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0 Introduction

Let ¥ be the standard Gaussian measure on R.
For a nonnegative integer n, we define the nth
Hermite polynomials H, as
7] n 2 , n 2 P
( ) 6‘1’2 d“e;z,z (1)
/n dx

The Hermite polynomials on R are obtained by

H,(x) =

orthogonalizing the sequence of the powers of x in
L?* (R, y) with respect to the standard Gaussian
measure by the well known Gram-Schmidt

procedure. They can be introduced in several other
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alternative ways; for example, we have the

integral representation

1 1 n ,
mjk<f+m> ydw (@)

function for the

H,(x) =

The generating Hermite

polynomials is given by

= L
E H,(x) = e/
=0 /n!

We will prove these formulas in the next section.
The Hermite polynomials are related to the

Ornstein-Uhlenbeck

operator. If D=d/dx is the usual differentiation

heat equation for the
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operator on R, then its dual D* with respect to the
standard Gaussian measure ¥ is given by

e d
D" = dIer.

The Ornstein-Uhlenbeck operator is defined by
& d

L:—D""D:dx2 x4 (3)
The solution to the initial value problem

au = i «) —

F 2Lu, u(0, ) = f D

is given by u(t,2)=T,f(x), where {T,, t=0} is
called the Ornstein-Uhlenbeck semigroup. It can
be shown that each T, is given by an integral

kernel, i. e.,

TS = | T fordy 6
We will prove that in terms of the Hermite
polynomials,

T(tax,y) = > e ™ H,(x)H,(y) (6

n=0

The function T (¢, x, y) is called the Mehler
kernel.
Mehler’s

identification of the kernel T (¢, x, y) in the

formula refers to the explicit

following manner:
T f(2) — JRﬂeﬂ"ZI T ydn) (D

There are many ways to prove Mehler’s formula.

For a conventional approach using partial
differential equations, see Ref. [1]. There is also
another approach using stochastic analysis in Ref.
[2]. In this article, we will give a simple proof of
Mehler’s

representation (2) of the Hermite polynomials.

formula based on the integral

1 Integral representation and generating
function of the Hermite polynomials
We first prove the integral representation (2)

of the Hermite polynomials. Let ¥ be the standard

(Gaussian measure on R.

Theorem 1. 1

H,(x) =

1 N
mJR(.r+1u) Y (du).

Proof First we calculate the Fourier

transform of the standard Gaussian measure 7.

| eyan = J%J'Rexp[ Lty —

A5

.y 1 (t—ix)*
e/t J exp[*i]dt =
v 20 R 2

6712 /2

In Definition (1) of the Hermite polynomial H, we

replace e+ byJRei“')’(dz‘). We have

1 D" d JJ eitr*tz/Zdt —
Jm Jut dele

1 D" . Sy
— (ipree/2dr =
e AT

1 (*1)”[”
v 21 nl

Making the change of variable u = ir — ¢,

H,(2) = e

2
x /2

€

~

? . 2
(ip)"e W 07/2 g,

we have

H, (o) = 1 &

Ve /nl

MJ Gy,

The generating function for the Hermite

oo . '
J (_1._1u)ne*u ,/Zdu —

polynomials is given as follows.

Theorem 1. 2

- A” 2 /9
H,(z) = """ (€D
kZ:;) vn!

Proof Using the integral representation (2)

we have

e
3 St = | Sty =

J G Y (dy) = emf ey (dy).
R R

We replacej ey (dy) by e */2 which has
R
been proved before, and obtain
euJ My (dy) = emﬂz/z ,
R
that is,

>

A” 2,
H,(z) = " /2, ]
Z;) vn!
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2  Further properties of the Hermite
polynomials

We will need the following properties of the
Hermite polynomials H, , which will be used later.
See Ref. [ 3] for more thorough discussion of the
Hermite polynomials.

Theorem 2.1 The Hermite polynomials H,
have the following properties:

@ {H,} is an orthonormal basis for the

Hilbert space L*(R,y).

@ LH, = — nH,, where the Ornstein-
Uhlenbeck operator L is defined by Eq. (3).
Proof D According to the generating

function (8),

eLz' /2 — i t
n=0 /N !

e.\T*.\Z /2 — § s"
n=0 /1 !

. . sy el
Integrating the function e® */% e */2

H,, (l) )

H,(x).

in x with
respect to the standard Gaussian measure 7,

we have

J etl‘*tz 2 st—s” }’(dl) —
R

J%Jkexp[—;(x— (900 41 Jde =

e” /%JRexp[;(I (t+s))2]dx =

et\ 1 j e*.z'z /2 d]: — el.x‘
V2r' R

and e“ can be written as 2 (t\i') On the other
=0 12

hand,

J etritz /2 e.xz-ﬂz Zy(dx) =
R

JR”Z; mmm; H @y (da) =

(H“ ’HA)I (R.p »

kon=0 n 'k

that is

2 (s)" _
= n! toi=0 vV lk!

Comparing the coefficients of the double power

(H,,H) 2R .

series in s and ¢, we see that H, are mutually
orthogonal and have the unit norm. Note that H,
is a polynomial of degree n. Hence the linear span
of H,,

polynomials of degree at most n.

-, H, coincides with the space of

We now show that the orthogonal system
{H,} is complete in the Hilbert space L* (R, y).
Suppose that f€L*(R,y) is orthogonal to all H,,,

then f is also orthogonal to all polynomials. Let
F(») = JR Fl)es = dx.

Note that the integral converges absolutely because

by the Cauchy-Schwarz inequality,

UR | f() | e‘“"‘f‘ﬂ-zx'zdsz _

J J Lz-z\z,fdl
R

and both integrals on the right side converges, the
first by the hypothesis f€ L*(R,y). Now we can

expand the exponential function and write

oo

Fo) = ) %JR Flare e =

n=0

=

V2x 3 5| oy =o.

n=0

Letting 2=it, we have
F(it) = JR F)e e dy = 0.

Using the uniqueness of Fourier transform we can
conclude that f=0 almost everywhere. Thus every
function orthogonal to all Hermite polynomials is

zero. This shows that the Hermite polynomials are

complete.
@ Let w(ax,))=¢e" 2 We have
IW _ 2?2 =y,
dx
that is

oo

A" aw
H 71( ) - - n
; vnl Z:: vn

=0 we have

. /
Moreover, using H,

-
HZ; «/7 ’ HZ:; (n— 1!

that is to say

Hn*l (I) ’

H', (x) =VnH, . ().
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On the other hand, from Definition (1) of H,

we have

H  (z) =
(— D" 2 dh 2 /2 dr! —22 |
e e e e ]
xH,(x) — vn-+1H, (2).
We now have
&y = & m JnH,  —nH
d q o4y — 1 — NN n—1 nri,
and
d
X 11 IfH7ﬁl
dx
Finally,
2
L, = (= D, =m0

We now show the Mehler kernel for the
Ornstein-Uhlenbeck semigroup (5) is given by
(6). This boils down to show that for any f &
L*(R,y), the solution of the heat equation (4) is
given by

ult,a) = > fue ™ H,(x) (9)

n=0
where

7, :j H, () £(y)y(dy).
R

Using the property LH,=—nH, in Theorem
2.1 we can verify easily that each term e *H, (x)
is a solution of the heat equation, hence by
satisfies the heat

linearity, the series also

equation, For the initial condition, we have

u(0, x) :2 f» H,(x). By the completeness of

n=0
the Hermite polynomials, this is nothing but the

orthogonal expansion of the square integrable
function f in terms of the Hermite polynomials.
This shows that u(z,2) defined in (9) is indeed the
unique solution of the intial value problem (4).
Now for any f€L*(R,y) we have

T,f () :j TCozsy) F()7(dy) =

J [ e 2 H, () H, (3 ]/ 7(dy.

n=0

It follows that the Mehler kernel is given by

T(taany) = > e H, (0 H, () (10)

n=0

3  Proof of Mehler’s formula

Now, we are ready to prove the Mehler’s

formula (7). Write a=e *? for simplicity. Using

the integral representation of the Hermite

polynomials (2) and the expansion (10) we have

O a (i) H,(y)

T(Zal’yy) :JR|: — m J)’(du).

The infinite series can be replaced by the
generating function (8 ) of the Hermite
polynomials and we have

T(t,x,y) =

J‘Rexp[ya (xr+iu) — L;W])’(du) =

eZJ exp[ (u+1 m>2]y(du).

For simplicity let 5=(y—ax)/a. We have
T(t,l‘,y) -

2
‘2
e/

1 J [az STN2 le -
| exp| L Cu+ib) —f]du—
/ol rPL2 2
V22 1
JRCI S
vV 2

' C1—=d*( . 'l Zabu _
JReXp[ 2 e Hd“*
L g[¥ T
S P2 2a—=a) )
Now using the representation (5 ) and

b=(y—ax)/a, we have

T,f(x) = JRTQ,I,y)f(y)y(dy) -

1 - Vo ath _
mJRf(y)eXp[ 2 2(1—a2)]7(dy) -

11 J
V2r /1 —d* R
Making the substitution y=ax++/1—a’z we have

. 1 1
T{ ():77.
fx Vor v1—da*

JRf-(ax + V1T —d2 e *dlar + V1 —d’z) =
JRf(ax +V1—a*2)

1 e /2dy =
V2
Jkﬂm T =doydo).
(F#% 891 )



