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0 Introduction For any s@ooth funct.ion f defined on. T M,
one can associate a Hamiltonian vector field X,
Let (M", g) be a smooth Riemannian defined by w(X,, « )={(df, +>. We call (T* M,

manifold with metric g = (g; ). Its cotangent w» Xy ) a Hamiltonian dynamical system with

bundle T* M plays an outstanding role in physics. Hamiltonian H. In the canonical coordinates
It serves as a natural phase space of particles or (x', pi) . its equations of motion read

systems. There exists a canonical symplectic i OH’ b —— QH, i 1een,
structure w on T*M. In terms of the natural Ipi I’

fiberwise coordinates (x', p;) of T* M, it is given

byw = >,dz' A dp..
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In particular, the system is called the geodesic flow

of the metric g, if the Hamiltonian function is
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Heop) =5 [ p i =5 Depp, (D

¥
where | » |2=( «, ), denotes the norm (scalar
product) of the vector space T M induced by g.

A geodesic flow is called integrable if it is
Liouville integrable as a Hamiltonian system. That
is, there exist n = dim M involutive and
functionally independent first integrals on T* M.
Integrable geodesic flow has been extensively
studied, see e. g. Refs.[1-3].

In this note we will study the dynamic
behavior of the geodesic flow on two-dimensional
non-canonical torus T?(e) with the metric

g =r‘[sin’0+ (14 e)?cos’0]dF +
(R +rcos 0)*dg* (2)
where R > r >0 are constants and ¢ € R is a
constant. When ¢ = 0, this metric is a canonical

(1), the

corresponding geodesic Hamiltonian reads

metric on torus T?. From Eq.

B y N
2r* [ sin0+ (1 +¢)%cos*d ]

pZ

2(R + rcos 9)°

This paper is organized as follows. In section

(3

1 we will prove the complete integrability of the
geodesic flow using the method of Killing vector
fields. In section 2 we show that the geodesic flow

has a vanishing topological entropy.

1 Complete integrability of geodesic
flow

In this section, we will show that
Theorem 1. 1

canonical torus T? (e) is integrable with an

The geodesic flow on the non-

additional linear integral.

Our strategy is to show the existence of such a
first integral by working out the Killing tensor of
valence one, 1. e. the Killing vector field on the
base manifold M.

Recall that a Killing tensor T of valence s on
(M,g) is a symmetric (s,0)-tensor satisfying the
equation [ Ts G] = 0, where [ *, « ] is the

Schouten bracket and G=g ™! is the inverse metric.

According to Refs. [ 6-8 ], a first integral K

polynomial in  momenta is in  bijective
correspondence with Killing tensor T through

the relation

K = 2T (@) py by, (4)

RN
where T is the component of T.

Let X=a(0,¢$)d;+b6(0,4)d; 5 be a vector field
on the torus, where smooth functions a,b are 2z
bi-periodic w. r. t. § and ¢, that is, a(0+2x,¢) =
a(@s¢+2r)=a(f,¢), and similarly for b.

Lemma 1.1 The Killing tensor equation for
X, [X,G]=0 is equivalent to the following system
of differential equations

— (2e +¢*)sin 0 cos fa +
[sin®0+ (1+e)?cos?0ay =0 (5)
r*[sin*0+ (1 +e)?cos’@lay + (R4 rcos )by = 0
(6)
—rsin fa + (R+rcos Db, =0 7))
Proof
bracket coincides with Lie derivative. Let X be a
Killing field, then [ X,G]= %G =0. Since gG=

id, the above equation is equivalent to Yxg =0, the

For a vector field, the Schouten

vanishing of Lie derivative of metric g along the
direction of X. Observe that
Pg = L (P Lsin?0+ (1 4¢e)?cos?0]doO dd) +
Ix((R+rcosh)*dg@©dg) =: A+B  (8)
where ® denotes symmetric product of tensors.
The first part is, essentially,
A/2rF =— (2e +¢€*)sin 0 cos Qadi©dd+
[ sin’0+ (1 +¢e)2cos?l] -
(apdd©di+ a,dp©dD (9)
and the second part is
B/2 =— (R+rcos Or sin fadg®d¢ +
(R +rcos®)’ (bydd®@d¢ + b, dg©dg) (10)
where we have used the identities Yx0=a, Yx¢=0.
Combining (8) ~ (10)
simplifying them,

together and
one obtains the system of
equations (5)~(7).
Lemma 1.2 The system of equations (5) ~
(7) has only the trivial solution
a(f,¢) =0, b (§,¢) =C = const (11)
Proof Note that Eq. (5) implies



978 FEAFHEARARF FR

% A6 %

dlog [a| _ay
79(9 76( *K(@)a

where ¢ () is a smooth function of 4 only
(similarly for functions below). So,
log | a |= k(@ +A(g).
Then we have
a(,¢) =+ expe() « expA(p) := ODD($)
(12)
Substitute (12) into (6) and (7), one can solve

them to get
by —— OO P, (sin’§+ cos’0e” + 2 cos’fe + cos’))
’ (R 7 cos 0)°
. rsin 0O () J
’ R+ rcos 0
(13

From Eq. (13), the identity 9,6, = db,turns out
to be
— @, ;700 (sin’ @+ cos’ e’ + 2cos’fe + cos’ ) =
D(¢)[ cos Osin 0O + OO cos OR +
sin 0O,R + 6]
Since both sides are the products of a function of
variable § and that of variable 4. it follows that
both of them are identical to each other (up to a
constant factor C), that is,
(O (O (sin*0 + cos’e” + 2cos*0e + cos’)) =
cos 0sin 0O@g + O(0) cos R + sin 0O,R + O r
(14
Also when substituting (12) into (5) and
eliminating the functions of 4. one has
— (2e +¢€*)sin fcos 0O D) +
[sin0+ (14+e)?cos?0]®, =0  (15)
Comparing (14) with (15), one concludes that the
function ® must vanish identically, which yields
a(f,$)=0 and b (4, $)=C=const.

We are now in a position to show the Theorem
1. 1.

Proof of Theorem 1.1 ILet X be a Killing
vector field on the non-canonical torus, then by
Lemma 1.2, X must be of the form, X=Cd,,
where C is the constant value of function b.
Consequently the vector space of Killing vectors is
of dimension one with generator d,.

According to the correspondence relation (4),

the Killing vector X=C 9, corresponds to linear
first integral K = p,. It is easy to see p, is
independent of the Hamiltonian (3). This implies
that the geodesic system is Liouville integrable.
Remark It is clear that the non-canonical

torus admits a one-dimensional algebra of Killing

fields. The torus is compact, therefore its
isometries group consists of finite connected
components with the identity = component

isomorphic to circle group S'.
2 Vanishing topological entropy

In this section we investigate the dynamic
behavior of the geodesic flow of the non-canonical
torus T?(e). Our main result is the following.

Proposition 2. 1 For ¢>0, restricted to each
hypersurface Q= H~! (¢), the geodesic flow of
non-canonical torus (2) has a vanishing topological
entropy h,, 1. e. h,=0.

For the definition of topological entropy in
general dynamical system, the reader is referred
to, e. g Refs. [2,4]. Our major method to prove
Proposition 2. 1 is using a result due to Ref. [9].
Other than for geodesic flow only it can be stated
in more general setting as below.

Let % be a four-dimensional symplectic
manifold and H a Hamiltonian function on % Let
Q=H '(¢) , céR, be a nonsingular compact level
set of H, here nonsingularity means the one-form
field dH never vanishes on Q. By implicit function

theorem, it implies that Q C ¥ is an embedded

submanifold of dimension three, i. e. a smooth
hypersurface.  Suppose the system Xy is
completely integrable with an independent

additional integral K on & We restrict the
Hamiltonian flow Xy on full phase space 7 to
invariant subspace Q. For the restricted flow,
we have

Lemma 2.1%

setting, suppose when restricted to Q, function

Under the above general

%:K‘Q verifies either one of the following

conditions:

D K is real analytic,
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@ the connected components of the set of

critical points of K form submanifolds.

Then the topological entropy of the restricted
flow on Q vanishes.

In order to use the above lemma to study
geodesic system of the non-canonical torus, we
want to know which level set of H is nonsingular.

As a kinematic energy, Hamiltonian (3)
satisfies H=0. Let Q= H '(¢)CT* T?(¢) be a
level set, where ¢ is a constant. Then ¢=>=0, and
¢=0 corresponds to the special case

Q= H"'(0) = {(0.4.0.0) | (0.¢) € T* (&)}
which is nothing but the smooth zero section of the
vector bundle T T? (¢). It is diffeomorphic to the
base manifold T? (¢), so Q has dimension two.
Moreover, we have

Lemma 2.2 The smooth function H is
degenerate iff p,=p,=0.

Proof In a componentwise form, we calculate

the one-form dH as

dH — [Zj)gsin oW — 1) 2rpysin
> Wecos 0 (R—+rcos )’
O pﬁ pqS :|
"2 W’ (R + rcos )2

where W=sin’0+ (1+¢)*cos’ 0.

Degeneracy of H corresponds to dH = 0,
which is exactly py= p, =0 in view of the above
explicit expression.

Taking into account the above result, we shall
restrict ourselves to the condition ¢>>0.

Lemma 2.3 For any ¢>0, QCT* T?(¢) is a
compact hypersurface.

Proof According to the above discussions,
when ¢>>0, function H; T? (¢) >R is smooth and
non-singular on Q = H ' (¢). Implicit function
theorem immediately implies that QC T T?(e) is a
regular submanifold. It suffices to show that Q is
compact.

We argue by a detailed topological analysis.
Note the tangent bundle of a torus is a trivial
bundle, which is a general property of any Lie
group. Also a vector bundle is always isomorphic
to its dual bundle, it follows that T T?(e) is

trivial,  hence T T?(e)==T*%(e) XR%, The
coordinates globally split as (0,¢)€T?(e) and
(pos py) ER

One can see that W is bounded, so let us
assume W << ¢,, ¢, € R". The condition H = ¢

implies that

o= Do bi
T 2PW T2 ¢
It follows
| o <7 v/ 2ccq (16)
Similarly,
bi ~ b

“Z 2R+ reosd)’ = 2R+ 1)
implies
| ps |<<(R+1) V2¢ (17
(16) together with (17) give that
pi i < 2c[rco F(R+r*] =5 (18)
where s is a constant, s>0.

Let us denote by D, the closed disc, D, =
{(pgs py) | pi+p;<<s"}. The condition (18) means
(po» py) € D,CR*. Therefore, for any x=(0, ¢,
Pos ) EQ=H"1()CT () XR?, it holds x €
T?(e) XD,, namely, Q C T? (e¢) X D,. Note
T?(e) XD, is compact because of compactness of
T?(e) and D,. For Q to be compact, it suffices to
show QCT?(¢) X D, is closed.

It is obvious that QC T~ T? (¢) is closed as it
is the preimage of a closed set {c¢} under the
continuous mapping H. Also compactness of
T2 (e) XD, T2 () XD,CT"T?(e) is
closed. The above two results together imply the
closeness of Q in T? (¢) X D,. This completes the

implies

proof.

Proof of Proposition 2. 1 By LLemmas 2. 2 and
2.3, for ¢=0 any level set Q=H '(¢) is a compact
and nonsingular hypersurface of cotangent bundle
T T ().
1.1, the geodesic system of (2) admits an integral
K= p,. Obviously, integral K: T" T?(e)>R is

real analytic.

Moreover, according to Proposition

Moreover, the natural inclusion
mapping i; Q—>T" T?(e) is real analytic as well.

The composition of them gives a real analytic

function K<: , which is the restricted function K of
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K to Q. This means that we have verified the
condition @ in Lemma 2. 1. We thereby complete
the proof of Proposition 2. 1.

3 Conclusion

In this note we have defined a non-canonical
metric on two-dimensional torus T?(e), and shown
that the geodesic flow is Liouville integrable and
admits vanishing topological entropy when
restricted onto ceratin hypersurface. As remarked
earlier, when e=0, T?(¢) is a canonical torus. On
the canonical torus, the corresponding result has
been obtained in Ref. [5]. It would be challenging
to consider more arbitrary deformation of the
canonical metric on torus and study to what extent
deformed while still

it can be preserving

integrability and other good dynamical behaviors.
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