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positive constant.
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where F, is the curvature of A, || « || denotes the

0 Introduction L? norm. The critical points of YM (A) are called

M is a compact n-dimensional Riemannian Yang-Mills connections, which satisfy the Yang-
manifold, E is a vector bundle of rank » over M Mills equation:
with structure group G, where G is a compact Lie diFa=0 (D
group. And A is a connection on E, whose Yang- We consider energy gap phenomena and energy

Mills energy is concentrate phenomena about the Yang-Mills
YM(A) := | F, || 2, connections. The energy gap phenomena is

considered by Bourguignon and Lawson in Ref, [ 2]
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firstly. In Ref. [2, Theorem C], they proved if the
curvature of any Yang-Mills connection which is
over S"(n=3), satisfies the pointwise estimate

F* =—tr(F,F*) <nn—1)/2 (2)
In Ref. [ 4], Gerhardt

considered a compact Riemannian manifold, M,

the connection is flat.

with a metric which satisfies the condition
1
RQ}QA;A/}{ - ERW?MAq?AM > C()AQQA o+ (3)

for all skew-symmetric A,z € T"? (M), where Ry is
Riccei curvature tensor, Ry, is Riemann curvature
tensor, and ¢, >0. Then he proved the following
theorem.

Theorem 0. 1t ™o-2] [ et M be a compact
manifold. When condition (3) and ¢, >0 holds,
the Yang-Mills connections over M with compact,

semi-simple Lie group either are flat or satisfy

2

(| IF1E) = )

for some constant k£, >0, which only depends on
the Sobolev constants of M, n, ¢, and the
dimension of the Lie group G.

In this paper, we provide an alternative proof
of Theorem 0.1. When considering an arbitrary
compact Riemannian manifold, we can not obtain a
similar result. However, we can prove either any
Yang-Mills connection satisfies (4), or the vector
bundle E is a flat bundle, i. e. there exists a flat
connection over the bundle.

Theorem 0.2 lLet M= M"', n=>4, be a
compact Riemannian manifold, and E is a vector
bundle over M. Either any Yang-Mills connection
over M with compact, semi-simple Lie group
satisfies (4) for some constant £, >0 depending on
M, n, or the bundle E is smoothly isomorphic to a
flat bundle.

Influenced by our work, Feehan goes forward
about this problem and posted his work in Ref.
[5].

Theorem 0. 317 ™ 11 [ et G be a compact
Lie group, and P is a principal G-bundle over a

closed, smooth manifold M endowed with a

smooth Riemannian metric g, whose dimension
n—=2. Then there is a positive constant, e=¢e(n,g,(),
if A is a smooth Yang-Mills connection on P with
respect to the metric, and its curvature F4 obeys

[ Fallozo <es

then A is a flat connection.

1 Preliminaries and basic estimates

First, we recall some standard notations and
definitions.

Let T*M be the cotangent bundle of M. And
for 1<<p<<n, let A? (M) be the p-form bundles on
M with T*"M=A'M. E & A’ is the associated
bundle, Q¢ (E) is the set of sections of E&A?. Let

¢ be the Lie algebra of G, Ad: G—>Aut(g) is the
adjoint representation, and adFE is the associated
adjoint vector bundle.

Denote

0 (ad (E)) = I'(adE &) A? (VD).
For a connection A on E, we have exterior
derivatives
da: Q' (adE) — Q""" (adE).

They are uniquely determined by the properties
(see Ref. [3,p. 35

D da=V4onQ(adE);

@ dala NP =dra N+ (—D’a NdaBs
for any a € 02" (adE), BEQ" (adE).
Fie*(ad(E)) of the
connection A is defined by

dad au = Fau

for any section u € '(E). If A is a connection on

The curvature

E, we can define covariant derivatives

Va:P(E) >TA'T" MR T" MK E).
For V4 and d,, we have adjoint operators V1 and
di. We also have Weitzenbock formulal?: Theeren s.10]

(dadi +didpy)e =
ViVap+oe (Ric N g+2R) + % (o) (5)

where o€ (2° (ad (E)), Ric is the Ricci tensor and
R is the Riemannian curvature tensor.

The operator of Ric A g+2R and ¢° (Ric A\ g+2R)

are defined by Bourguignon and Lawson "*'. They
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are
(Ric \ @)xy = Ric(X) ANY+ X A Ric(Y)
and

@° (Ric \ g+2R)(X.Y) =
1 n
Ezgo(ej,mic A g+ 2R)x.y(e)).
j=1

In a local orthonormal frame (e;,+*+,e,) of TM ,
the quadratic term %' (Fy) € (* (ad (E)) can be

expressed as

F(FD(X,Y) = 2> [Fale; s XD, Fale; Y.
j=1

Lemma 1.1 Let M be a compact Riemannian
manifold and A be the minimal eigenvalue of the
operator Ric \ g + 2R. We assume that A is
positive. If A is a Yang-Mills connection and
| Fa |l = is sufficiently small, A is flat.

Proof From the Weitzenbtck formula (5),
we have
(dadpr +dada)Fs =

ViVaFa+Fse (Ric N g+2R) + % (Fa).
The left hand side vanishes by (1) and the Bianchi
identity d,F 4 =0. Taking inner product with F, in
L? norm, we get
0= || VaFall {2 +(FasFa o (Ric N g+2R)) +

(Fa, M (Fp)) =

| VaFallfz + Q=4 Fall o) | Fall 72 (6)
If | Fall .~ is sufficiently small, then A is flat.
Here we have used our assumption

(FysFa o (Ric N g +2R)) = x| Fall 2
and the fact

| (Fas(F0) <A Fall = || Falliz.
In fact, the condition (3) with ¢, >0 is equivalent
to the positivity of A which is the minimal
eigenvalue of the operator Ric A g+2R. Thanks to

Uhlenbeck’s work!®: Theorems-51 = gne can control the

L~ (M) norms of the curvature F, by the L>

norms. Then, we provided another proof of
Theorem 0.1 by Lemma 1. 1.
Remark 1.1 There is an M such that

Ric A g+2R is a positive operator, for example,
D S*, where z=2(n—1);

@ M with the positive curvature operator,
Ric A g+2R must be positive;

@ M with the
which satisfy

section curvature R

Roe <R<Ro(a=1— 2713_ >
(see Ref. [1, p.79]).
According to the Weitzenbock
formulal? Teorem 3100 © we  can also obtain a

differential inequality for | Fa|% , and the proof is
similar to the case n=4(see Ref. [3]).
Lemma 1.2 Let M be a compact n-

dimensional Riemannian manifold, n=4, and A is
a Yang-Mills connection, then |Fj4 |2 satisfies
AlFs 15 <C | Fali4e|Fal? (D

where C; ,c only depend on the metric on M.

Proof Form the Weitzenbéck formula (5),
we have
dadps +dada)Fs =

Vi VaFa+Fye (Ric \ g+ 2R) + R (Fp).
The left hand side vanishes form 1.1 and duF s =
0. The quadratic term % (F4) €0Q° (ad(E)) can be

expressed as

‘//?A(FA)(X,Y) = 22 I:FA(K_,"X) aFA(C'_/’Y>]
j=1

with the help of a local orthonormal frame (e; ,*:*,¢,)

of TM. The estimate of the Laplacian follows from

—ViValFa |L’I =

f§< Vi VaFasFa) (Fay F'i —

§<VAFA T AF Y (FayFa —

ﬁ(nféL
2

5 ><VAFA7FA>2<FA’FA>TTI72 <

*%<Vﬁ{ VaFa Fy) (Fa i <

%«FA,FA o (Ric \ g+2R)) +

(Fas PN (FED))(FaFayi !l <

ClFal5+4c|Fyl™ (8)
Here the constant C depends on the Ricci
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transform Ric and the scalar curvature R of the
metric on M. The constant ¢ only depends on the
metric.

Theorem 1. 1819 ™ol ot M be a compact
Riemannian n-manifold. U%={U,} . is a finite open
covering of M, any two point x,y in a nonempty
intersection U, (1U; can be connected by a C' curve
in U, NUg;, whose length<C/, where [ is a uniform
constant. And {g,} is a set of smooth transition
function with respect to %, then there exists
a constant

e = WM, >0,
if
Isetgpﬂ |V g5 (20) [<ers Ya.p€E I,
the bundle defined by {g,;} is smoothly isomorphic

to a flat bundle.

2 Proof of the main theorem

Jd " .
Let { 0 } and {dx;}’—, denote respectively
9 X )i=1

the basis of the tangent bundle TM and cotangent
bundle T*M on B,, r<<i(M), where :(M) is the
injectivity radius of each point x&M. Let (g;) be
a Riemannian metric of M by

N
31’,‘ ’ 91']'

> = g‘ij? <d1fi,d1fj> — gij’

where (g¥) = (g;)'. For any x, € M, there
exists a normal coordinate in the geodesic ball
B, (xy), which is at the center x, with radius r,<

{(M), and for some constant C, we have

|gij_5ij \<C\1' ‘27

Jd gi
dJd X

<clxl
-(9

)

Vxe& Bi(l\/[) J
Proposition 2.1 Every n € N, there exist
constants C, and §>>0 such that the following holds
for all 0 <<r<C1 and all metrics g on R" with
| g5 —a; [lw=<2. If v€ C*(B,(0)) and v=0

satisfies Av<C0, then

'U(O) < C() 7‘7”J U.

B,(0)
The above proposition is a special case of Theorem

2.1 1in Ref. [6]. The starting point of the proof is

Morrey’s " mean value inequality for subharmonic
functions.
Let B,(0) be a geodesic ball of

radius r, 0<Cr<{1, which is sufficiently small.

Lemma 2.1

Then there exist constant C, and p > 0, we

have either

n n

2 }ﬂ(72

|, 1P
B,(0)

or

n
2

b

| Fy [500) < Co(CyF 47 ">J NE

B.(
where ¢ and C; are the same constants as in Lemma
1. 2.

Proof We denote e=|F,|%. Considering the
function f(p)=(1—p)" supg e for p€[0,1], it
attains its maximum at some p<l. Let

a = Supp, e = e(x)
and
b= <
then
e(0) = f(0) < f(p) = 20"a.
Moreover, for all x€ B, (x)CB,(0), we have
e(x) << sup e = (1 —@—8)*’7f((5+6> <

(otor
211(1 7@)*11‘](((;)) j— 2115.
From Lemma 1. 2,

nt2

Ne < Cie+cen ,
we have
Ae < 2Cra+ 22

Now. we define the function
v(x) 1= o) + (2 (C, +dai ) | 2=z |

with the Euclidean norm |x—x|. It is nonnegative
and subharmonic on B;, (x) if the metric g; is
sufficiently C'-close to §;. This can be seen as

follows,

2

Ao ‘T*; :*2719

where A, =— 29,-2, and |x— x| <or<<1 is
z'll
bounded, so Alx—x|?*<< —n whenever

| gy — 8y llw <
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is sufficiently small. If not, we can choose a

smaller radial from (9), so it is true. The control

of the metric also ensures that the integral

J | x—2
B (x)

integral over the Euclidean ball B, () : with the
constant C; =2""VolS" ' /(n+2),

2 Ja—zlr=
HZ‘D’_(I)

201
2| " Vols e = oo
0

2

 is bounded by the following

So from (9), about function v(x), we have
WD = Clor | o (10)
Let W
C, = max{co,%Z”COCz }
for all 0<<p<<, from (10), we get
@ = o) <
C.a(C +dcas)(or)* +C (or) ”JB)Y(;)e
Can
If

C(Cr 4 4aa) (p)? < %

then (11) implies
a <20, <pr>*~J'Brm)e.

So if

Co(Cy 4 daa) (or)F < %
then p=¢ proves the assertion

e(0) < 279" < 21C, rf”JB‘(O) ‘.

Otherwise, we can choose 0 <Cp < S such that
(or) 2=2C,(C,+4ca+). And we obtain

e(0) <a<c5<c1+4az%>%J .

e
with C; = (2C, Y'"2. We have to distinguish two
cases: Firstly, if 405%<Cl , this yields

e(0) < cgzcﬁjl e
B'M x)

Secondly, if C, <4c¢:% , then

a <5C5(8c)§J e,

B, @

with /1:87172] C; '>0, we have

e > puc 2.
JBV(O) ¢

So we either have the above or with some constant
C,=max{2"C,,22Cs }
() < C(CF | e

B.(0)
Remark 2.1 By

coordinates, the above lemma also implies a mean

using  local  geodesic
value inequality on closed Riemannian manifolds
with uniform constants C, sz, and all geodesic balls
whose radius are less than a uniform constant.
Theorem 2.1 Let M= M"', n—=>4, be a
compact Riemannian manifold, and A; is a

sequence of Yang-Mills connections, we denote

¢;=|Fa [z. Assuming that there a unform

boundedJ e; < E < oo, there exist finitely many
M
cyaxny € M(with N<E/y) and a

sequence of connections such that the e, are

points, xi, s, **

uniformly bounded on every compact subset of M\
{x1sx25***sxn}. And there is a concentration of
energy v at each x;: For every »r=>0, there exists

N;..€N such that
jumelgv, Vi=N,, (12)

where v is a constant only depending on n, M.
Proof Supposing there exist some points x; €
M, e; is uniformly bounded on the neighbourhood
of x;. Then, there is a subsequence e; (again
denoted ¢;) and M3 y,—>x, such that ¢; (y;,) =R}

with R!—>co, Then, we can apply the LLemma 2. 1

1
on the balls B, (y;), whose radius . =R, 2 >0.
For a sufficiently large { € N, there lies an
appropriate coordinates charts of M, and according

to the Lemma 2. 1, there are uniform constant C,

and u:#f% >0 such that for every iE N, either

J e > (13)
B, (y)

orJ e; < v. Hence,
B, (v
;
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R = e(y) < G (G, F Jrrf”)J ‘.

B, (v
i

n

In the latter case, multiplication by »# = R,z

implies

R’ < Cu(C'R> +1 (14)
As i—>co, the left hand side diverges to o, where
the right hand side converges to C,y. Thus the
alternative (13) must hold for all sufficiently large
i€ N

concentration (12) at x;=ux.

In particular, this implies the energy

Now we can go through the same argument
for any other point x € M, where the present
subsequence e; is not locally uniformly bounded.
That way we iteratively find points x; € M such
that iteration yields N<CE/y distinct points x; x5 s
.-+, xy (and might not even terminate after that).
Then we have a subsequence e; for which at least
energy v>0 concentrates near each x;. Since the

points are distinct, this contradicts the energy
boundj e; << E. Hence this iteration must stop
M

after at most E/y steps, when the present
subsequence ¢, is locally uniformly bounded in the
complement of the finitely many points, where we
found the energy concentration before.

To prove Theorem 0. 2, we need only consider
the case when A is a Yang-Mills connection on E
with | Fy |,
following theorem proved by Uhlenbeck.

Theorem 2, 218 Theorem 3. 5] There

constant g; such that if F, is Yang-Mills field in

sufficiently small. We have the

n
-2

exists a

By, (x)and| | Fy |5 <es then |Fa(a) | is

By t0)

uniformly bounded in the interior of By, (x) and

| Fal) |7 < Cg(cf”L

AN
| Fal2)%
iu(x')
for all B, (x) B, (x0).
Assuming || Fa || (5 is sufficiently small,
from the above Theorem 2. 2, we have
| Falle = Sgg | Fa | () < C6P74 | Fallis,

here p is the injectivity radius of M.

Lemma 2.2 Let M be a compact n-

dimensional Riemannian manifold, and E is a
smooth vector bundle over M. Let A be a smooth
connection on E, then there exists e; =¢; (M) >0,
such that if

[ Fall e <ess
E is smoothly isomorphic to a flat bundle.

Proof We cover M with coordinate balls
{U,}, and any two points x, y in a nonempty
intersection U, (U, can be connected by a C' curve
in U, N Uy, whose length<Cdiam (M). Let ¢,:
E|Ua — B, (0) XR" be trivializations on U, and A, be

the g-value 1-form on U, corresponding to A under
b

Let x, be the center of the U,. For any point
x€U,, we let ¥* be the shortest geodesic from x,
to x inside U, , h,(x) €G is the parallel transport
of the bundle from x, to x along ¥’ using the
trivialization of the bundle.

Note that h,(x,) =1Id, we regard h, ' as gauge

transformations on U, , and denote h, ' (A) by Zﬁa.

We use the normal spherical coordinates

{(re@ }jmrn1.
A, = A, dr+A,do onU,

Let us assume that

and

Fi = F,,dr N\ dy’ +F,;d0" \ df’, onU,
Then by the definition of &,, we have Zﬁa,,.zo on
U,. Hence

(A =F,;sj=1y=m—1 (15
By integrating (15) and 7&“(0):0, we have
~ 1
Al @<lal [ 1 Fy | td<er,

(16)
We define hyg=h, "' (¢, * 3 ' YhgonU,NUy, and we
can check that {f,} is a set of transition functions.
Now we have
dhg = dh,' ($, * $5' Vs +

h'd (pe o ¢ Yhg+ N, ($, o $5' Vdhy =

dh'hhg+h(Ado » ¢s' Yhg—

W (e o g YAy + 1 'A (o ¢ Vdhy =

h' (A o hyg —heg » hg' (Ap) an
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where we using h,' (A,) =h,' A h, +h, 'dh,,
hi' (A =h,"A,h, +h;'dh, and d (¢, * ¢5') =
A (B v g ) — (¢, * g3 )A;. Hence from (16),
we have
| V hg |<e;» onU, U Us,.

By taking e; sufficiently small, we establish the
lemma from Lemma 1. 1.

From Lemma 2. 2 and Theorem 2. 2, we give a
proof of Theorem 0. 2.

Remark 2.2

Yang-Mills connection, A on E, in Lemma 2.2

We cannot conclude that the

with L%-small curvature, F,, itself is flat, but
rather just that E supports some flat connections
and thus is a flat bundle.

In Ref. [9], Uhlenbeck proved there exist a
constant, e, if || Fa |l rcp<<e (2p>>n), then there
exist a flat connection I" and a constant C such that

|A—r]| LY (X <C|Fallw.
By the Lajasiewicz-Simon gradient inequality on a
Sobolev neighborhood of a flat connection (see
Ref. [ 5, Theorem 3. 2 1), Feehan proved the
Theorem 0. 3.
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