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. important tools to explore finite groups. The
0 Introduction S o
question is to study their influences on the

Throughout this paper, all groups are finite
and G denotes a finite group. All unexplained
notation and terminology are standard, as in Refs.
[1-3].

The embedding properties of subgroups are
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structure of finite groups. One of the important
embedding properties is II-property of subgroups,
which was introduced by Li in Ref. [4]:

Definition (, 1-Definition 1. 1] Let H be a

subgroup of G. We call that H satisfies IT-property
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in G if for any G-chief factor L/K, | G/K:
Nk (HK/KNL/K)| is a #x(HK/KNL/K)-
number, where r(HK/K () L/K) denotes the set
of all prime divisors of | HK/KNL/K].

The II-property of subgroups covers many
known embedding properties of subgroups and has
been widely studied in many publications, see, for
example, Refs. [5-7].

It is also well known that subgroups with
prime power indices play an important role in the
research of the structure of groups. For example,
G is solvable if the index of every maximal
subgroup of G is a prime or a square of a prime; G
is nilpotent if and only if every maximal subgroup
of G is normal in G with prime index; G is
supersolvable if and only if every maximal
subgroup of G has prime index. Also, keep in
mind that a subgroup H of G is said to be
quasinormal or permutable’® if HK =KH for any
subgroup K of G.

The following introduces that weakly II-
embedded subgroup is closely related to the above
notions,

Definition 0. 2 A subgroup H is weakly II-
embedded in G if there exists a subgroup pair (T,S),
where T is a quasinormal subgroup of G containing
H; and S/H; << H/H; satisfies II-property in
G/Hg, such that |G: HT| is a power of a prime
and (HNT)/H;<S/H,.

As we know, a class 7 of groups is called a
formation if either =@ or 1€ 7 and for any group
G, every homomorphic image of G/G” belongs to
7, where G’ = N{N|N G, G/ N€ 7F}. A
formation 7 is saturated if GE % whenever G/®(G) &
7. A normal subgroup N of G is said to be 7
hypercentrally embedded in G if for every G-chief
factor H/K below N, (H/K)*x(G/C;(H/K)) &
7. The product of all normal F-hypercentrally
embedded subgroups is called the 7~hypercentre of
G and denoted by Z; (G). We use U and N to
denote the saturated formations of supersolvable
groups and nilpotent groups, respectively. Then

Z4((G) is the product of all normal subgroups N of

G such that every G-chief factor below N has prime
order. Also, we use Z..(G) to denote the -
hypercentre of G. Moreover, the generalized
fitting subgroup F*(G) of G is the maximal
quasinilpotent subgroup of G (for details, see Ref.
[9, Chap. X, Section 13]).

In this paper, we investigate the influence of
weakly [I-embedded subgroups on the structure of
finite groups. Our main results are as follows.

Theorem 0.1 Let X and E be normal
subgroups of G such that X<CE. Suppose that for
every prime divisor p of | X| and every non-cyclic
Sylow p-subgroup P of X, all maximal subgroups
of P are weakly [I-embedded in G. Then E <C
Z4(G) when X=F or F* (E).

Theorem 0. 2
G. Suppose that for every prime divisor p of | E|

Let E be a normal subgroup of

and every non-cyclic Sylow p-subgroup P of E,
every cyclic subgroup of P with order p or 4 (if P
is a non-abelian 2-group) is weakly I[I-embedded in
G. Then E<Z,(G).

The following results follow directly from
Theorems 0. 1 and 0. 2.

Corollary 0.1 Let 7 be a saturated formation
containing U and X <CE normal subgroups of G
such that G/E € 7. Suppose that for every prime
divisor p of | X | and every non-cyclic Sylow p-
subgroup P of X, every maximal subgroup of P is
weakly I[I-embedded in G. Then GE% when X=F
or F" (E).

Corollary 0. 2

containing % and E a normal subgroup of G such

Let 7 be a saturated formation

that G/E€ 7. Suppose that for every prime divisor
p of |E| and every non-cyclic Sylow p-subgroup P
of E, every cyclic subgroup of P with prime order
or 4 (if P is a non-abelian 2-group) is weakly II-
embedded in G. Then GE 7.

1 Preliminaries

Lemma 1.1 Assume that H is a quasinormal
subgroup of G, E<XG and N <{G.
CD HG /H(, < Zrﬂ (G / HG ) [10, Theorem] .

Particularly, H is subnormal in G.
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@ H () E is a quasinormal subgroup of
E[ll. Lemma 1. 2. 14(4)].

@ HN/N is a quasinormal subgroup of
G/ N Lenma 12,707

@ Suppose that E is subnormal in G such that
|G:E| is a power of p, for a prime divisor p of
|G|. Then O (G)< EM! emma L LI

Lemma 1.2 Let H<G and N {G.

(D If H satisfies [I-property in G, then HN/N
satisfies [I-property in (/N Proposition 21D 1

@ Assume that H is weakly [T-embedded in G
and N satisfies either N<{H or (| H|,|N|)=1.
Then HN/N is weakly [TI-embedded in G/N.

Proof (@ Let (T, S) be a pair such that H is
weakly II-embedded in G. By Lemma 1. 13), TN/N
is quasinormal in G/N. And |G/N: HTN/N | =
|G:HT|/|HTN:HT] is a power of a prime. If
N<CH, then HNTN=(HT)N by the modular
law. Assume that (| H|,|N|)=1. Since
(|]HNNONT:HNTI|, | HNONT:NNT| =

(INONHT|, | HONNT ) =1,
we have HNNT=(HNONT)(NNOT) by Ref. [1,
Chap. A, Lemma 1. 6(b)]. Hence HN(\ TN =
(HNNT)ON=(H(T)N. Generally speaking,
(HN N TN)(HN);/(HN); =
(H (N T)(HN)/(HN)¢ << SCHN)/(HN ) »
where

S(HN)¢/(HN)¢ =

(S/Hs)((HN)¢/Hg)/((HN)¢/Hg)
satisfies [T-property in G/(HN); by @.

Lemma 1. 3
and F the canonical local satellite of 7 (see Ref. [ 1,
Chap. IV, Theorem 3. 7]). Let E be a normal p-
subgroup of G. Then E<<Z,;((G) if and only if one
of the following holds:

D G/Cx(E) € F(p)ytiz: temma2 141 T particular,
E<Z. (G if and only if [O?(G), E]=1.

@ E/O(E)<Z(G/P(E))H? b8,

Lemma 1, 401 Theorem ACID]
formation and E a normal subgroup of G. If
F* (E) is -hypercentral in G, then E is also 7

Let 7 be a saturated formation

Let 7 be any

hypercentral in G.

Lemma 1, 5/ emm 24 Tet P be a p-group

and ¢ a p'-automorphism of P.
O If [ay 2 (P)]=1, then o=1.
@ If [as 2, (P)]=1 and either p is odd or P

is abelian, then a=—1.

2 Proof of Theorem 0. 1

The following propositions are the main steps
in the proof of Theorem 0. 1.

Proposition 2. 1  Assume that P is a normal
p-subgroup of G. If every maximal subgroup of P
is weakly II-embedded in G, then P<{Z,((3.

Proof Suppose that the assertion is false and
consider a counterexample G of minimal order. Let
G, be a Sylow p-subgroup of G.

(D P is not a minimal normal subgroup of G.

Assume that P is a minimal normal subgroup
of G. Let P, be a non-trivial maximal subgroup of
P such that P, { G,. Clearly, (Py)s=1. Let
(T,S) be a pair such that P, is weakly II-
embedded in G. If P<LT® and P() T; =1, then
PT,;/T; < Z.(G/Ty) by Lemma 1.1 O and
consequently, P<CZ. (G) << Z,(G) by the G-
isomorphism P == PT;/T;.
shows that either P<<T or P\ T =1. In the
former case, P, satisfies II-property in G, so
|G:Ng(P,NP)|=|G:Ng(P,)| is a power of p.
Moreover, P; < G by the choice of P;, which is
absurd. In the latter case, P(1T=1. Suppose that
|G:P,T| is a power of p. Then |G:T|=|G:P, T| -
|P,: P, T| is also a power of p and so O’ (G)<T
by Lemma 1. 1®@. We have PO’ (G) =1 and
[ (& ,P]=1. Hence P<Z.(& by Lemma 1. 3(D.
This contradiction shows that | G: P, T | = ¢,

This contradiction

where g (4 p) is a prime and ¢ =0 an integer.
Obviously, P<<P, T and then P=P,(PNT)=P,,
a contradiction. Thus (D holds.

@ The minimal subgroup of G
contained in P is unique, denoted with N.
Moreover, P/N<Z,(G/N) and |N|>p.

By @, N<<P. We have P/N<Z,(G/N) by
Lemma 1. 2@ and the choice of G. So | N| > p.

Assume that G has another minimal normal

normal

subgroup L contained in P. Analogously, P/L<C
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Z4(G/L). However, the G-isomorphism N==NL/L
implies that | N|=p, a contradiction.

@ @ (P) # 1,
contradiction.

Assume that (P)=1. Then P=NXB where
B is a complement of N in P. Let N, be a maximal
subgroup of N such that Ny {G,. Then K=N,B
is a maximal subgroup of P such that K;=1 and
KMON=N,. Let (T, S) be a pair such that K is
weakly [T-embedded in G. If N<XT% and N T;=
1, then NT;/T¢<<Z.. (G/Ts) by Lemma 1. 1D
and so | N| = p by the G-isomorphism N ==
NTg/ T, which contradicts @). Hence N<XT or
PN T¢=1. In the latter case, P() T =1, which
would arrive at a contradiction similarly to ). We
should, therefore, assume that N<CT. Then N;=
KNN<KNT<S and so Ny=K(N=SN.
Since S satisfies II-property in G,

| G:N6(SN N) |=| G:Ns(N,) |

is a power of p. Therefore, N; < G by the choice
of N;. This contradiction shows that @(P) 1.
Hence N<X@(P) and P/®(P)<Zy(G/P(P)) by
@ and Ref. [15, Lemma 2. 2]]. Consequently, P<C
Z4(G) by Lemma 1.3 @. This completes the

proof.

which gives the final

Proposition 2.2  Assume that E is a normal
subgroup of G and P a non-cyclic Sylow p-
subgroup of E, for a prime divisor p of |E| with
(|E|, p—1)=1. If every maximal subgroup of P
is weakly II-embedded in G, then E is p-nilpotent.

Proof Suppose that the result is false and let
G be a counterexample of minimal order. Let GG, be
a Sylow p-subgroup of G containing P.

O Oy (E)=1 (It follows directly from Lemma
1. 2@ and the choice of G).

@ O,(E)>>1.

Assume that O, (E) =1 and N is a minimal
normal subgroup of G contained in E. Let M/N be
any maximal subgroup of PN/N. Then M= P, N
where P, = P (1M is a maximal subgroup of P.
Assume that (T, S) is a pair such that P; is
weakly II-embedded in G. Obviously, TN/N is
quasinormal in G/N by Lemma 1. 1®), and |G/N:

MT/N|=1|G:P, T|/|MT.P,T| is a power of a
prime. Since P, (1 N =P () N is a Sylow p-
subgroup of N and |PyTN:TON|=|P,NT:
P, NT| is a power of p, we have
PTOAN={®P NNITON
by Ref. [1, Chap. A, Lemma 1. 6(b) ], and
MO TN = (P, 1 TON
by Ref. [1, Chap. A, Lemma 1. 2]. Hence
(M N TN)M;/M; = (P, N TOM; /Mg <
SM /M
where SM;/M;; satisfies II-property in G/M; by
Lemma 1. 2@). Generally speaking, G/N satisfies
the hypothesis for G. Therefore E/N is p-
nilpotent and N is the unique minimal normal
subgroup of G contained in E. Since S satisfies IT-
property in G, |G:Ng(S(YN) | is a power of p. If
SOAN>1, then N<(STN) =(SNN)*» <G, and
so N is a p-group, a contradiction. So S[IN=1.

Assume that N<XT¢ and N T;=1. We have
NT;/Te<<Z.(G/Ts) and N is central in G by
Lemma 1. 1D and the G-isomorphism N=NT/T,
a contradiction. Hence either N<XT or ET¢ =1
by the uniqueness of N. In the former case, P, ()
N<P, N T<S, so P,(NN=S(IN=1 and then
N<CO, (E), which contradicts (D. In the latter
case, E(NT=1. Assume that |G:P,T| is a power
of p. Then |G:T|=|G:P,T| « |P,:P,NT]| is
also a power of p. Thus O (G)<<T by Lemma
1. 1@ and so N(N(¥ (G)=1. Consequently N has
order p by the G-isomorphism N=NO (G) /O (),
a contradiction. Therefore |G:P,T| is a power of
a prime ¢(#p). On the other hand, since P is a
Sylow p-subgroup of E, G= N; (P) E by the
Frattini argument. Then there exists g=*ke € G,
where 2€ N;(P) and e € E, such that P*<{G,*<C
P, T, that is, P* < P,T. Consequently P <
P, TNE=P,(TNE)=P;, a contradiction. So we
have @).

® Final contradiction.

Let N be a minimal normal subgroup of G
contained in O, (E). Then by Lemma 1.2® and
the choice of G, N is the unique minimal normal
subgroup of G contained in O, (E) and E/N is p-
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nilpotent. Moreover, | N|>p and NL & (G).
Then G=N % D for some maximal subgroup D of
G and E=N xM where M=E(\D. Denote M,=
PNM and D, =G, (1 D. Then M, is a Sylow p-
subgroup of M, D, is a Sylow p-subgroup of D
containing M, and P=NM,, G,=ND,. Let N; be
a maximal subgroup of N such that N; {G,. Then
P, = N,M, is a maximal subgroup of P with
(P1)¢=1, and W=N; D, is a maximal subgroup of
G,. Let (T,S) be a pair such that P; is weakly II-
embedded in G. Since S satisfies [I-property in G,
|G:Nc(SNN) | is a power of p. If S(YN>1, then
N< (SO N =(SN N <W and so
N=N,(ND,)=N,, a contradiction. Thus S[)
N=1.

Similarly as in @, N<T% and NN T; =1
would imply that N has order p. Therefore we
should assume that either N<XT or E() T = 1.
Assume that N<XT. In the same manner as @), we
have Ny=P, N{N=S(NN=1and so |[N|=p, a
contradiction. So we assume that E () T¢ = 1.
Particularly, P () T =1. However this will also
obtain a contradiction just like @.

Proof of Theorem 0.1 We prove by induction.

Firstly, assume that X = E. Let p be the
smallest prime divisor of | E |. By Burnside
Theorem and Proposition 2.2, E is p-nilpotent.
Let E, be the normal Hall p’-subgroup of E.
Clearly, (G, E,) and (G/E,, E/E,) satisly the
hypothesis for (G, E). So E, << Z, (G) by
induction and E/E, << Z, (G/E;) by Proposition
2. 1. Consequently, E<{Z,(G). Secondly, if X=
F*(E), then F* (E)<Z,(G). Therefore, E<C
Z4(G) by Lemma 1. 4.

3 Proof of Theorem 0. 2

The following propositions are useful in the
Theorem 0.2,

independent meanings.

proof of which also have

Proposition 3.1  Assume that P is a normal
p-subgroup of G. If every cyclic subgroup of P
with order p or 4 (if P is a non-abelian 2-group) is

weakly [I-embedded in G, then P<Z,((G).

Proof Suppose that the assertion is false and
consider a counterexample (G, P) for which |G|+
| P| is minimal. We denote =0, (P) when p>2
or P is abelian. Otherwise, Q=0,(P).

(D G has a normal subgroup R such that P/R
is a non-cyclic G-chief factor. Moreover, R <C
Z4(G) and V<{R for any normal subgroup V of G
satisfying V<P.

Obviously, @ holds when P is a minimal
normal subgroup in G. Now assume that R<CP
such that P/R is a G-chief factor. Since (G, R)
satisfies the hypothesis, R<{Z; (G) and P/R is
non-cyclic by the choice of (G, P). Let V be any
normal subgroup of G satisfying V<ZP. Similarly,
V< Z,(G). If V covers P/R, then P =VR <
Z4(), a contradiction. Thus V avoids P/R, that
is, V<R.

@ Q=P.

If Q<<P, then G/C; () € F(p) and C; (Q)/
Co(P)e N, by @, Lemmas 1. 3D and 1. 5, where
F is the canonical local satellite of 4 and .V, the
class of p-groups. Consequently, G/C; (P) &
ME(p)=F(p) and so P<<Z,(G) by Lemma 1. 3D
again. This contradiction shows that @) holds.

@ Final contradiction.

Let H/R<<P/R Z(G,/R) be a cyclic
subgroup, where G, is a Sylow p-subgroup of G.
Take x+ &€ H\R. Then H=LR, where L={x) is
cyclic of order p or 4 by @. By the hypothesis,
there exists a pair (T, S) such that L is weakly II-
embedded in G.

By D, this can be separated into three cases:
(a) PNT;<<PNT°<R; (b) P<T; (¢) PNTs<<
R and P<<T°. In case (a), P(N1T<<R and P/R()
TR/R=1. If |G:LT]| is a power of p, then
| G/R:TR/R |=| G:LT || L:.L T |/ |RT:T|
is also a power of p and so ¥ (G/R)< TR/R by
Lemma 1. 1D ®@. Then P/RN O’ (G/R)=1 and
[P/R, O"(G/R)]=1. By Lemma 1.3D, P/R<
Z..(G/R), a contradiction.
|G:LT| is a power of a prime g(#%p). Hence P<C
LT and P=L(PNT)=H. Then P/R=H/R is
cyclic, a contradiction. If case (b) holds, then P<C

Then we have that
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T and L/L¢ satisfies II-property in G/L;. By @O
and Lemma 1. 2D, H/R=(L/Ls) (R/Ls)/(R/Lg)
satisfies IT-property in G/R, so
| G/R:Ngx(H/R N P/R) |=| G/R:N¢x(H/R) |
is a power of p. By the choice of H/R, H/R is
normal in G/R. Therefore P/R= H/R is cyclic,
which contradicts 0. Now assume that case (¢) is
true. By Lemma 1. 10, PT;/T¢<<Z..(G/T;) and
then PT,/RT; << Z..(G/RT;) (see Ref. [ 15,
Lemma 2. 2]). Therefore, by the G-isomorphism
PT;/RT; >~ P/R(P N Ts) = P/R,
P/R is cyclic. This contradiction completes the
proof.

Proposition 3.2 et E be a normal subgroup
of G and P a non-cyclic Sylow p-subgroup of E for
a prime divisor p of |E| with (|E|, p—1)=1.
Suppose that every cyclic subgroup of P with order
p or 4 (if P is a non-abelian 2-group) is weakly II-
embedded in G. Then E is p-nilpotent.

Proof Suppose that the result is false and let
(G,E) be a counterexample such that |G|+ |E| is
minimal. Then |P|>p.

@ Oy (E)=1 (It follows directly from Lemma
1. 2@ and the choice of (G, E)).

@ O,(E)<Z..(E).

By Proposition 3.1, O, (E)<<Z,(G) N E<
Zu(E) (see Ref. [15, Lemma 2. 2]). Therefore,
O,(E)<<Z.(E).

@ E=P, which gives final contradiction.

Suppose that O, (E)<{E. Let (H, K) be a
pair for which | H| + | K| is minimal such that
H/K is a G-chief factor below E, K<<O,(E) and
H<LO,(E). Note that K< Z..(E) YH<Z.. (H)
by @. If H/K is a p'-group, then H is p-
nilpotent, Thus the Hall p'-subgroup H, of H is
normal in G, which contradicts ). So H/K is
non-abelian. By the Feit-Thompson’s theorem,
p=2. Moreover O, (E)< Z.. (G) by Proposition
3. 1.

Let A be a subgroup of G such that K<CA<ZH
and A is a minimal non-2-nilpotent group. Hence
by Ref. [16, Theorems 3.4.7 and 3.4.11], A=
A, @ A,, where A, is the normal Sylow 2-subgroup

of A and A, a cyclic Sylow g-subgroup of A with
q7#2. Moreover, the following conclusions hold:
(i) Ay/®P(A,) is a non-cyclic A-chief factor; (i)
A;,=A"; (i) the exponent of A, is 2 or 4 (when
A, is non-abelian). Note that K< Z..  (H) A<
Z..(A). A is 2-nilpotent if K = A,, which is
impossible. So K<{P(A;) by (| ). Take x &€
A \NDP(A;). Then L=<x) is cyclic of order 2 or 4
by (i ). Moreover, LLK and L;<<K. In fact, if
LeLK, then H=LiK. Consequently, H is a p-
group, a contradiction. Assume that (T, S) is a
pair such that L is weakly IT-embedded in G. By
Lemma 1. 1®), T,=T()A is quasinormal in A. By
(i), we should break the proof into three cases,
which are: (a) A, N (THA<<A; N (THA<<P(A,),
(b) A,<<(Ty)s and (c) A, N (TAa<<DP(A;) and
A, < (Ty)". First assume that case (a) holds. If
|G:LT| is a power of p, then |G:T|=|G:LT]
|L:LNT] is also a power of p and so O (G)<T by
Lemmas 1. 1D and @. We have that A, = A"
G'<O"(GH)XT and then A, =A. NT=A, NT, <
®(A,) s a contradiction. Hence |G:LT| is a power
of a prime »(5£p). Moreover, |A:LT,|=|ALT:
LT| and then (p, |A:LT,|)=1. Then A,<<LT,
and so A, = L (A, N T,) = Ld (A,) = L.
Ay/d (A ) is which
contradicts ( | ). Second, suppose that case (b)
holds, that is, A, <<T. Then L/L. satisfies II-
property in G/Ls;. Hence
1 <<LK/K = (L/L;)(K/Lg)/(K/Lg)

satisfies ITI-property in G/K by Lemma 1. 2. We
have that | G/K: Ngx (LK/K (| H/K) | =
|G/K:Ngk (LK/K)| is a power of 2 and H/K<
(LK/K)“®"=(LK/K)%"*<G,K/K where G, is a
Sylow 2-subgroup of G containing A,, that is,

Consequently, cyclic,

H/K is a 2-group, a contradiction. Last, if case
(¢) holds, then A, (T a/(To)a<<Z.. (A/(Ty)4)
by Lemma 1. 1. Moreover,
Ay (T A/PAD (T a < Zo. (A/P(AD (T ).

Note that

Ap (T A/ DA (T4 =

Ay /P(A) (A, N (Ta) = Ay /DP(AL)

by (i). So A,/®(A,) is cyclic, which contradicts
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(i). Finally, E=P, which completes the proof.
Proof of Theorem 0.2 We prove by induction
on |G|. Let p be the smallest prime divisor of
|E|. By Burnside Theorem and Proposition 3. 2, E
is p-nilpotent. Assume that E, is the normal Hall
p'-subgroup of E. Clearly (G, E,) and (G/E,,
E/E,) satisly the hypothesis for G. Hence E, <<
Z4(G) by induction, and E/E, <Z,(G/E,;) by
Proposition 3. 1. Consequently, E<{Z,(().

4 Some applications

Recall that, a subgroup H of G is said to be c-
normal”'™ in G if there exists a normal subgroup N
of G such that G=HN and H(\N<CH,. It is easy
to see that ¢-normal subgroups and the subgroups
satisfying II-property in G are all weakly II-
embedded in G. The following examples show that
the converse is not true in general. Note that, a
subgroup H of G is said to be [I'normal* in G if
there exists a subnormal subgroup T of G such that
G=HN and H(\ N<{I<(CH, where [ satisfies II-
property in G. Example 4.2 also shows that
weakly ITI-embedded subgroups are different from
ITI-normal subgroups.

Example 4.1  Assume that G =S, is the
symmetric group of degree 4. let H=Z; be a
cyclic subgroup of G of order 3. Since K, is a
normal subgroup of G such that |G; HK, | =2 and
HN K, =1, H is weakly I-embedded in G.
However, H is not c-normal in G. In fact, if H is
c-normal in G, then G has a normal subgroup of
order 8, which is impossible.

Let Ly =<a, b| =0 =1,

ab=ba) and L,={a’, b') be a copy of L,. Assume

Example 4. 2

that ¢ is an automorphism of L, of order 3 satisfying
a*=b, b*=a'b'. Put G=(L; XL;)*{g) and
H={(a) X {(a’). According to Ref. [18, Example
1. 3], G has a normal subgroup T="{aa’b, a '0")
such that |G:HT|=|G:L,L,|=3 and HNT=1.
It follows that H is weakly II-embedded in G.
However, |G:N;(HNL)|=|G:Ns;({a))| =3 is

not a 5-number, that is, H does not satisfy II-

property in G.

Note that, any normal subgroup N of G
containing « satisfies that
(as DU, a D@, DU, ) =@ ', 1) €N,

(b, DA, aHO', DA, ) = (@*, 1) € N.
Consequently, a and b belong to N. Assume that
there exists a subnormal subgroup T of G such that
G=HT. Then « €T, and so a,b& T. Therefore,
HNOT=<a) or H. However, neither {a) nor H
satisfies [I-property in GG. This shows that H is not
a [T-normal subgroup of G.

Therefore, some related known results are
corollaries of our theorems, for example, Theorem
C in Ref. [19], Theorems 3. 1 and 3. 4 in Ref.
[20], Theorems 1 and 3 in Ref. [21], Theorems
4.1 and 4. 2 in Ref. [17], Theorems 3.1 and 3. 2 in
Ref. [22] and so on.
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