference alignment with
precoder design only. Although our method may
need the interference link channel information, it
will alleviate the redundant overhead generated by
alternation between the up and down links.
Furthermore, by relaxing the assumption of
channel reciprocity, our algorithm is applicable to

both TDD and FDD systems.

5 Conclusion

In this paper, we offered a strategy of
subspace interference alignment for the cellular
networks. We introduced the complex Grassmann
manifold and derived a novel SD algorithm on this
manifold to achieve perfect interference alignment.
Moreover, different from most previous algorithms
based on a joint design of precoder and receive

filter, the proposed method achieves interference

alignment with precoder design only. Thus it will
significantly alleviate the overhead induced by
alternating between the up and down links.
Simulation results suggest that the proposed
algorithm has better convergence performance and
higher system capacity compared with previous
methods. Finally we proved that the proposed

algorithm converges monotonically.
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