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. powerful tool and efficient direct approach to
0 Introduction . . :
obtaining exact solutions to the equations

As a well-known method to search for the possessing bilinear forms!"™. In recent decades,
multi-soliton solutions to the nonlinear evolution Wronskian technique has received considerable
equations, Wronskian technique is considered a attention to its application owing to its obvious
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advantages!'™

. Exact soliton solutions in terms of
the Wronskian technique can be verified by the
direct substitution into the soliton equations. As a
generalization of Wronskian, double Wronskian
technique has always been used to derive the
solutions in the double Wronski determinant

form'', Double Casoratian is the discrete version

of the double Wronskian™".

In 2007, Chen et al. put forward a matrix
method for constructing double Casoratian entries
which satisfy an arbitrary matrix equation and
obtained the Wronskian

solutions of the AKNS equation'.

generalized double
By letting the
spectral matrix be a triangular case, Jordan case
with zero on the main diagonal and other special
cases, the soliton solutions, rational solutions,
Matveev solutions, Complexitons and interaction
solutions were derived. The matrix approach has
been applied to a class of soliton equationst'?'™7,
such as the general nonlinear Schrodinger equation
with derivative, a first-order four-potential
isospectral Ablowitz-Ladik (AL) equation, and so
on. Recently, the soliton solution and rational-like
solution in terms of the method for a negative order
four-potential AL equation have been expressed™?4,

In this paper, we consider a negative order
four-potential isospectral AL equation and obtain
its novel double Casoratian solutions. The paper is
organized as follows. In Section 1, we recall the
generalized double Casoratian solutions. In Section
2, soliton and rational-like solutions are presented.
In Section 3, we work out the Matveev solutions.
In Section 4, we construct the mixed solutions
between the rational-like and Matveev solutions. A

conclusion is given in the last section.

1 The generalized double Casoratian

solutions

A negative order four-potential isospectral AL

equation readst'®

Q.. = (1 - QRS {

Rn.t :7(17Q,,R,1)T”7 (1)
Su= (1=S,T)Q. {
Tn,r - (1 - SrzTu)Rnfl

where the functions of variable n{Q,, R, S,, T, }

are four potentials. Its spectral problem ist'”
E®, = U,9,.
£+ SR, =2Q,+='S,
"l b 2R 2 TQ T (2)
D, = %”J
b2

where z is spectral parameter and E is the shift
operator defined as E* v(nw) =v (n + k), kE Z
Usually for convenience, we write v (n) = v,

without any confusion.

The auxiliary problem isH®
®n.1 = V.,D,,
VvV =0
7%ersnl+%zz 7871121
LR 1 N
Rn‘, 2 RnSn 1 2 R4

3)

Through the dependent variable transformationt®

Qu:&’ Ruhnal

é ' fH : (4)
s-fon- g
the bilinear form of Eq. (1) is given by
Dig.+ fo = F.G.: (5a)
D h,s f,=—F._ H, (5b)
D, G, F.= fuign (5¢)
D H,+F,=— f.h,: 5d
£l — g.h, = F,F, (5e)
F.?—G,H, = fu1 fu (5D
where D is the well-known Hirota bilinear operator
defined by
D/'Dif e g=@,—3,)" (I, —IN"f(t,x) X
QAN B I 6)
We consider the following matrix equations
E®, = A®,, E'¥, = AV, (7a)

@M=%El@,mm=—%fm, (7b)

where A= (a;) is an (m+ p+2) X (m+ p+2)
arbitrarily invertible, real matrix independent of n
and t and

@, = (Prus $ous™*s bupza)

Vo = (s @oass Poperan) |
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The double Casorati determinant is a discrete

version of a double Wronskian defined ast®’

Cas™" 1 (@,; ¥,) =

| <Pu7 E(Dnv'”vEm(Pn; Wn’ Eq’n?"'v Ep'q,n |:
| msp | (9)
Besides, |z,/?c\ and | [;k| can be expressed ast*”
| I k| =] ED,. E°®,. . E'D,;
v, E¥,, -, E*W, | (10a)
| I; k| =] E®,, E2®,,.E'D,;
Ev,, EEv,,---, E*V, | (10b)

In order to obtain the novel double Casoratian
solution to Eq. (1), the following lemma is
needed.

Lemma 1.1 Suppose that M is an NX (N—2)

matrix and a, b, ¢, d are N-order column vectors,

then
| Mya,b || Myceod |—| Mya,c|| M,b,d |+
| Mya,d || Myb,c|=0 (1D
Employing the double Casoratian technique,

we have Theorem 1. 157,

Theorem 1.1 Eq. (5) has the following

double Casoratian solution:

fo=lmibls go=|m+1s p—11,
hy=—| m—1; p+1 |,

Fo=[ AT [ pT1]. (12)
Go=|Al* [ m+1:pl.
H,=—| AT | m—1; p+2|

which entries satisfy (7).
Hence, we obtain the corresponding solution

of Eq. (1D

Q,,:‘n+{ ],) |7
| m; p |
(13a)
R, :7| m—1; + J
| ms p |
=t
| m; p+1|
o (13b)
T — ml/,_\p:r2|{
| m; p+1|

2 Soliton solutions and rational-like

solutions

From (7), we derive the general solution™*"!

O, = A" C, W, = AT PN D (1)
’ Cm*p+2)'r and D:(dl ’dZ AT
Let A= e‘_;B,

where C=C(c¢; s "

d,,,+p+2)l are real constant vectors.

then (14) can be rewritten as

1

B 1.1 1B
‘C. W, = TP D (5)

(15) can be expressed as a power series in B:

*Inb’ *Ic l’
2 2 2
®, = ez 2

1

@n :e%nb‘ %e ?BIC _
s (71)1 L1 .
[1 2T D,]Bc (162)
% lf% ‘D =
O (— D [ (—Dr'n 1} \
B'D
; 2" ; ;2['(3*1)'
(16b)
If
ky 0
ks
B = . s ki F kiCGiE (17D
0 ki pr2
we can obtain soliton solutions of Eq. (1P, where
(i)jn — e,}»nf,( Z lt(j’
Y (18
(pjn — e 24}4172&‘ 4 ’Ld]'
If
0 0
1 0
B = . . 19
0 1 0 Cm!pl2)XCml pl 2)

it is obvious that B"'? * = 0, Thus we can
calculate the rational-like solutions with double
Casoratian form of Eq. (1). Taking ¢ =d, =1,
a=dy, =0 (k=2,3,,m+ p+2), then the

components of @, and \If,, are

(—D'r n’ -t

2 2r r' 20 51—y 20
o (— 1D & (=1 L !
¢’f"—,2 2771 Zzﬂm —1-01
(20b)

For example, set m= p=0, we obtain
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b1, = o = e? (21a)
_ =D 1,

G, = Z o e (21b)
I < IO I R N O N R

$on = Z 1lz 2 J— [2 7 ]e (21¢)

SR R 1 el T O

r 0

3 Matveev solutions

Let Bbea (m+ p+2) X (m+ p+2) Jordan
matrix:
(JCky) 0 )
(ky)
B— JCk) (22)
0 JCk
Without loss of generality, we observe some
Jordan block (dropping the subscript of k)
k 0

0 1 k)
where I, denotes an [ X [ unite matrix and Y, =
0 0
1 O ) )
. . It is obvious that
0 1 0J %1
s s . 1 0
J = R A YD = (14 Yiou+ 5 Y30E 4

j—l'Y{af,; e Lviag) e (24)

Hence, for an arbitrary positive integers, we have

I (k) = T(k k',
T(k) =
1 0
9, 1
15,
1 1,5,
1 — 15 1
————a e =20) 0h 9,
(1—n1t 6%t ol 1

25

Substituting J (k) for matrix B in (16) gives

(26)

k

@, (k) = T(k)yer™!ze 2, }
W, (k) = T(k)e 2%z 2D

whose components are

¢ (R) =
( 1 il | e ‘]fk/
laﬁk + - +C19+CJ62 z
(27a)
(‘bjn(k):
[dl ﬁak17+ cd, +d] —gk—ge 2h
(27b)

i=1,2,,1
G = dl =1, ¢ =
(27) can be reduced to

. Particularly, let
dj =0 (] = 2939"'9[)9

1
1 9.0 Tezmtze 2%

m I (28a)

¢jn(k) —

1 —1 —tak—te ]?kl
d,. 7
(] 1)' k e 2 2 (28b)

Thus, the Matveev solutions to Eq. (1) are worked

G (k) =

out, where

D, = Chr (k)i Chy)
b1 (k) sy i (kDD (29a)
W, = (g, (k) ey (k)
(k) s sy, (RO (29b)
L+tL++1l=mtpt2. |
Setting
D, = (¢, (k) s o, (BT,
v, = (fbl,,(k),ig,,(k))T } 0

in (29), where ¢;, (k) and ¢;, (k) are defined by

(28), we can derive

1
(i)lu(k) = e%”’\’ e 2 ,’
L 17t } (31a)
(/)ln(k) = e Sk ome 2t
1,
¢2, (k) = (’)kef—;;,k{_;u B
[élizte %kJe b (31b)
1,
¢le(k) = (’)ke r_;nk T;Q Zkt _
e et @

Substituting (31) into (12) yields
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() g (B edrrbe T e Fwoe t
o n n _ _ t _1,
n (B (B [?nizte %»]el,#%:%f B ?nfzte lkJe Ly 1o 3k, n-+ 5 e
(32a)
Lok leiikl 1 ﬁleiikl
¢lu(k) ¢l.n\l(k) e? htge 2 ez( D kge 2 e
A UGS RO S I ﬂlee —kJe%,H:%ht [ngliie %kJeg“ﬁnkﬁz;%h —2¢
(32b)
ln le l;
; P (k) P (R e 27 e’
" PeaCk) o (R - [% —Ile %k]e b LTh [”erl Ly %kJe Lowor L2k |
_1,
Le Gk &2k
(32¢)
Similarly, a direct calculation gives rise to %L)*%Le %k*TlG %k+3%e t o 1, }?;%kt
Fo=1= "*%jL?tef%’k [ AlTe (33a) (36h)
G = 1 A ‘%e(n—k%)k o T (33h) When setting (m, p)=1(1, 0), we derive
n 2 i
1 1 s 1i Q, = : Zet! ] debe TEe
Ho= 5 [ Alze G o (330) (4 2w et — e 20 + Pe 3t
Thus, substituting (32) and (33) into (4), we 37a)
2 l) 2 %e _ 1
obtain the Matveev solution of Eq. (1) R, — (4n + Zn)]e P —dnte "+ Fe "11 o e Tt
1, y Uit 4+ 2we* — Unt 4+ 21) + e 2t
S nklc 2%t
Qu - op— t—e %kem (34a) (37b)
lk 1 J— Ze%k 1':}44’&77;}21
e ? e 2% S, = 1 €
Ro=— o me (34b) D +6nt2— (n+ 1D+ Fe
: (37¢)
S” = e—klenk\ci%kl (34C) X B} , , .
2n+1— ezt 7o U +b6nt2)e 2 — Ut 20e * F Fe 2t
ok o ' Aot +6n+2— (U +4De T+ Fe
T, =— —:_lke e (34d) 1,
271+1*t€ 2 e*”k*e 20t (37d)
Now, taking Taking (m, p)=1(0, 1) gives
D, = Chi, (k) s o (k) s o (DT i 2wert — U204 fe TE ot
(35) Q. = , 1, 2 2 3, ¢
T, = (P, (k) s, (k) s ¢, ()T —Un +2we 2+ dme "t — e
We work out (38a)
¢s, (k) = ir7(ie]7"€7]7°7%h' = R = 2e 7" o TTh
2 LU —+ Zn)e*%'{ +dne ™t — ¢ et
LU e T S I A P Tl (38b)
s 8% Tigt " Tage ]e
(36a) Si =
(k) — Lol du Lode, U +6n+2) — Unt+4pe 2" +1ve" r
o 2t — (i bnt et b (Ut 207t — ezt
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_1
e 2F

e (38c)
T, =
Zefiik .
— (4w +6n+2e %k+(4m+2t)e 2 o 2k
1,
e 2 (38d)

It is easy to verify that the above Q,, R,, S,, T,
solve Eq. (1), respectively.

4 Mixed solutions

In this section, we would like to construct the
mixed solutions in the double Casoratian form of
Eq. (1).

matrix constituting of the matrices (19) (B,) and

We assume that B is a paradiagonal

then @, and ¥, defined as (7) are described by
(Dn - ( ®m‘T ’ (Dan )T o

40)
v, =y, v, D"
where
E®n: - A:(Dn:’ E ]W71z - A:’\Irn: (413)
D = g B O Wy —— LBV 2= o

(41b)
It is obvious that the double Casorati determinant
(12) constructed by (40) is a solution to Eq. (5)
and this type of solutions is called the mixed
solution,

Letting

_ T
(22) (Bm)7 ie. (pu - (¢l,m'7 SbZ,nr’ (Dnm) ’} (42)
_ T
B] 0 W?‘l - ((;bl.nr’ ‘pZ,nr? ‘\Irnm)
B= 0 B 39 and (m, p)=(1, 0), we have
7‘[, o 7T‘I
e? e’ e ?
¢l,nr ¢1.(n*l)r Sbl.m' + 1
n_t) L n _ty e Mt 1
f‘n - ¢2.m’ 4’2.(7: Dr ¢2,ur [ 2 4 ]ez [ 2 4 ]ez 2 4 ]e =
$u Porom P e%,w%e 2k, e%(ﬁm\»%e T, o L Le Tk
t] laplelody [ t 1 J Taeledy |1 La 1o3h,
n— — |er™ M — n— =+ = |ezx"z + —e 2" 2 (43a)
2 2 2 2
1 1 1
ez! ez! ez!
Prow P r Plin wr
( n t) 1, (n+1 t) 1, [n t) 1,
2 = | $2w  P2.r Pz [E - IJQZ l 2 7IJ62 [? +1— " e | =
4)”"’ (j)(nH)m 4)(7“2),“ e%11]€+%c7%kr e%,(YH’l)k*%(‘iékt e:—;(n*Z)Hﬂ_;ciéht
7e%k+iek+i]e%w}1\%c Th (43b)
2 2
1 1 1
e’ e ! e '
P Plow  Plnr 1
n Lt 1 n 4 1 n _ 1
hn = ¢2.71r SbZ.nr ¢2-(71H)r - [ 2 - z]e)’ - [? 72]6 2! - [ 2 4 ]e 2 =
Pun P POrm e;‘m\%L T, e—‘;m—%( T, efé(“ Dl—ge zh,
11 Tk L] _1, L 1 1,1 e
Eezn“ze "r7+|:[11*?]e ok __ n7?+?]:|e Fnk—Ze 27t (43C)
Similarly, we obtain
1 l 1] 1 3 11—k 1 1, 1-te 1
F,=| Al .{[ n———+—|ext— |n———+1 }eﬂ'k ze Pl e ko Z’BF'} (44a)
2 2 2 2
. 1 1 1 ., 1) 2, 1-Le
G, =] Alz . *eszr?e/‘JrE]ez'* ze Bt (44b)
1 1 1,1 -1 3 1 t 1 1. 1-1k
Hn:|A|2.{?eznk+2L2TT+[7 [n7?+1]e EkJr[n*?Jr?Jek]e sk g Zr} (44C)
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Making use of transformation (4), we can obtain the following mixed solution between the rational-like

solution and Matveev solution for Eq. (1)

1y
GI\H*ZGZ}\ 1+et

Qn - 1 (455)
1 k
—2n—t+1)+ @Cn—peztfe ™ 2
_ _ . *lk —nk—e T;kl —1
R, — [—Cn—t+ 1D+ Q2n—de j Je 7lh+e (45b)
—@n—t+ 1D+ @n— ezt e ™ 2t
S _ 726%Hz+ek+r+et (45C)
(2n—t4+De?t — (2n— t42) e Pzt
1 -1
o o j,la o k nk ¢ 2t t
T”:[ (2n tJrZ)e1 + 2n—t+ e *le — + e (45d)
Cn—t+Dett —Q2n—t+2) e ™ 2k
When (m, p)=(0, 1), we derive 1 g”:[{ztign e'+[11*%+%]e*f
[ Can— i+ D+ Cun—pett et e 1
Q= 1 Tk ﬂii+i Tk | mkle 2R
Cn—t+1 — Q2n— e 7h—ehle i 2 4 " 2)° ¢
46(
| (1o [§+%J€M+ [11+zt+%] 4
7h1*2€7§h1+€71
Rn = £ a1 1
Cn—t+1) — (2n— e 2t — et T ztefﬂ - 3”+§t]e' (48b)
(46b) . . 1
1 _ 1, 1 ]
[— 2n—14+2)+ Qn— 1+ 1)ert]e™ 2k +Ie et [éiier%Jef%k}eﬂy e ?":+
2n—t+ Z)efék* Cn—t+1Der—e™le B p [ 1 [ 1
- — 7l}~17 ﬁ - — —k—t
(46¢) [n+4+2Je2 [2+2+2Je +
Tn:
; \ Lei M (48¢)
e§k172eh1+e‘§kl 4 2
1 1 _ 1,
(27’1* t+ 2)67‘?*(211* t+ l)efkienlz\c zkr—r F,, :‘ A ‘% . |:7 %enkfe 2"14’%}& r+
(46d) . 2 . 3
2 n 1,
Choosing —2n *4n+7+z+7*7]e 2k
®11 = ( S Y 2. 0 snm Z,Hm)T? 2
v (il i? il i . 47 nz+2n+%t—%+?t+1Je (NS
n = Lynr o 2emr ® Lemn ® 2 s
and (m, p=(1, 1), we get 7it+t7277t}eik+
1 1, 2 4 2
fo= 7enlz+c 255k r+ 1 o
n~+2“*%1*é+1]*zeiﬁie 1‘7‘7/1\7}
2 nt t 1] 1
PR
2 4 4 (48d)
2 ( \
Bt LSl by Go= 1Al [ —g T+
2 3 <
—gefdens g [fo e
—2712—2n+%t+%+ﬂ— n+2‘+1Jef— 5”+%Je*'ﬂ—
l nk uiékr «%I\’*I n t l Lt b ke
L€ 2 (48a) 5 + > + e + 1€ } (48e)
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_ 1 t_n_ 3 2y

H, =] Al {[[4 2 4]ez+
n*éJrl]ef“—
n l l 7’!{:| nk (7%” o
5 4+4Je e
71+i]e—%k~l+[n+_t+1]efk~17
2 4 4
n ot i\ Y AT
R LR | (480)

Again making use of (4), we obtain the mixed
solution to Eq. (1) between the rational-like and
the Matveev solutions. Besides, we can also
construct the mixed solution under the conditions
of (m, p)>=10(2, 0) and (m, p) = (0, 2).
Furthermore, we can also deduce the other mixed
solutions between the rational-like cases and

Matveev cases.

5 Conclusion

In this paper, the double Wronskian technique

and the matrix method have been applied to a
negative order four-potential isospectral Ablowitz-
Ladik equation possessing bilinear form. By
expanding the general solutions to the matrix
equation satisfied by double Casoratian entries as
the series of the arbitrary matrix B, Soliton
Matveev
double

Caosoratian form for the equation have been

solutions, rational-like solutions,

solutions and mixed solutions in
presented. By taking B to be Jordan matrices and
the combination of different Jordan form matrices
with respect to rational-like cases and Matveev
cases, we have constructed novel Matveev
solutions and mixed solutions. Furthermore, some
explicit solutions, such as complexitons and
interaction solutions, can also be derived by letting

the general matrix be some other special cases.
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