54435513 ¥ B #4 2 £ £ % & 3 4 Vol. 44, No. 1

20144 1H JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Jan. 201 4

Article ID:0253-2778(2014)01-0019-15

A colored Petri net based scheduling scheme
for multiprocessor system-on-chip

FENG Xiaojing, LI Xi, WANG Chao, CHEN Peng, ZHOU Xuehai

(School of Computer Science and Technology, USTC, Hefei 230027, China;
Suzhou Institution for Advanced Study, USTC, Suzhou 215123, China)

Abstract: A novel colored Petri net (CPN) based dynamic scheduling scheme was proposed,
which aimed at generating a hardware scheduler for multiprocessor system-on-chip (MPSoC)
platforms. CPN was employed to model inter-task dependences in the proposed scheduling
scheme, including RAW, WAW and WAR data dependences, as well as structural dependences.
All the dependences can be automatically detected during model execution. Tasks can be then
scheduled and dispatched to different processors for out-of-order execution according to the
dependences, achieving the goal of improving task-level parallelism. The scheduling scheme is
implemented both with software simulation tools and on an FPGA-based hardware platform.
Through state space analyses and comparing experiments, the correctness and effectiveness of the
scheduling scheme are demonstrated.

Key words: colored Petri nets; task scheduling; multiprocessor system-on-chip (MPSoC) ; model

based design
CLC number: TP301. 2 Document code: A doi:10. 3969/j. issn. 0253-2778. 2014. 01. 003

Citation: Feng Xiaojing, Li Xi, Wang Chao. et al. A colored Petri net based scheduling scheme for multiprocessor

system-on-chip[J]. Journal of University of Science and Technology of China, 2014,44(1):19-33.

ETHGB Petri MW LERF EFRFZFPETIE
Lud.F H.E H.%K B.HA¥E

(P EBHEE R KT EYLR RS AR 2R ZRA IR 230027 ;
P E RR B AR KA IR BT S BE , SR M 215123)

MEATER-ANEATEAEEN L ARG ALE B — UG ETHE Petri M(CPN) 893
BPEZ k ARG EEA CPN S aE 5 Gk . 5B 5 k5 5 I X AR LEH A8 X A R e 4E S 7 48 %
PEIEAT T AL, X AR X 2 AR A B AT A LA P A8 S A Rk ARIE AR K M AR S 2B A B S B

Received: 2013-03-18; Revised : 2013-04-13
Foundation item: National Natural Science Foundation of China (61202053), Natural Science Foundation of Jiangsu Province
(BK2012194).
Biography : FENG Xiaojing, Male, born in 1984, PhD candidate. His research interests include reconfigurable computing technology,
multiprocessor systems and formal verification. E-mail: bangyan@mail. ustc. edu. cn

Corresponding author: ZHOU Xuehai, PhD, Professor. E-mail: xhzhou@ustc. edu. cn

20 T EAFHERKFFR

F 44 %

B RRMH A ET EALSMAT AN AR ZESRFATENBN. ZRAET N ARG ATSMEAT
FPGA #9884 F & EAF VA LI, SRS 2] o M7 Ao 3 vb 52 30 09 25 R 20 T 38 L o5 ok 69 SE 7 o fo) 201
KB A € Petri MES R 3B ER E A% A TRE Gk

0 Introduction

The increase in complexity of modern
embedded applications has led to the popularity of
(MPSoC)
architecture, and the number of processors on an

MPSoC is

performance potential of MPSoCs cannot be tapped

Multiprocessor System-on-Chip

growing steadily. However, the
out unless applications running on them have been
highly parallelized. One common approach to
parallelizing applications is task scheduling. That
is, to partition an application into small portions,
namely tasks, and then dispatch tasks to different
processors to allow them to execute in parallel. A
great number of scheduling schemes have been
proposed for MPSoCs. Some recent works, such
as Carbon™™, ADM'™ and Task Superscalart™,
even employ hardware technologies to accelerate
the process of task scheduling.

Although these schemes are effective in
exposing hidden parallelism in applications to
underlying hardware of MPSoCs. designing these
schemes is daunting and time-consuming. The
reason lies mainly in two aspects: (O human
designers are extremely prone to making mistakes
due, on one hand, to the increasing complexity of
MPSoCs, and on the other, to the natures of
multiprocessor applications such as concurrency
and asynchronism. @ Since system performance
usually depends on a number of parameters, a
large variety of paradigms should be evaluated for a
scheduling scheme.

Model based design provides a promising
approach for tackling these problems. Benefiting
from verification and validation of models,
designers can detect errors and flaws as soon as
possible. Besides, different paradigms of designs

can be conveniently evaluated in early design

phases through model based simulations. For these

reasons, model based design methodology has been
widely employed for solving task scheduling
problems. Nonetheless, little research has been
conducted in model based dynamic scheduling
schemes. This is mainly because there are two vital
behaviors hard to describe when modeling dynamic
scheduling schemes for MPSoCs:

(T) Dependence detecting. In a dynamic
scheduling scheme, tasks are usually reordered to
perform out-of-order execution for exploiting task-
level parallelism. However, the scheduling scheme
can lead to correct task execution order only when
all inter-task dependences are maintained. It
demands that system models be able to describe
and detect different types of dependences at run
time. Since the out-of-order task execution is
characterized by concurrent and asynchronous, it’s
hard to model the dynamic behavior of dependence
detecting. Most related work takes inter-task
dependency as a priori, and rarely addresses the
problem of dynamic dependence detecting.

(1) Task dispatching. Task dispatching here
refers to assigning a particular processor to a task
when there are multiple processors capable to
execute it. Task dispatching strategy also has a
significant effect on system performance, since the
execution and communication costs of each
individual task vary among different dispatching
strategies. In a dispatching strategy, the mapping
relationship between tasks and processors must be

What's

worse, the heterogeneity of processors on MPSoCs

established and modified dynamically.

makes it more difficult.
This paper proposes a colored Petri net (CPN)
based dynamic scheduling scheme, which addresses

both of the

simultaneously. To achieve the goal of improving

aforementioned problems

task-level parallelism of applications, tasks are

divided into several pipeline stages and then

A colored Petri net based scheduling scheme for multiprocessor system-on-chip 21

scheduled in our scheme. The scheduling process is
modeled using CPN. We use colored tokens to
model tasks and system resources. Inter-task
dependences, including true-dependences (read-
after-write, RAW), output-dependences (write-
after-write, WAW), anti-dependences (write-after-

read, WAR) and

represented as different relations on transitions and

structural dependences are
tokens, such as producer-consumer relation and
competition relation. All dependences can then be
identified and resolved dynamically during model
execution. Besides, our scheme support the
modeling of various task dispatching strategies.
For demonstration, we will show how to construct
the model for a greedy dispatching strategy in this
paper. By performing simulations on our CPN
model, task scheduling scheme and dispatching
strategies can be easily evaluated.

Our proposed scheme aims at generating a
hardware scheduler responsible for dynamically
scheduling tasks on MPSoCs. The scheme is generic in
the sense that it can be applied in systems with
different architectures and specifications. We have
applied the scheme to SOMP platform™? and built the
CPN model for the SOMP prototype systems. The
model results are confirmed against the measurement

derived from prototype systems, demonstrating the

correctness of the CPN model.

1 Related work

As the complexity of MPSoCs increases,

model based design methodology plays an

increasingly important role in hardware and
application designs on MPSoC platforms. Now
that task scheduling is an important concern in
system design, much effort has been devoted to
modeling task scheduling processes on MPSoCs,
both informally and formally.

Formal methods are system design techniques
which build system models using languages with
mathematically defined syntax and semantics.
ambiguities that might go

They can reveal

undetected in informal methods, and thereby

improve the reliability of system designs. There
are numerous modeling languages that can be used
in formal methods. The most widely applied ones
include Petri nets and timed automata, mainly
because they have both mathematical definitions
and graphical representations.

A timed automaton is a finite-state machine
equipped with time concepts. It supports modeling
of times by annotating state-transition graphs with
clock variables and time guards. Transitions in an
automaton are conditioned by time guards which
compare clock variables with time constants, and
firing a transition can affect the values of selected
clock variables. This property enables timed
automata to model time-dependent systems. When
timed automaton was first introduced in Ref. [5],
its expressive power was strictly limited.
Nevertheless, a lot of efforts have been made
towards extensions of timed automata. For
example, weighted/priced timed automata were
introduced independently in Refs. [6] and [7],
which extend cost information on locations and
transitions. The timed automata in Ref. [8] is
extended with deadlines and release times which
are two common features in scheduling problems.
These extensions increase the expressive power of
original timed automata and are employed to model
systems in, among others, scheduling problems.
To name a few, the extended timed automata
model in Ref. [8] is adopted in solving the problem
of scheduling partially-ordered tasks on parallel
machines, while weighted/priced timed automata
are applied to optimal scheduling and planning
problems in Ref. [9]. In these timed automata
models, each task and resource must be
represented by a single automaton. Since the
model structures remain fixed during the execution
of models, certain applications which require
dynamic creation of new tasks cannot be modeled
using timed automata. Furthermore, it’s hard to
use timed automata to model concurrent systems

[10]

with shared resources Due to this limitation

with respect to modeling power, the application

22 T EAFHERKFFR

F 44 %

scope of timed automata is greatly restricted.
In contrast, Petri nets are a specialized class
of state-transition graphs with two sets of nodes,

L Places are employed to

places and transitions
describe the status of modeled systems, while
Besides,

tokens are imported in models to represent input/

transitions represent state changes.
output data or control information such as logic
conditions. These features make Petri nets well
suited for modeling concurrent systems, including
their shared resources. Furthermore, the event of
dynamically creating new tasks can be easily
modeled by adding new tokens in the model at
runtime. CPN is a high-level extension for Petri

[12]

nets With the support to colored tokens and

model time etc., CPN possesses enhanced
expressive power beyond basic Petri nets.

Petri nets, especially CPN, have received
much attention for modeling scheduling processes
on multiprocessor platforms. For instance,
Zuberek et al. model the scheduling of multiple
tasks on distributed-memory multiprocessors using
CPNHM. The proposed model can be utilized to
evaluate the influence of different model
parameters on system performance. In Ref. [14],
CPN is used to build a model which formally
describes the behavior of task distribution and
execution within the grid environment. Based on
the analysis of the model, the grid service
reliability can be evaluated. Ref. [15] studies the
task scheduling of a robot system with temporal

Ref. [16]

presents a Petri net based model of task scheduling

constraints, using timed Petri nets.

on dynamically partitioned multiprocessor systems
and performs a series of sensitivity analyses on the
model. However, none of these models take inter-
task data dependences into consideration.

based

scheduling scheme for multiprocessor systems with
[17-18]

Tavares et al. propose a model

timing and energy constraints . In the scheme,
multiprocessor tasks are modeled using timed Petri
nets. The model can describe precedence/exclusion

relations among tasks. Hoheisel et al. develop a

Petri net based model for workloads in the Fraunhofer
resource grid (FhRG) environment™¥?7. Their
model also considers the precedence constraints on
grid tasks. Eskinazi applies timed Petri net within
a reconfigurable environment and proposes a Petri
net model responsible for task dispatching and

21 Although these models have the

relocation
capability of describing different types of inter-task
dependences, the dependences must be given as
prerequisites since the models cannot identify them
automatically.

To the best of our knowledge, there are no
Petri net based scheduling schemes addressing
dependence detecting and task dispatching
simultaneously. This paper takes both of these
problems into account and proposes a CPN based
scheduling scheme. The details of our proposed

scheme will be presented later in this paper.

2 Preliminaries

2.1 Problem description

The proposed scheduling scheme aims to
improve the parallelism of applications at task
level. The term “task” here refers to a piece of
work that can be completed on a single processor.
All input and output of tasks are associated in
variables residing in the memory. Thus, each task
can be defined as follows:

Definition 2. 1 Let T, be a task.
defined as a triple, T;=(tn;, TD;,TS,), where:
@ tn; € TASK represents the task type;

@ TD;, TS, & DATA are
representing output and input data of a task.,
respectively. DATA=U,;(TD;UTS,) is a finite set

whose members are input and output variables for

T, can be

finite sets,

all tasks.

The input to the scheduler should be a non-
speculative task sequence, which can be derived
from applications using a source-to-source compiler.

Definition 2.2 Let T be the input task
sequence. T can be defined as a first-in-first-out
(FIFO) queue, T=[Ty, Ty >+ T,] where each

element of the queue represents a task.

A colored Petri net based scheduling scheme for multiprocessor system-on-chip 23

Subsequently, we need to describe the architecture
of the MPSoC platforms.

consider single-chip heterogeneous architecture for

In this paper, we

MPSoCs. Heterogeneous MPSoCs combine general
purpose processors (GPPs) with a variety of
heterogeneous application-specific processors (ASPs)
(DSPs),

intellectual property (IP) cores and custom logics.

such as digital signal processors
GPPs usually provide runtime libraries for general
computing tasks. On the contrary, ASPs can
execute only specific tasks, usually computation-
intense tasks. Since ASPs provide greater performance
over GPPs for specific tasks, such tasks can be
dispatched to ASPs for acceleration. Additionally,
we assume a

shared-memory multiprocessor

architecture for the program execution. A
processor must access the shared memory to fetch
the input data prior to execution and send the
results to the shared memory when accomplishing
computations, Data transmission between processors
must pass through the shared memory.

Definition 2.3
an MPSoC platform. S can be defined as an 8-
tuple, S = (GPP, TASK, TIME, SCH, ASP,
STASK,STIME,SSCH) , where:

O GPP={gp:,gps,-
GPPs;

@ TASK={t;,ty,**t,} is a finite set, which
represents all types of tasks that can be executed
on GPPs;

® TIME: GPP X TASK—>{1,2,3, =} is a

function which determines the execution time for a

Let S be the specification of

., 8P, is a finite set of

task running on a GPP;

@ SCH: GPP X TASK— {1,2,3, -
function which determines the time cost for
scheduling a task to a GPP.

® ASP= {sp;,sspss
ASPs;

©® STASK: ASP—>TASK is a function which
determines the functionality of each ASP;

@ STIME: ASP—>{1,2,3,

which determines the execution time for running a

} s a

©, sp,) is a finite set of

} is a function

task on a particular ASP;

® SSCH: ASP—>{1,2,3, -
which determines the time cost for scheduling a
task to a ASP.

@ + @ A MPSoC may integrate several
GPPs.
running on it, each GPP can execute all types of
tasks which are defined by the set TASK.

@ +®@ The execution time of executing a task

} is a function

With the support of runtime libraries

on GPP varies among different types of tasks.
Besides, different tasks running on GPPs vary in
the scheduling time, which involves the time cost
for fetching input data and writing back the
results. The execution and scheduling times for
different tasks on GPPs are specified by the
functions TIME and SCH., respectively.

® + ©® A heterogeneous MPSoC may also
integrate several ASPs. Unlike GPPs, an ASP usually
can only execute a specific type of tasks. The function
STASK defines the task type for each ASP.

@+ ® Since each ASP can execute only one
type of tasks, the execution of an individual ASP is
fixed. However, the time cost of scheduling a task
to ASP varies among task types. The functions
STIME and SSCH respectively describe the time
costs for executing and scheduling a task on
an ASP,

Note that our proposed scheme is well suited
for, but not limited to, heterogeneous MPSoC
platforms. It can also be applied to homogeneous
architectures without any modification.

2.2 Colored Petri nets

Petri nets are a powerful modeling formalism
with both graphical representations and formal
mathematic definitions. The formal definition of
Petri nets is given in Ref. [11]. Petri nets are a
particular kind of bipartite directed graphs
composed of three types of objects, namely places.,
transitions and directed arcs. Directed arcs are
either from a place to a transition or from a
transition to a place. These three objects construct
the static structure of a Petri net. Besides, each

place can hold a nonnegative number of tokens in

it. With the flow of tokens among places, a Petri

24 T EAFHERKFFR

F 44 %

net is executable. Therefore, tokens provide Petri
net with the ability to model dynamic behaviors of
a modeled system.

CPN is a high-level extension for Petri nets.
The formal definition of CPN is given in Ref. [22].
The biggest difference between CPN and basic
Petri nets lies in the fact that each token in a CPN
model can be attached with a value. This value is
called token color. Tokens are distinguished from
each other by their colors. Token color provides
heterogeneity of

convenience for describing

modeled objects, and thereby enhances the
modeling power of Petri nets.

The behavior of a system can be described by
which

changes. It is the number of tokens and the token

system states and events cause state
colors in each individual place that represent
system states, while the events are represented by
transitions. A transition in a CPN model is either
enabled or disabled. A transition is said to be
enabled when a token of a given color is ready in
each input place (a place that has an arc directed
towards the transition). An enabled transition can
fire, indicating the event actually takes place.
When a transition fires, it consumes tokens in
input places, and produces new tokens in output
places (those places that have an arc starting from the
transition). Consequently, the firing of a transition is
accompanied with a flow of tokens, and thereby results
in a state change of a CPN model.

For the sake of its expressive power, we
tentatively use CPN to model the behavior of task

scheduling in our scheme.

3 CPN based scheduling scheme

This section presents the details on our
proposed scheme. We describe the scheduling
algorithm used in our scheme first. Subsequently,
the CPN model is presented in a top-down fashion.
3.1 Task scheduling scheme

The scheduling algorithm can be found in Ref.
[23]. The execution of a task is divided into
several allow exploiting

pipeline stages to

parallelism among tasks. The pipeline stages and the
manipulations at each stage are presented in Tab. 1.

Tab. 1 Processing flow of the scheduling algorithm

Task Status Wait Until Action or Bookkeeping

Check O i
e nee entering while (Results[D])

Destination scoreboard controller

PAR < Target processor
Dispatch getp

Task not Results[D]

determined by the
dispatching strategy

Busy[PAR] <yes;
Fi[PAR] <D;
Fi[PAR] <S1;
Fk[PAR] <S2;
Qj<Result[S1];
Qk<Result[S2];
Rj<not Qj;
Rk<-not Qk,
Result[D] <-PAR

Issue Not Busy [PAR]

Read

Rj and Rk Rj <No; Rk<No;
Operands
Execution Distribute tasks to
. Processor done
Complete processors

V {Gif Q[f]= PAR then
Ri[f] <Yes);

YIGf Qk[f]= PAR
then Rk[{] < Yes);
Result[Fil PAR]] < 0;
Busy[PAR] <-No

V {((Fj[{]#Fi[PAR]
Write or Rj[{] = No) &
Results (Fk[{] #Fi[PAR] or
Rk[f] =No))

3.2 Overview of the CPN model

The CPN model of our scheduling scheme is
established in a hierarchical way with a top level
module and several low level sub-modules. Fig. 1
illustrates an instance of the top level module. To
facilitate discussion on our scheme, we assume
that each task in the instance model has only one
output variable and no more than two input
variables. Also, we’ll present how to modify the
model to deal with tasks with more input/output
variables later in this section.

By convention, a place is drawn as a circle or
an ellipse with the place name written inside it.
Places are used to store the states of a modeled
system. In our model, the places drawn as circles
store the states of all tasks, while those drawn as
ellipses store the states of system resources.

Each place is assigned a color set, which is
denoted by an identifier around it, such as TASK
and DATA. The color set specifies the colors for

A colored Petri net based scheduling scheme for multiprocessor system-on-chip 25

1'(2,"ENC" 4,7,8)@0+++

1'(1,"DCT",5,0,6)@0+++
1(3,"DEC",1,3,T)@0 J

(nt,s1,55d)[Check | Utts51.52.d) @(n,{,s';,s'g,rfl

Dest

TASK TASK

Dispatch

Task

1 0@0+++ ENC","DEC"]@0

[1‘["GPP","DCT","[DCT".

1" H@0+++
1" 2{@0+++
I"3@0+++
1" 4@ 0+++
1" S@0+++
1" 6 0+++
1" T@0+++
1" 8@ 0+++
1'9@0

TASKxP

Write [/ m: Execute
Result [n,{,9.,?1,(1.;9}_/(:1,{;.,s':,d.p] (1,0.51,52.d.,p

Issue

(n,,51,52,d,p)

TASKxP
(m.0.51,52.d.p)

Fetch 5185,
Data

(n,t,51.52.d.p)
TASKxP

Fig. 1 Top level module of the CPN model in the initial marking

the tokens that can reside in a place. Note that
there are two places with the same name Data.
These places are called fusion places. Fusion places
with the same name function identically as any
change that happens to one place always happens
to the other ones. They can be drawn in different
modules across hierarchical structures. Therefore,
fusion places provide a hierarchical way for representing
a unique place in multiple locations within a model.
Transitions are drawn as rectangles.
Transitions can be interpreted as events of the
modeled system. Each transition in the top level
module respectively represents the operations on
tasks in a particular pipeline stage. Some pipeline
stages are too complex to be modeled by a single
basic transition. Each of these pipeline stages is
modeled in a hierachical way. In the top level
module, a stage is represented by a substitution
transition which is marked with double line

borders. Each

corresponding low level module, and functions as

substitution transition has a
the compound behavior of all model elements in the
low level module. A transition may have a code
segment, guard function and duration inscription
with it. They are not drawn in the figure to
preserve the clarity. The details of them will be

included in the rest of the paper when necessary.

Arcs are drawn as directed lines. Each arc has an
arc expression attached to it. The arcs drawn as bi-
directional lines are short for two mono-directional
lines with the same arc expression. The arc between
the place Locked Data and the transition Write Result
is distinct from other arcs, as it’s ended with an empty
circle instead of an arrowhead. It is an inhibitor arc
which is used to test the absence, rather than the
presence of tokens, in a place.

All tokens should be accommodated in places.
The tokens contained in a place are drawn in the
rounded rectangle attached to it. The absence of a
rounded rectangle means the place contains no
tokens. In our model, tokens are used to model
software application (tasks) and system resources
(considering processors and variables).

The source and destination variables of tasks
are represented by tokens contained in the place
Data. Each token has a prefix which indicates the
quantity of tokens with the same color. and also a
time stamp as the suffix. The token color is an
integer number acting as the variable name.

The color of the token in the place processor is
of list data types. Each element in the list
represents a free processor in the modeled system.
We use the token colored in GPP to denote a GPP
in the modeled system, while DCT, IDCT, ENC

26 T EAFHERKFFR

F 44 %

and DEC to ASPs
functionalities, DCT encoder/decoder and AES

encoder/decoder respectively. Likewise, the token

denote with different

contained in the place Locked Data is also colored
by a list. The elements of the list represent the
variables which are to be read during the execution
of the model. At model start-up, the token color is
a blank list denoted by the symbol [].

Tasks are also modeled by tokens. Token
colors are used to distinguish not only different
tasks but also the same task in different states.
For instance, a newly coming task is modeled by a
token in place A whose color is a product of 5
elements, (n,t,5,5.d). When a task has already
been dispatched to a processor, the token color
will turn into a product of 6 elements, (n,t, s 5,
ds p). The elements represent the serial number,
the task type, two source variables, destination
variable and the processor of a task, respectively.
For the tasks with only one source variable, s can
be assigned a meaningless value.

Fig. 1 also shows the initial marking of our
model. An initial marking refers to the tokens
residing in each place at the start-up of the model.
It is determined by system specification and
application, since tasks and system resources are
all represented by colored tokens in our model.
Unlike many other modeling methods, we just
need to modify the initial marking when the
modeled system changes, without any modification
on the net structures of the model. It brings in
higher flexibility and scalability to our model.

3.3 Processing flow of the CPN scheduling scheme

In this sub-section, the processing flow of our
CPN based

interpretations on tokens, transitions and places,

scheduling scheme, with the

is presented. Especially, we present how inter-

task dependences are modeled and resolved.

3.3.1
At the start-up of the model, only the

Check destination

transition Check Dest is enabled. The transition
models the first pipeline stage in our scheme. It’s

connected to three input places A, D, and data.

The place A acts as task queue and each token in it
represents an individual task to be processed. The
place D can be interpreted as a task counter, which
forces tasks in the queue enter the scheduler in
order. Tokens in place data represent task
variables free to write.

Output-dependences can be identified in this
stage. They are modeled by transition Check Dest
competing for the same token in data. During
model execution, the transition Check Dest keeps
checking the presence of the token d in the place
data. If the token is found missing from the place,
it indicates the existence of an output-dependence.
So the transition will stay disabled. On the
contrary, the presence of the token indicates that
no other active tasks have the same destination
variable as the incoming task. In this case, the
transition Check Dest is able to fire, removing one
token from each input place and producing a new
token in the place B.

If there are tasks with more than one
destination variable, the transition Check Dest
should be modified as a substitution transition
whose low level module is illustrated in Fig. 2. In
this module, the transition # represents the
behavior of checking the availability of the first

destination variable d;, while the transition ¢, can

I
I
|
I
1t 51820 bl
I
|
I
|
I
I

DATA !

(u,.',.s‘l,.lr«.d 1otlady) (151520 db...dy)

: o

(m,t.51.52,d)da..dy)

TASKxP

Fig. 2 Model of Check Dest

A colored Petri net based scheduling scheme for multiprocessor system-on-chip 27

be interpreted as checking the availability of the
second destination variable d,. If tasks have more
destination variables, extra branches must be
added into the model. The elements of a branch
involves p,» qu» L. and attached arcs, which are
marked by thick border lines in Fig. 2. Note that ¢,
won’'t be enabled unless all the other transitions
have fired, meaning that the destination is ready
only when all output variables is free to use.
3.3.2 Dispatch task

The transition dispatch task represents the
event of dispatching tasks. As mentioned before,
different dispatching strategies can be evaluated
within our scheduling scheme. For demonstration,
we implement a greedy dispatching strategy in this
paper. The greedy strategy is intuitive. That is, if
there is any ASP available, a task will be dispatched to
an ASP for acceleration. Otherwise, the task will be
sent to a free GPP. If neither an ASP nor a GPP is
available, then the task must wait. The model of the

greedy dispatching strategy is shown in Fig. 3.

(n,t,5),82,d)

e i B _————

I
| (n,t,51,52,d)
|

input (t, proc);
output (p, b);
action

I

I

I

|

|

! disp_task(t, proc); @+1
I

I t

| TASKx (151,52, FALSE)

I

: (4,51,52,dp, TRUE)

|

|

I

| t

| Dispatch Task

("a'rr"'l r“Z'd’p)

TASKxP

Fig. 3 Model of dispatch tasks

Once the place B receives a token, the
transition t; will fire and produce a new token
whose color is a product of 7 elements (n,t, 55 5,
d, p» b). The last element is a Boolean variable
indicating whether a structural dependence exists.

If there is no free processor capable of executing

the task, # will produce a token (n,t, s, .d, p,
False) to enable the transition t ., indicating a
structural dependence exists. Structural
dependences are modeled by competition relations
on tokens in the place processor. Subsequently,
the transition t, will fire and add a token in place
B. Then 1 is enabled once again. Note that the
transition & has an inscription @ +1 which means
that the firing of the transition has the duration of
one time unit. As a consequence, t will repeat
firing once every time unit. When any processor
able to execute the task becomes free, t will
produce a token (n,t, 5,5 ,d, p» True) where True
indicates the absence of structural dependences and
p represents the processor assigned to the task.
The token will enable the transition t; rather than
t,. After t; fires, the dispatch task stage is over.
The transition t; in Fig. 3 has an attached code
segment written in CPN ML. The code segment
determines the color of the token t; produced.
3.3.3

The third pipeline stage is modeled by the

Issue

transition Issue. The transition will be enabled
immediately when the place C obtains a token. The
state changes caused by the firing of the transition
are listed below:

@O The token in C move to the place E,
meaning the task has been issued;

@ The token d is removed from data,
meaning the task is about to write the
corresponding variable;

@ The elements (n, 5,) and (n, 5) are added
to the token in locked data, meaning that the nth
task is about to read corresponding variables;

@ The element p is removed from the token
in Processor, meaning the processor is busy;

® A token is added in the place D, allowing the
next task to enter the scheduler from the task queue.

In our scheme, a task won't be issued unless
all needed resources (processor and destination
variables) are prepared. Besides, a task is not

allowed to enter the scheduler until its previous

task has been issued. This guarantees that no later

28 T EAFHERKFFR

F 44 %

tasks would preempt the needed resources from an
issued task. By this means, dead-locks on critical
resources are avoided.
3.3.4 Fetch data

After a task is issued, the assigned processor
is to fetch input data. The event is represented by
the substitution transition fetch data. The low level

module of the transition is illustrated in Fig. 4.

!Fetch Data

I
: i
' |
L (ntsisadp) (mts51,82,0.p)1
| @) @)
! i
[-
DATALIST : (n,0,51,52,d.p) 5 1
I
I 3
! .
I
|
4

(n,1.51.52.d,p)

rdat:

(11,0,51,52,dp)¥ (1,0,5),52,d.p)

Fig. 4 Model of fetch data

Before the operation of fetching input data,
the availability of input data should be checked.
Tokens in place data can be interpreted as the
variables ready to be read here. The transition t
represents the event of checking the availability of
the first source variable. A true-dependence is
modeled as transition &, waiting for needed tokens
in place data. The absence of the token s in the
place data indicates that a true-dependence exists.
The t; must wait until the token s is returned to
data. Likewise, t; represents the event of checking
if the other source variable is available. The
transition t; models the operation of fetching input
data. It will be enabled when both & and # have
fired. The duration inscription of the transition
represents the time spent on fetching data from
memory. At the end of this stage, the transition
will remove the elements (n, s) and (n,s;) from
the token in locked data to allow later issued tasks
writing the variables s, and s,.

The model should be extended with extra elements

when a task has more than two source variables.
3.3.5

The model of the pipeline stage execute may

Execute

vary with respect to the specification of the
modeled system. Fig.5 shows an instance of the
model. In this instance, we assume that the
modeled system supports four types of tasks and
integrates one ASP for each type of task, as well
as a GPP. Thus, there are two ways for executing
a task, either on a GPP or on an ASP. The four
transitions in the top half of the model represent
executing a task on a particular ASP (DCT,
IDCT, ENC or DEC). Other transitions represent
executing different tasks on the GPP. All these
transitions have a same input place G. Tokens in
the place represent tasks to be executed, and each
token can enable only one transition, meaning a
task can only be executed in one way. Each
transition has a guard function drawn near its left
top corner. It is the guard function that determines
which transition can be enabled by a particular token.
Besides, each transition has a duration inscription near
its top right corner to model the task execution time.
No matter which transition fires, it will consume a
token in place G and add in place H a token which

represents a task to be written back.

(Execute 700 Gviper

(mt.s1,50400)

PP andakso 1 ="DCT"] @+t GDCT

Fig. 5 Model of execute

3.3.6 Write result
Before a task writes back its computing

result, the absence of anti-dependences should be

A colored Petri net based scheduling scheme for multiprocessor system-on-chip 29

checked prior. In our scheme, an anti-dependence
is modeled by the transition waiting for the absence
of tokens in place locked data. Theoretically, this
relation can be represented as an inhibitor arc.
However, there is no direct support for inhibitor
arcs in CPN tools. So we model the event using

several CPN objects as illustrated in Fig. 6.

TASKXP __ ,
Write Result1
| DATALIST

1
rdata 1

(m,,51,52,d,

p.TRUE)
DATA (n,t.5,,52,d,p,FALSE)

@: 3 7]
[Datal L I

_____________________ PROCLIST

(nyt,s51,52,d,p) :

Fig. 6 Model of write result

The token in place locked data is a list which
records the variables to be read. Once transition
gets a token, it will check whether any earlier
issued tasks are to read the destination variable of
the current task. If yes, t, will produce a token
(n,ts 515 825ds py True), meaning there exists an
anti-dependence. The produced token will enable
the transition t,. Subsequently, the transition
will fire and enable 1, again. Consequently, # will
keep on firing once every time unit until the earlier
task has read the variable. By then, t is able to
fire, producing a token (n, t, s 52, d, p, False)
rather than (n.t,s,.%,d, p» True). The token will
make the transition & fire. The transition t; will
return the token d to the place data, allowing the
following tasks to write the corresponding
variable. Besides, it will add the element p to the
token in the place processor, meaning the
corresponding processor is free for use again. The
duration inscription is used to model the time spent
on writing computing results to memory. After the

firing of t;, the processing flow for a task is over.

4 Evaluation

4.1 Prototype system

Our proposed scheduling scheme is generic

and can be applied to a wide range of MPSoC
platforms. For demonstration, we present the
application of our scheme in a real-world platform.,
SOMP platform, within this section. The modeling
results are further evaluated and prove to be correct.
SOMP is an FPGA based multiprocessor
system which integrates heterogeneously embedded
processors and hardware IP cores on a single chip.
Fig. 7 illustrates the architectural view of SOMP
platform, and the details on SOMP can be found in
Ref. [4]. The scheduler is responsible for
tasks them into

scheduling and dispatching

different processors. It can be implemented as
either a software component running on an
embedded processor or a standalone hardware
module. SOMP offers the ability to fast build a
prototype system and its integrated processors can
be easily reconfigured. So we select it as our
evaluation platform. We have built prototype

Xilinx Virtex-5 FPGA boards.

Besides, we have applied our scheme to designing

systems on

prototype systems and implemented a software
edition scheduler. The details on the implementation of
the scheduler can be found in Ref. [23].

Applications

v

Memory [«—> Scheduler

Peripherals

E L.

A A 4

On-Chip Interconnect

14 v I N

1 s H 1 | |

| Computing Computing ' H pcore |1

: Processor Processor | | |

1 I

| L :
: B 1 I

1 | Computing Computing | | | i

: Processor Processor : I IF Core :
v

Sttt e —m—m——— - — - ——— -

Fig. 7 Architecture of SOMP platform

To apply our scheduling scheme to SOMP, we
must map functional components of a prototype
system to different model elements. Besides, the
initial marking of the model should be configured
according to system specification. The CPN model
is implemented using CPN tools. To get precise

simulation results, all time parameters of CPN

30 T EAFHERKFFR

F 44 %

models are configured according to the measurements
on prototype systems, including task execution times,
memory access times and bus transmission times.

Assisted by the built-in simulator in CPN tools,
we conduct time based simulations on CPN models.

During simulation, each step of CPN model
execution is recorded and output to a report file.
The report file can be used to generate timing
diagrams for investigating the process of task
scheduling. The diagram shows the firing time and
duration time of each transition that occurs during
a simulation. By comparing the timing diagram
with the actual result derived from prototype
systems, we can guarantee the behavior of CPN
model is consistent with that of the modeled system
and ensure the correctness of the model execution.
4.2 Comparison experiments

In order to evaluate the performance of our
proposed scheduling scheme, we also implement
software edition of task superscalar®™ on the
prototype system and conduct a series of
comparison experiments. Task sequences listed in
Tab. 2 are selected as test cases in the experiments.
The four tasks in sequence 1 have no data dependences
during execution, while the other task sequences
have different data dependences of various occurring
frequencies. Investigating the speedups for these
task sequences, we can find out the performance of
both task superscalar and our CPN based scheme
when dealing with different dependences.

Tab.2 Sample task sequences

Sequence 1 Sequence 2 Sequence 3
(no dependences) (50%* RAW) (100% RAW)
add(5,0) add(5,1) add(5,1)
idet(6,1) idet(6,5) idet(6,5)
enc(7,2,3) enc(7,3,6) enc(7,3,6)
dec(8,2,4) dec(8,4,2) dec(1,4,7)
Sequence 4 Sequence 5 Sequence 6
(50% WAW) (100% WAW) (25% WAR)
add(5,0) add(5,0) add(1,0)
idet(5,1) idet(5,1) enc(2,1,3)
enc(5,2,3) enc(5,2,3) dec(3,4,0)
dec(4,7,6) dec(5,2,4) idet(5,6,0)

[Note] * The percentage presents the occurring frequency of data

dependence

The prototype system integrates a GPP as the
scheduling processor and four different ASPs
(ADD, IDCT, ENC and DEC respectively).
Besides, the prototype system is set to be of
different configurations and the execution times of
ASPs vary

sequences 1~5, all ASPs have the same execution

among configurations. For task
time in each individual configuration, which are
5 000(5 k), 10 000(10 k), 20 000(20 k), 40 000
(40 k) and 80 000(80 k), respectively. For task
sequence 6, the execution times for ASPs are
shown in Tab. 3 so as to ensure the appearance of
WAR dependences during task execution. By these
means, we can evaluate the influence of task
granularity on the performance of scheduling
schemes. Moreover, each sequence is repeated

executing for several times to simulate the

applications with different task scales.

Tab.3 Execution times of ASPs

Execution times (clock cycles)

Configuration

IDCT / AES_DEC AES_ENC/ ADD

clgl 5000 10 000
clg2 10 000 20 000
cfg3 20 000 40 000
cfgd 40 000 80 000

The experimental results are illustrated in
Fig. 8, where the y coordinate denotes the speedups of
each scheduling scheme to totally sequential execution,
the x coordinate denotes the number of times that a
sequence is repeated, while bars represent the
speedups for different system configurations.
4.2.1

Fig. 8 (a) shows the experimental results for

No data dependences

task sequence 1, which has no data dependences.
Theoretically, the speedups of both approaches are
the same, and their upper limit equals to 4.0.
Actually, however, our approach performs more
effectively than task superscalar when given a fixed
task granularity and scale. It demonstrates that
our scheme introduces less time overhead thanks to
its simplicity. Especially, the smaller the task
granularity is, the lager the speedup gap between

two schemes will be.

%14

A colored Petri net based scheduling scheme for multiprocessor system-on-chip 31

OSKCPN ®5KTS SI0KCPNEIOKTS B20KCPN (pn. CPN based scheme
B2OKTS 240K CPNE4OK TS OROK CPN@BOKTS TS: Task superscalar

ul

(=l S RV

T e

—_
0
—

[T SS IRV

0.9—afif
0.7 i
0.5~ LR A

3.5+
2.54
1.5+
0.5+

(=T S V]

Fig. 8 Comparison of task superscalar

and the CPN based scheme

For each individual scheme, when given a
fixed task scale, the speedup will rise as the
granularity of each task increases. That’s because
the scheduling overhead is fixed when given a task
scale. Therefore, as task granularity increases, the
proportion of the scheduling overhead to overall
execution time decreases and the speedup goes up.
4.2.2 RAW dependences

Given sequence 2, the task execution order
varies between two schemes due to the influence of
With the help of its

internal structure reservation station (RS), task

structural dependences.

superscalar can issue a task even if a structural
hazard actually exists. Therefore, the following

tasks with no dependences can be executed in

advance. On the contrary, our scheme must block
all the

structural hazards. For the reason above, task

following tasks when encountering
superscalar theoretically exhibits more excellent
performance than our scheme. When given sequence
2, the upper limits of theoretical speedups for task
superscalar are respectively 4. 0 and 2. 67.

The experimental results in these two cases
are shown in Fig.8(b), where we can see that,
task superscalar achieves higher speedups than our
approach when the execution time of each task is
large enough. That’s because task superscalar is
able to uncover more potential parallelisms than
our scheme. As task execution time decreases, the
influence of scheduling overhead on system
performance is enhanced. Consequently, the speedups
of both approaches decrease. The speedup of task
superscalar decreases more significantly than our
scheme since the time overhead brought in by task
superscalar is much greater than that of our scheme.
As a result, when the execution time for each task is
no more than 10 000 cycles, our approach exceeds task
superscalar in speedup finally.

For sequence 3, both approaches achieve the
same theoretical speedup (equal to 1.0) since
neither task superscalar nor our scheme can
eliminate RAW dependences. Fig. 8 (¢) illustrates
the comparison of our approach and task
superscalar in this case. Observing the figure, we
can find the same phenomena as in the pervious
experiment: (O given a fixed task scale, the
speedups for both approaches increase as the task
granularity goes up; @ given a fixed task sequence
and the scale, our scheme achieves higher speedups
than the other. The reasons for these phenomena
are the same as those for sequence 1.

4.2.3 WAW dependences

Task sequences 4 and 5 have increasing
frequencies of WAW hazards, which are 50% and
100%, respectively. Unlike our scheme, task
superscalar can eliminate WAW and WAR hazards
Therefore, task

using renaming mechanism.

superscalar can achieve better performance in these

32 T EAFHERKFFR

F 44 %

cases theoretically. Given task sequences 4 and 5,
the upper limits of theoretical speedups for task
superscalar are all 4. 0, while those for our scheme
are 1. 33 and 1. 0, respectively.

Fig. 8(d) and Fig. 8(e) respectively show the
actual experimental results for comparison of both
and 5.
Observing Fig.8 (d), we can find that task

approaches when given sequences 4
superscalar can benefit from tapping out more
parallelism and achieve better overall performances
when the task granularity is large enough.
However, as task granularity decreases below a
threshold, our scheme shows better performance
than task superscalar, benefiting from its lower
The threshold is nearly
10 000 cycles for sequence 4, while for sequence 5,

the threshold falls below 10 000 cycles.
Based on the observation on Fig. 8 (d) and

scheduling overhead.

Fig. 8(e), we can also evaluate the effect of the
occurring frequency of data dependences on the
resulting speedups for both approaches. Given a
fixed task execution time, 10 000 cycles for
demonstration, task superscalar achieves higher
speedup when applied to task sequence 5, where
the occurring frequency of WAW dependences is
100%. When the

(sequence 4), the speedups for both approaches

frequency drops to 50%

are more or less the same. That's because, as the
frequency decreases, our scheme benefits from the
increasing parallelism hidden in tasks and thereby
achieves higher speedups, while the speedups for
task superscalar remain unchanged. It can be
concluded that our scheme can achieve greater
speedups than task superscalar when the frequency
drops below 50%.
4.2.4 WAR dependences

The comparison of two schemes on sequence 9
is illustrated in Fig. 8 (). Theoretically speaking,
task superscalar should exhibit better performances
than our approach, since it can eliminate WAR
hazards while our approach cannot. However, the
experimental result on the hardware platform
achieves better

demonstrates our approach

performances in this case. The reason is that our
scheme brings in lower time overhead when
scheduling tasks. Benefiting from that, our
approach achieves higher speedups, although it can
tap out less parallelism than task superscalar.

Through comparison experiments on various
sample task sequences, we can make the following
conclusions:

@ Our scheme introduces less time overhead
than task superscalar during scheduling. Benefiting
from that, even though both approaches tap out
more or less the same quantity of parallelisms, our
scheme will achieve higher speedups.

@ Although task superscalar can uncover
more parallelism by utilizing renaming mechanism
when encountering WAW and WAR hazards, our
approach still outperforms if the occurring
frequency of these hazards is low or the task

granularity is small.

5 Conclusion

In this paper, we propose a CPN based
MPSoCs,

dynamically schedule tasks to perform out-of-order

scheduling scheme for which can
execution and thereby improve the parallelism of
applications. Assisted by the modeling power of
CPN, various types of inter-task dependences can
be detected automatically. Besides, different
dispatching strategies can be easily evaluated in our
CPN based scheme.

implemented in CPN tools. The correctness of our

Our proposed scheme is

scheme is demonstrated through state space
analyses and case studies, and the effectiveness is
evaluated by comparison with state-of-art task

superscalar.
References

[1] Kumar, Hughes C],

Architectural support for fine-grained parallelism on

Nguyen A. Carbon:

chip multiprocessors [C]// Proceedings of the 34th

Annual International ~Symposium on Computer
Architecture. San Diego, USA: ACM Press, 2007:
162-173.

[2] Sanchez D, Yoo R M. Kozyrakis C. Flexible

A colored Petri net based scheduling scheme for multiprocessor system-on-chip 33

[4]

L6]

L7]

[8]

L9]

[10]

[11]

[12] Jensen K.

[13]

architectural support for fine-grain scheduling [C]//
15th Edition of ASPLOS on
Architectural Support for Programming Languages and

Pittsburgh, USA: ACM Press,

Proceedings of the

Operating Systems.
2010, 311-322.
Etsion Y, Cabarcas F,

Rico A, et al. Task

superscalar: An out-of-order task pipeline [C]//
Proceedings of the 43rd Annual IEEE/ACM
International ~ Symposium on Microarchitecture.
Atlanta, USA: IEEE Computer Society, 2010
89-100.

Wang C. Zhang] N, Zhou X H., et al. SOMP.

Service-oriented multi processors C|// Proceedings of
the IEEE
Computing.
Society, 2011: 709-716.

Alur R, Dill D L. A theory of timed automatal]].
1994, 126 (2):

Conference on Services

USA: 1EEE Computer

International

Washington,

Theoretical Science,
183-235.

Alur R, La Torre S, Pappas G J. Optimal paths in

Computer

weighted timed automata[]J]. Theoretical Computer
Science, 2004, 318(3): 297-322.
Behrmann G, Fehnker A, Hune T, et al.

cost reachability for priced timed automata [C]//

Minimum-

Proceedings of the 4th International Workshop on
Hybrid Systems: Computation and Control. Rome,
Ttaly: Springer-Verlag, 2001 147-161.
Abdeddaim Y. Kerbaa A, Maler O.

scheduling using timed automata[C]// Proceedings of

Task graph

the 17th International Symposium on Parallel and

Distributed Processing. Washington, USA. IEEE
Computy Society, 2003 237.2(1-8).

Behrmann G, Larsen K G, Rasmussen] 1. Optimal
scheduling using priced timed automata[]J]. ACM
SIGMETRICS Performance Evaluation Review, 2005,
32(4): 34-40.

Srba J. the

automata and timed extensions of petri nets [C]//

Comparing expressiveness of timed
Proceedings of the 6th International Conference on
Formal Modeling and Analysis of Timed Systemss.
Saint Malo, France: Springer-Verlag, 2008;: 15-32.
Murata T. Petri
applications [] J.
77(4) ;. 541-580.
Coloured Petri nets [A]// Petri Nets:
Central Models and Their Properties, Lecture Notes in
Computer Science. Springer, 1987, 254 . 248-299.
Zuberek W M, Govindarajan R, Suciu F. Timed

colored Petri

and

1989,

nets: Properties, analysis

Proceedings of the IEEE,

net models of distributed memory

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

multithreaded multiprocessors[C]// Proceedings of the
Workshop on Practical Use of Colored Petri Nets and
Design. Aarhus,Denmark, 1998. 253-270.

Azgomi M A, Entezari-Maleki R. Task scheduling
modelling and reliability evaluation of grid services
using coloured Petri nets [J]. Future Generation
Computer Systems, 2010, 26(8): 1 141-1 150.

Blej M, Azizi M. Modeling and analysis of a real-time
system using the networks of extended Petri []].
Journal of Computers, 2009, 4(7) . 641-645.
Madhukar M, Leuze M, Dowdy L. Petri net model of
a dynamically partitioned multiprocessor system[C]//
Proceedings of the 6th International Workshop on Petri
Nets and Performance Models. Durham, UK. IEEE
Computer Society, 1995: 73-82.

Tavares E, Oliveira Jr M, Maciel B, et al. Pre-runtime
scheduling considering timing and energy constraints in
embedded systems with multiple processors[C]// IFIP
Model-Driven Design to
Distributed Embedded
Systems. Braga, Portugal: Springer, 2006 255-264.
Maciel P, Neves M,
approach for off-line multiprocessor
embedded hard real-time systems[C]// FIP working
Conference on Design Methods and Applications for
Distributed Embedded Systems.
Springer, 2004 157-166.
Neubauer F. Hoheisel A, Geiler J. Workflow-based
Grid applications [J J.
Systems, 2006, 22(1-2): 6-15.

Hoheisel A, Der U. Dynamic workflows for grid

working Conference on

Resource Management for

Barreto R, et al. A novel

scheduling in

Toulouse, France:

Future Generation Computer

applications[C]// Proceedings of the 3rd Cracow Grid
Workshop. Krakau, 2003 (http://www.
andreas-hoheisel. de/).

Eskinazi R, de Lima M E, Maciel P R M, et al. A

timed Petri net approach for pre-runtime scheduling in

Polen,

partial and dynamic reconfigurable systems [C]//
Proceedings of the 19th IEEE International Parallel and
USA.:

Distributed Processing Symposium. Denver,

IEEE Computer Society, 2005; 330-337.

[22] Jensen K. An introduction to the theoretical aspects of

[23]

coloured Petri nets[AJ]// A Decade of Concurrency
Notes in
Computer Science. Springer, 1994, 803: 230-272.

Wang C, Li X, Chen P, et al. Detecting data hazards

Reflections and Perspectives, Lecture

in multi-processor system-on-chips on FPGA [C]//
the 26th Parallel and Distributed
Processing Symposium Workshops & PhD Forum.
Shanghai. China: IEEE Press. 2012. 282-287.

Proceedings of

