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. differential equations. On the other hand,
0 Introduction

Muckenhoupt et al. ) introduced the classical A,

The classical Morrey spaces were introduced weighted theory. The study about weighted

by Morrey in Ref. [1] to investigate the local estimates for some operators on weighted spaces
behavior of solutions to second order elliptic partial has become increasingly important. In 2009,
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Komori and Shirai®™ first defined the weighted
Morrey spaces L”“(w) which could be viewed as an
They

studied the boundedness of the fractional integral

extension of weighted Lebesgue spaces.

operator, the Hardy-Littlewood maximal operator

and the Calderon-Zygmund singular integral
operator on L”*(w). For the boundedness of some
operators on these spaces, we refer the readers to

Refs. [4-16].

Recently, some  people  studied  the
boundedness of two classes of oscillatory singular
integrals on weighted Morrey spaces. Let K be a
standard Calderon-Zygmund kernel, that is, K is
C' on R" away from the origin and has mean value
zero on the unit sphere centered at the origin. The
first class of oscillatory singular integral operator

T is defined by
Tf(x) = p. V.JRWeiP“NK(x— W fCpdy (D

where P(x, y) is a real-valued polynomial defined
on R"XR",

The second class of oscillatory integral

operator T; is defined by
T.f(x) = p.v. JR” " K(x— y) olx, y) f(y)dy

(2)
where A€ R, ¢ &€ G (R" X R"), the space of
infinitely differentiable functions on R" X R" with
compact support, and @ is a real-analytic function
or a real-C” (R" X R") function satisfying that for
any (o y) € supp ¢, there exists (josko)» 15<jo
ky<< n, such that *®Caxy, y,) /9 xj, @y, does not
vanish up to the infinite order. These operators
have arisen in the study of singular integrals
supported on lower dimensional varieties, and the
singular Radon transform. Their results are stated
as follows.

Theorem A7 Let w€ A, 0<<xk<<1, and
K(x,y) be a standard Calderon-Zygmund kernel,
then there exists a constant C>>0 independent of
the coefficients of P(x,y) such that

sup Aw({x € B: | Tf(o | > ) <

cl f [l e w(B)*,

Theorem B'™  Let A€ R, ¢€ 7 (R" X R")
and @is a real-C™ (R"XR") function satisfying that
for any (ay»y) € supp ¢, there exists (jy»ky)» 1<
jo» ko<<n, such that *®(x,, y,)/d x;, d yi, does not
vanish up to the infinite order. Assume K is a
standard Calderon-Zygmund kernel and T, is
defined as in (2). Then for any 1< p<lco, 0k
1, and w€ A,, T, is bounded on L"*(w).

The purpose of this paper is to study two
classes of multilinear operators which are closely
related to the operator T defined by (1) and T,
defined by (2).

Let m& N and m=2. Let Q be homogeneous
of degree zero, belonging to the space Lip, (S" ')

and satisfying the following conditions

J QO 0rdo0= 0 for
st (3)

a€ (NU{0)"and | a|= m
Let A have derivatives of order m in BMO(R")
and let R,,(Aj; x, y) denote the m-th order Taylor
series remainder of A at x about y, that is,

R,(As 0 ) = A — ) LA (a— p.

lal=im 1

The first operator we will consider here is

defined by

T f(2) =
p. V.J Pty %%QWH(A;I’ ¥ fCwdy
R | z2— |
4
where
Qm—Fl(A;I’ y) -

Ro(A; 20 ) — D) %Dwy)u—w.

Hu and Yang!™ considered the boundedness of the
operator T% on H'(R") when P(x,y)=P(x— y).
They proved that T is bounded from H'(R") to
L'*(R™. In 2000, Hu et al.®" proved that T" is
also bounded from weighted Hardy space H!(R")
to the weighted Lebesgue space L, (R") for w&
A (R") and from the weighted Herz-type Hardy
space to the weighted Herz space.

The second operator we will consider is

defined by
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Tif(x) = p.v. jR“ eV oz, y)

=) oAy fpdy (5

E=rI
where A& R, ¢€ G (R"XR"), P& C" (R"XR"
and 2,Q,-1 (A; x,vy) be as above.

In 2002, Wu and Yang™"” proved that T is
bounded from weighted Hardy space HY (R") to
the weighted Lebesgue space L., (R") for w €
A (R" and from the weighted Herz-type Hardy
space to the weighted Herz space.

Our main results in this paper are formulated
as follows.

Theorem 0.1 Let 1<<p<<lco, 0<kg<1, and
w€ A, T* be defined as in (4). P(x,y) is a real-
valued polynomial on R" XR" with V ,P(0, y)=0.
Then T* is bounded on L”*(w).

Theorem 0.2 Let A€ R, ¢& (7 (R"XR"),
@€ C"(R"XR") satisfy V,9(0,y) =0 and T} be
defined as in (5). Then for any 1<< p<loo, 0<x<
1, and o€ A,, T is bounded on L”*(w).

1 Notations and preliminary lemmas

We begin this section with some properties of
A, weight classes which play an important role in
the proofs of our results.

Let B=B(x;,r) be the ball with the center xo
and radius r. Given a ball B and A>>0, AB denotes
the ball with the same center as B whose radius is A
times that of B.

A weight wis a locally integrable function on
R", which

everywhere. For a given weight function w, we

takes values in (0, ©©) almost
denote the Lebesgue measure of B by | B| and the

weighted measure of E by w(E), i. e. o(E) =
Jw(x)dx. Given a weight w, we say that
E

satisfies the doubling condition if there exists a
constant D>>0 such that for any ball B, we have
w(2B)<<Dw(B).

We say o€ A, with 1<Zp<Too, if there exists a
constant C>0, such that

1

mJ w(x)dx
B

1 S P .
m Bw(:l‘) @ vda < C

for every ball BER". When p=1, w€ A, if there
exists C=>0, such that

¥J w(dr < C essinf w(x)
| BlJs € B

for almost every x€R". We define A.. = UIAI,. A
Pl

weight function w is said to belong to the reverse
Holder class RH, if there exist two constants r—>0
and C>0 such that the following reverse Holder
inequality holds

1/r
[|17|J w(x)"de < C[LBJ w(x)de
B B

for every ball B=R".

It is well known that if w€ A, with 1< p<lco,
then there exists 1 such that & RH,.

Lemma 1.1 Let € A,, p=1, and r>0.
Then for any ball B and A>1,

w(2B) < Cw(B),
w(AB) < CA"w(B),

where C does not depend on B nor on A.

Lemma 1.2  Let € RH, with ©=>1. Then

there exists a constant C such that

w( E) ‘ E ‘ J(z*l)’r
< C|———
w(B) C[‘ B

for any measurable subset E of a ball B.

The weighted Morrey spaces was defined as
follows.
Definition 1. 1 Let 1<< p<<co,0<<x<1 and
w be a weight function. Then the weighted Morrey
space is defined by
L (w) = {f € LbCa): | [ 1reey < oo},

where

( 1 " . N1/ p
| £l ey = s%pt@JB | () |[Pw(x)dx

and the supremum is taken over all balls B in R".
Our argument is based heavily on the
following results.
Lemma 1. 3% Assume T" is defined as in
(4). Then for any 1<<p<<oe, and w&€ A,, we have

H TA f H Lf) < C(7n9n9 P,degP,AP(w)) .
E H DA H BMO H f H Ll s

a=m

where A,(w) denotes the A,(R")-constant of w.
Lemma 1. 4" Let A€ R, o€ G (R"XR")
and ®@is a real-C™ (R"XR") function satisfying that
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for any (s ) € supp ¢ there exists (jo,k), 1<
josky=<<n, such that 9*®@(z,, y,)/d x; I y;, does not
vanish up to the infinite order. Assume T3 is

defined as in (5). Then for any 1<<p<lco,wE€ A,,
T3 is bounded on L%, that is, for all fE€ L2,

H Tf I H Lk < CZ H DA H BMO H f H Lk

m

where Cis a constant independent of A and A, but
may depend on A,(w).

Lemma 1.5  Let b(z) be a function on R”
with m-th order derivatives in L. (R") for some
¢>n. Then

| R,.(b;x,y) | <

m
Con | 2— v |

b

1
J | Db(2 |*dx
[ IEN)

S S
;J@xﬁw
where é( x,y) is the cube centered at x and having

diameter 5 n| x— y/.
In the following the letter C will denote a

constant which may vary at each occurrence.

2  Proof of theorems

Proof of Theorem 0. 1
It is sufficient to prove that there exists a
constant C=>0 such that

1
w(B)*

Fix a ball B=B(a,, r3) and decompose =
f1+f2 ’ with f’l - fXgB and f’g - fX(ZB)‘. Then

we have

J | T f (0 ["w(Dda< Cll £ freca.

1 J A - p Ddr <
(B s | T (o) [Pw(x)da <<
. 1 J A b
L{ (B s | T () |[Pw(x)dx+
1 J Af , _
(B s | T f,(2) [Pw()dx
L+ L.
Using Lemma 1.1 and Lemma 1. 3, we get
L1 j
< ) | <
I, (B o | f( [*w(xdx
Cllf I o+ £ < ClL I o,

We now estimate I,. Let us consider the operator

T4 defined by
T () =

%45 %
b, V.JR,e”’“ » %R,ﬁm 29 f(pdy.
x—y
Then we can write
| T () | =
| TV (0 — D) [DFALT 2 (o) | <

| T (o |+ D) [ [DATf (0 |,

lal=m

where T, is the type of (1) with the kernel K
replaced by K, (2) = Q(x) 2¢/] x|™" which is a
Calderon-Zygmund kernel. The boundedness of T,
on weighted Morrey spaces can be seen in Ref.

[17]. By Lemma 1.5 we can write

‘ /’\l/‘Af.?(I) ‘<
‘jww et %%RHM(A BV Ly <
5 ()
C 0‘2:”1 | DAl BMOJR“ ”i%ﬁ)“”dy-
Noting that for € B and y€ (2B)*, | 2y — y| <
Cl x— yl. We have
| T <
CZ | DA || L’NIOJ M <
=yl =2 | Jw*}’|
() |
DA | LI gy <
;ﬂ MWZJW,wW‘w,y

LZ | DA F\’IOZ | Z}B ‘J . | fCy | dy.

i1

Holder’s inequality and the A, condition imply that
[ 1r Lay=

o 17 Totpdy (| w(y fdpd <

1

Cll flimwo2 Bl Pap!

2\1

Cl f (I | 277'B | w(2'! B)_P.

By Lemma 1.2, we have

1 J , <
(B | T4 fe(0) [Pw(x)dx
e[S BT
CH f H LP*(w (}Z} w(ZJH B)Tx &S
CI I trecs (D

On the other hand by the boundedness of the
commutators on the weighted Morrey spaces (see

in Ref. [12]), we have
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(L)J L IDAL T £ (0 [Pl da <
Cll sl o (8)
By (7) and (8), we can obtain
L<<CI I e,
The proof of Theorem 0. 1 is completed. ]

Proof of Theorem 0. 2

Similar to the proof of Theorem 0. 1, we
decompose f= fi1 + f», with fi = fyas and f; =
Syeme. Then we have

1
w(B)*

J | TR f( [Pw()de <

B

I S b

{w(B)KJB\ T2 1 () [Pl et
1

w(B)*

CiJ+ T

Using Lemma 1.1 and Lemma 1.4, we get

1
<C
Jl\cw(B)"

J. | T2 (D \Pw(r)dx} =

J | f() [Tw(Ddx <
2B

w(2B)*
w(B)*

By Lemma 1. 5, we have
|Rm(A; Ty 3/) ‘<(j| X y| m; ln addition,
| Qm l(A;]:7y) |<

Cla—y|"+ D) | DA D.

m

C H f H Prrcay < C H f H Preca.

We now estimate J,.

Then we write

Tif( | =
DOCx, 3 (4&
U(}m o(xsy) z— |,rh“
le(A;I7y)f.2(y)dy <
. Q(x—
C J 1/\(1)(1 ¥ , .
o e(xsy) | a—y |”

(1+ >, | D*A(D |)f2(y)dy‘ <

o m

CO) I DA | w0 | Taf2(o |,
| af

m

By Theorem B, we have
H T.f- H P <
Then, we get

C H S H LV % »

J: < Py -
Thus, we finish the proof of Theorem 0. 2. L]
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