Vol. 45, No. 12 Dec. 2 0 1 5

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2015)12-0976-07

On S-c-propermutable subgroups of finite groups

MAO Yuemei^{1,2}, MA Xiaojian¹, YANG Nanying³

School of Math. and Comp. Sci., Shanxi Datong University, Datong 037009, China;
School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China;
School of Science, Jiangnan University, Wuxi 214122, China)

Abstract: A subgroup H of a group G is said to be S-c-propermutable in G if G has a subgroup B such that $G = N_G(H)B$ and for every Sylow subgroup A of B, there exists an element $x \in B$ such that $HA^x = A^xH$. Here, S-c-propermutable subgroups were used to study the structure of finite groups and some new criteria of supersoluble groups were obtained.

Key words: S-permutable subgroup; S-c-propermutable subgroup; Sylow subgroup; Hall subgroup

CLC number: O152 **Document code**: A doi:10.3969/j.issn. 0253-2778. 2015. 12.003 **2010 Mathematics Subject Classification**: 20D10; 20D15; 20D20

Citation: Mao Yuemei, Ma Xiaojian, Yang Nanying. On S-c-propermutable subgroups of finite groups [J]. Journal of University of Science and Technology of China, 2015, 45(12): 976-982.

有限群的 S-c 置换子群

毛月梅1,2,马小箭1,杨南迎3

(1. 山西大同大学数学与计算机科学学院,山西大同 037009; 2. 中国科学技术大学数学科学学院,安徽合肥 230026; 3. 江南大学理学院,江苏无锡 214122)

摘要:群 G的一个子群被称为 S-c 置换的,如果 G有一个子群 B 满足 G= $N_G(H)$ B 并且对于 B 的任意 Sylow 子群 A,存在元素 x \in B 使得 HA^x = A^xH .利用 S-c 置换子群研究了有限群的结构,得到了超可解群的一些新的判别准则.

关键词:S置换子群;S-c置换子群;Sylow子群;Hall子群

0 Introduction

Throughout this paper, all groups considered are finite. G always denotes a group and p denotes a prime. let π denote a set of primes and $\pi(G)$ denote the set of all prime divisors of |G|. Let $|G|_p$

denote the order of Sylow *p*-subgroups of *G*. All unexplained notation and terminology are standard, as in Refs. [1-2].

A class of groups \mathcal{F} is called a formation if it is closed under taking homomorphic images and subdirect products. A formation \mathcal{F} is called

Received: 2015-06-14; Revised: 2015-12-10

Foundation item: Supported by an NNSF of China (11371335) and Natural Science Youth Foundation of Jiangsu Provincial (20130119).

Biography: MAO Yuemei (corresponding author), female, born in 1980, PhD candidate. Research field: group theory.

E-mail: maoym@mail. ustc. edu. cn

saturated (resp. solubly saturated) if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$ (resp. $G/\Phi(N) \in \mathcal{F}$ for a soluble normal subgroup N of G). For a class of groups \mathcal{F}_{\bullet} , a chief factor L/K of G is said to be \mathcal{F}_{\bullet} central in G if $L/K \rtimes G/C_G(L/K) \in \mathcal{F}$. A normal subgroup N of G is called F-hypercentral in G if either N=1 or every chief factor of G below N is \mathcal{F} -central in G. Let $Z_{\mathcal{F}}$ (G) denote the \mathcal{F} hypercentre of G, that is, the product of all Fhypercentral normal subgroups of G. We say that a chief factor L/K of G is Frattini (resp. non-Frattini) if $L/K \leqslant \Phi(G/K)$ (resp. $L/K \leqslant$ $\Phi(G/K)$). The F-residual of G, denoted by $G^{\mathbb{F}}$, is the smallest normal subgroup of G with quotient in \mathcal{F} . Moreover, the subgroup F^* (G) of G is called generalized fitting subgroup of G which is the set of all elements x of which induce an inner automorphism on every chief factor of G (for details, see Ref. [3, Chapter X, Definition 13.9]. We use \mathcal{U} and \mathcal{N} to denote the formations of all supersoluble groups and nilpotent respectively.

Recently, Ref. [4] gave the concept of S-propermutable subgroups: a subgroup H of G is said to be S-propermutable in G provided that there is a subgroup B of G such that $G=N_G(H)B$ and H permutes with all Sylow subgroups of B. In 2007, Ref. [5] proposed S-conditionally permutable subgroups: a subgroup H of G is said to be S-conditionally permutable in G if for every Sylow subgroup G of G there exists an element G such that G is a subgroup G such that G is subgroup G if G such that G if G is such that G is such that G if G is such that G if G is such that G is such that G if G is such that G is such tha

Definition 0.1 A subgroup H of a group G is said to be S-c-propermutable in G if G has a subgroup B such that $G = N_G(H)B$ and for every Sylow subgroup A of B, there exists an element $x \in B$ such that $HA^x = A^xH$.

It is easy to see that S-propermutable subgroups of G are S-c-propermutable in G. But the converse does not hold in general.

Example 0.2 Let $A = S_4$ be a symmetric group of degree 4 and $B = C_5$ be a cyclic group of order 5. Let $G = A \setminus B$ be the regular wreath product of A by B. Let K be the base group of G. Clearly, $G = N_G(B) K$. It is easy to see that for any $p \in \pi(K)$, there exists some Sylow p-subgroup P of K such that BP = PB. Hence B is S-C-propermutable in G. But B is not S-propermutable in G. Clearly,

$$P_2 = K_4 \langle (12) \rangle \times K_4 \langle (13) \rangle \times K_4 \langle (23) \rangle \times K_4 \langle (24) \rangle \times K_4 \langle (34) \rangle$$

is a Sylow 2-subgroup of K, where $K_4 = \{(1), (12)(34), (13)(24), (14)(23)\}$. If $P_2 B = BP_2$, then $P_2 = K \cap P_2 B \triangleleft P_2 B$, and so $B \leqslant N_G (P_2)$. This is impossible. Hence B is not S-propermutable in G.

In the present paper, we derive some criteria for a finite group to be a supersoluble subgroup.

1 Preliminaries

Lemma 1.1 Let $H \leq G$ and $N \leq G$. If H is S-c-propermutable in G, then HN/N is S-c-propermutable in G/N.

Proof By hypothesis, G has a subgroup B such that $G = N_G(H)B$ and H permutes with some Sylow p-subgroup of B, where p is any prime divisor of |B|. Clearly,

$$G/N = (N_G(H) N/N)(BN/N) = N_{G/N}(HN/N)(BN/N).$$

Let p be any prime dividing |BN/N|. Then there exists a Sylow p-subgroup B_p of B such that $HB_p = B_pH$. It follows that

 $(HN/N)(B_pN/N) = (B_pN/N)(HN/N)$ and B_pN/N is a Sylow *p*-subgroup of BN/N. Hence HN/N is S-c-propermutable in G/N.

Lemma 1. 2^[6, Lemma 2, 1] Let \mathscr{F} be a non-empty saturated formation, $H \leq G$ and $N \leq G$. Then $Z_{\mathscr{F}}(G) \times N/N \leq Z_{\mathscr{F}}(G/N)$.

Let P be a p-group. If P is not a non-abelian 2-group, then we use $\Omega(P)$ to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega(P) = \Omega_2(P)$.

Lemma 1. $3^{[7,Theorem 2.8]}$ Let \mathcal{F} be a solubly saturated formation. Suppose that P is a normal p-

subgroup of G and C is a Thompson critical subgroup of P(see Ref.[8,Chapter 5]). If either $P/\Phi(P) \leqslant Z_{\bar{x}}(G/\Phi(P))$ or $\Omega(C) \leqslant Z_{\bar{x}}(G)$, then $P \leqslant Z_{\bar{x}}(G)$.

Lemma 1. 4^[7, Lemma 2, 10] Let C be a Thompson critical subgroup of a nontrivial p-group of P.

- (I) If p is odd, then the exponent of $\Omega_1(C)$ is p.
- ([]) If P is an abelian 2-group, then the exponent of $\Omega_1(C)$ is 2.
- (\coprod) If p=2, then the exponent of Ω_2 (C) is at most 4.

Lemma 1. $\mathbf{5}^{[9,\text{Lemma 2.14}]}$ If the generalized fitting subgroup $F^*(G)$ of G is soluble, then $F^*(G) = F(G)$.

Lemma 1.6^[10,Theorem B] Let \mathscr{F} be any formation and E a normal subgroup of G. If F^* (E) $\leqslant Z_{\mathscr{F}}(G)$, then $E \leqslant Z_{\mathscr{F}}(G)$.

Lemma 1.7 Let \mathcal{F} be a formation containing all supersoluble groups. Suppose that E is a normal subgroup of G such that $G/E \in \mathcal{F}$.

- (]) If \mathscr{F} be a solubly saturated formation and $E \leq \mathscr{F}_{\mathcal{U}}(G)$, then $G \in \mathscr{F}^{[1],\text{Lemma 2.11}]}$.
- ($[\![]\!]$) If \mathscr{F} be a saturated formation and E is cyclic, then $G \in \mathscr{F}^{[12,\operatorname{Lemma 2.16}]}$.

Lemma 1. 8^[13,Theorem 2] Let G be a p-soluble group. Then for any $q \in \pi(G)$, G has Hall $\{p,q\}$ -subgroup.

2 New characterizations of *p*-supersolvability of groups

Theorem 2.1 Let P be a normal p-subgroup of G. Suppose that P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| or all subgroups with order |H| = 2|D| (if P is a non-abelian 2-group, |P:D| > 2 and $\exp(H) > 2$) is S-c-propermutable in G, then $P \le Z_{\emptyset}(G)$.

Proof Suppose that the result is false and let (G, P) be a counterexample for which |G| + |P| is minimal. Let N be a minimal normal subgroup of G contained in P. We now proceed via the following steps.

(I) If |N| < |D|, then N is a unique minimal normal subgroup of G contained in P such that $P/N \le Z_{\mathscr{U}}(G/N)$ and |N| > p.

Let H/N be a subgroup of P/N such that |H/N| = |D|/|N| or |H/N| = 2|D|/|N| (if P/N is a non-abelian 2-group, |P/N:D/N| > 2 and $\exp(H/N) > 2$). Then it is easy to see that H is a subgroup of P such that |H| = |D| or |H| = 2|D|(if P is a non-abelian 2-group, |P:D| > 2 and $\exp(H) > 2$). Thus by hypothesis, H is S-cpropermutable in G. Then by Lemma 1.1, H/N is S-c-propermutable in G/N. The choice of Gimplies that $P/N \leq Z_{\mathcal{V}}(G/N)$. If |N| = p, then $P \leq Z_{\mathcal{U}}(G)$, a contradiction. Thus |N| > p. Let R be another minimal normal subgroup of G contained in P such that $N \neq R$. Since $NR/N \leq$ $Z_{\mathcal{H}}(G/N)$ and NR/N is a minimal normal subgroup of G/N, we have |R| = |NR/N| = p. It implies that $|R| \leq |N| < |D|$. A similar discussion to the above can deduce that $P/R \leq Z_{\mathcal{U}}(G/R)$, and so $P \leq Z_{\mathcal{U}}(G)$, a contradiction. Hence N is a unique minimal normal subgroup of G contained in P.

 $(\parallel) \mid N \mid = \mid D \mid.$

If |N| > |D|, suppose that N_1 is a subgroup of N such that $|N_1| = |D|$ and N_1 is normal in some Sylow p-subgroup G_p of G. By hypothesis, G has a subgroup B such that $G = N_G(N_1)B$ and for any $q \in \pi(B)$ with $p \neq q$, there exists a Sylow q-subgroup Q of B such that $N_1Q = QN_1$. Since $N_1 = N \cap N_1Q \triangleleft N_1Q$, we have that $Q \leqslant N_G(N_1)$. Let B_p be a Sylow p-subgroup of B. Then there exists an element $x \in G$ such that $B_p = B \cap G_p^x$. Clearly, $G_p^x \leqslant N_G(N_1^b)$ for $N_1 \triangleleft G_p$, where $b \in B$, and so $B_p \leqslant N_G(N_1^b)$. Since $Q^b \leqslant N_G(N_1^b)$, we have that $B \leqslant N_G(N_1)$. Therefore, $N_1 \triangleleft G$. It implies that $N_1 = 1$ or $N_1 = N$, which is impossible because $1 \leqslant |D| \leqslant |N|$.

Now assume that |N| < |D|. By (1), $P/N \le Z_{\mathcal{U}}(G/N)$. If $N \le \Phi(P)$, then by Lemma 1.2, $P/\Phi(P) \le Z_{\mathcal{U}}(G/\Phi(P))$, and so $P \le Z_{\mathcal{U}}(G)$ by Lemma 1.3, a contradiction. Thus assume that $N \le \Phi(P)$. It follows from (1) that $\Phi(P) = 1$. Let

U be a complement subgroup of N in P. Let N_1 be a maximal subgroup of N such that N_1 is normal in some Sylow p-subgroup G_p of G. Since

$$|D| < |P| = |U| |N_1| p$$

we have $|U| \ge |D|/|N_1|$. Hence we take a subgroup V of order $|D|/|N_1|$ of U. Let T= N_1V , then $|T| = |N_1V| = |D|$. By hypothesis, T is S-c-propermutable in G. Therefore there exists a subgroup B of G such that $G = N_G(T)$ B and for any $q \in \pi(B)$ with $p \neq q$, there exists a Sylow qsubgroup B_q of B such that $TB_q = B_q T$. Since $N \cap$ $T=N\cap TB_q \triangleleft TB_q$, $B_q \leq N_G(N\cap T)$. Let B_p be a Sylow p-subgroup of B. Then there exists an element $x \in G$ such that $B_p = B \cap G_p^x$. Note that $N \cap T = N_1$. Thus $G_p^x \leqslant N_G(N \cap T^b)$ for $G_p \leqslant$ $N_G(N_1)$, where $b \in B$, and so $B_p^{b^{-1}} \leq N_G(N \cap T)$. It implies that $B \leq N_G$ ($N \cap T$). Obviously, $N_G(T) \leq N_G(N \cap T)$. Hence $G \leq N_G(N \cap T) =$ $N_G(N_1)$. Then $N_1 \triangleleft G$ and so |N| = p, which contradicts (I). Therefore, |N| = |D|.

Let G_p be a Sylow p-subgroup of G and N/M a chief factor of G_p . Then |N/M| = p. Suppose that L/N is a normal subgroup of order p of G_p/N contained in P/N. Then $|L/M| = p^2$. First, we consider that L/M is an elementary abelian pgroup and assume that $L/M = N/M \times T/M$, where |N/M| = |T/M| = p. Then |T| = |N| = |D|, and so by hypothesis, T is S-c-propermutable in G. Clearly, $M = T \cap N$. By applying a same argument as in (II), we can derive that M is normal in G, and so |N| = p. Now assume that L/M is a cyclic group of order p^2 . Then there exists an element $a \in L \setminus M$ such that $L = M \langle a \rangle$. It follows that N = $M(N \cap \langle a \rangle)$. It is easy to see that $a \notin N$ and $|N \cap \langle a \rangle| = p$. It implies that $M \cap \langle a \rangle = 1$ and so $|\langle a \rangle| = p^2$. Let $\mho_1(L) = \langle l^p | l \in L \rangle$. Clearly, $U_1(L) \leq \Phi(L) < N$. Let N_1 be a maximal subgroup of N such that $\mho_1(L) \leq N_1$ and $N_1 \triangleleft G_p$. Note that $N_1 \neq M$ for $M \cap \langle a \rangle = 1$. Then $\langle a^{\flat} \rangle \leq N_1$ and $|N_1\langle a\rangle| = |N| = |D|$. By hypothesis, $N_1\langle a\rangle$ is Sc-propermutable in G. Since $N_1 = N \cap N_1 \langle a \rangle$, then by using a similar discussion as in (II), we have that $N_1 \triangleleft G$, and so |N| = p.

(IV) Final contradiction.

By (\blacksquare) and the hypothesis of the theorem, we know that every cyclic subgroup of P of order prime or order 4 (when P is a non-abelian 2-group) is S-c-propermutable in G. First, we claim that G has a unique normal subgroup R such that P/R is a chief factor of G, $R \le Z_{\mathcal{H}}(G)$ and |P/R| > p.

Let P/R be a chief factor of G. Clearly, (G, R) satisfies the hypothesis of the theorem. The choice of (G, P) implies that $R \leq Z_{\mathbb{W}}(G)$. If |P/R| = p, then $P/R \leq Z_{\mathbb{W}}(G/R)$ and so $P \leq Z_{\mathbb{W}}(G)$, a contradiction. Hence |P/R| > p. Assume that P/L is a chief factor of G with $P/R \neq P/L$. By a same discussion as above, we have that $L \leq Z_{\mathbb{W}}(G)$. It follows from Lemma 1.2 that $P/R = RL/R \leq RZ_{\mathbb{W}}(G)/R \leq Z_{\mathbb{W}}(G/R)$, which can derive a same contradiction as above. Therefore, G has a unique normal subgroup R such that P/R is a chief factor of G, $R \leq Z_{\mathbb{W}}(G)$ and |P/R| > p.

Let C be a Thompson critical subgroup of P. If $\Omega(C) \leq P$, then $\Omega(C) \leq R \leq Z_{\mathbb{V}}(G)$, and so $P \leq Z_{\mathbb{V}}(G)$ by Lemma 1.3, a contradiction. Hence $P = C = \Omega(C)$. Then by Lemma 1.4, the exponent of P is p or 4 (when P is a non-abelian 2-group).

Since $P/R \cap Z(G_b/R) > 1$, we put $L/R \leq P/R \cap Z(G_b/R)$ with |L/R| = p, where G_b is a Sylow p-subgroup of G. Let $x \in L \setminus R$ and $H = \langle x \rangle$. Then L = HR and |H| = p or 4 (when P is a non-abelian 2-group). By hypothesis, H is S-c-propermutable in G. It follows from Lemma 1.1 that HR/R = L/R is S-c-propermutable in G/R. Thus G/R has a subgroup B/R such that $G/R = N_{G/R}(L/R)$ (B/R) and for any $q \in \pi(B/R)$ with $p \neq q$, there exists a Sylow q-subgroup Q/R of B/R such that

$$(L/R)(Q/R) = (Q/R)(L/R).$$

By a similar discussion to ([I]), we have that $L/R \leq G/R$. It implies that |L/R| = |P/R| = p. The final contradiction completes that proof of the theorem.

Corollary 2.2 Let \mathcal{F} be a solubly saturated formation containing the class of all supersoluble

groups. If G has a normal subgroup E such that $G/E \in \mathcal{F}$ and F^* (E) is soluble. Suppose that every non-cyclic Sylow subgroup P of F^* (E) has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| or with order |H| = 2|D| (if P is a non-abelian 2-group, |P:D| > 2 and $\exp(H) > 2$) is S-c-propermutable in G, then $G \in \mathcal{F}$.

Proof Since F^* (E) is soluble, by Lemma 1.5, F^* (E) = F (E). Let P be a Sylow p-subgroup of F (E) for arbitrary $p \in \pi(F(E))$. Then $P \subseteq G$. If P is non-cyclic, then P satisfies the hypothesis of Theorem 2.1, thus $P \subseteq Z_{\mathbb{N}}(G)$. Assume that P is cyclic. Let L/K be any chief factor of G below P. Then |L/K| = p, and so L/K is \mathcal{F} -central in G. Hence $P \subseteq Z_{\mathbb{N}}(G)$. It implies that F^* (E) $\subseteq Z_{\mathbb{N}}(G)$. By Lemma 1.6, $E \subseteq Z_{\mathbb{N}}(G)$. Consequently, $G \subseteq \mathcal{F}$ by Lemma 1.7. \square

Theorem 2.3 Let G be a soluble group. If every maximal subgroup of every Sylow subgroup of G is S-C-propermutable in G, then $G = D \rtimes C$ is supersoluble, where $D = G^{\vee}$ is a nilpotent Hall subgroup of G of odd order whose maximal subgroups are normal in G.

Proof Suppose that the result is false and let G be a counterexample with |G| minimal.

(I) Let N be any normal subgroup of G. Then $G/N = D/N \rtimes C/N$ is supersoluble, where $D/N = (G/N)^{\mathcal{N}}$ is a nilpotent Hall subgroup of G/N of odd order whose maximal subgroups are normal in G/N.

Let P/N be a Sylow p-subgroup of G/N and M/N be a maximal subgroup of P/N, where p is an arbitrary prime divisor of |G/N|. Then there exists a Sylow subgroup G_p of G such that $P = G_pN$ and $M \cap G_p$ is a maximal subgroup of G_p . Clearly, $M/N = (M \cap G_p) N/N$. By Lemma 1.1, M/N is Sc-propermutable in G/N. This shows that the hypothesis holds for G/N. Hence $G/N = DN/N \bowtie C/N$ is supersoluble, where $DN/N = (G/N)^{\mathcal{M}}$ is a nilpotent Hall subgroup of G/N of odd order whose maximal subgroups are normal in G/N.

(\mathbf{I}) G is supersoluble.

Let N be a minimal normal subgroup of G. Since G is soluble, N is an abelian p-group, where $p \in \pi(G)$. Let P be a Sylow p-subgroup of G such that $N \leq P$. If $N \leq \Phi(G)$, since the class of all supersoluble groups is a saturated formation, G is supersoluble by (I). Hence assume that $N \leq$ $\Phi(G)$, then $N \leq \Phi(P)$. Therefore there exists a maximal subgroup P_1 of P such that $P = NP_1$. By hypothesis, G has a subgroup B such that G = $N_G(P_1)$ B and for any $q \in \pi(B)$ with $p \neq q$, there exists a Sylow q-subgroup of B such that $P_1Q=$ QP_1 . Since $N \cap P_1Q = N \cap P_1 \triangleleft P_1Q$, we have $Q \leq N_G(N \cap P_1)$. Let B_b be a Sylow p-subgroup of B. Then there exists an element $x \in G$ such that $B_p = B \cap P^x$. Clearly, $P \leq N_G (N \cap P_1)$. Thus $P^x \leq N_G(N \cap P_1^b)$, where $b \in B$, and so

$$B_{p} \leqslant N_{G}(N \cap P_{1}^{b}).$$

It is easy to see that $Q^b \leq N_G(N \cap P_1^b)$. Hence $B \leq N_G(N \cap P_1)$. Obviously, $N_G(P_1) \leq N_G(N \cap P_1)$, and so $N \cap P_1 \leq G$. It implies that $N \leq P_1$ or $N \cap P_1 = 1$. If $N \leq P_1$, then $P = P_1$, a contradiction. If $N \cap P_1 = 1$, then |N| = p, by Lemma 1.7, G is supersoluble.

(Ⅲ) D is a nilpotent Hall subgroup of G.

By (Π), we have that G' is nilpotent. Thus $D = G^{\vee}$ is nilpotent. We show that D is a Hall subgroup of G. Assume that D is not a Hall subgroup of G. Then $G \neq D \neq 1$. Let P be a Sylow p-subgroup of D such that $1 < P < G_p$ for some Sylow p-subgroup of G, where p is a prime divisor of |D|. We now proceed via the following steps.

(|) If N is a minimal normal subgroup of G contained in D, then $N=O_p(D)=P$ is a Sylow p-subgroup of D.

Let N be a minimal normal subgroup of G contained in D. Since D is nilpotent, then N is a subgroup of prime power order. Suppose that N is an abelian q-group, where q is a prime divisor of |D| with $p\neq q$. By (I), $D/N=(G/N)^N$ is a Hall subgroup of G/N. Since PN/N is a Sylow p-subgroup of G/N. It follows that P is a Sylow p-subgroup of G/N. It follows that P is a Sylow p-subgroup of G/N. Hence p=q and N=

 $O_{\mathfrak{p}}(D) = P$.

(ii)
$$O_{p'}(G) = 1$$
, $G_p \triangleleft G$ and $D = P = N$.

Assume that $O_{p'}(G) \neq 1$. Let R be a minimal normal subgroup of G such that $R \leq O_{p'}(G)$. If $R \leq D$, then by (I), $D/R = (G/R)^{\mathscr{N}}$ is a Hall subgroup of G/R, Since NR/R is a Sylow p-subgroup of G/R, NR/R is a Sylow p-subgroup of G/R, and thereby N is a Sylow p-subgroup of G, a contradiction. Thus $R \cap D = 1$. By (I) again, $DR/R = (G/R)^{\mathscr{N}}$ is a Hall subgroup of G/R. It follows that D is a Hall subgroup of G, which is impossible. Therefore $O_{p'}(G) = 1$, and so $O_{p'}(D) = 1$. By (I), $G_p \triangleleft G$. Hence

$$D = P = N \leqslant F(G) = G_p$$
.

(||||) $\Phi(G_p) = 1$ and every subgroup of G_p is normal in G.

Assume that $\Phi(G_p) \neq 1$. Let L be a minimal normal subgroup of G contained in $\Phi(G_p)$. Assume that $L \neq D$. It follows from (I) that $DL/L = (G/L)^{\mathcal{N}}$ is a Hall subgroup of G/L. Then $DL = G_p$ and so $D = G_p$, a contradiction. Thus L = D. This implies that G = D is nilpotent, which is impossible. Hence $\Phi(G_p) = 1$. Let P_1 be any maximal subgroup of G_p . By hypothesis, G has a subgroup G_p such that $G = N_G(P_1)$ and for any $G_p = G_p = G_p$ with $G_p = G_p = G_p$. Then $G_p = G_p = G_p = G_p$ and so $G_p = G_p = G_p = G_p = G_p$. Clearly, $G_p = G_p = G_p$

(¡V) Final contradiction of (∭).

Since $\Phi(G_p)=1$, there exists a maximal subgroup V of G_p such that $D \leqslant V$. By (||||), $V \leq G$. Let L be a minimal normal subgroup of G such that $L \leqslant V$. By (||||), $DL/L = (G/L)^{\mathcal{M}}$ is a Hall subgroup of G/L. Then $G_p = DL$ and $||G_p|| = p^2$. Let $D = \langle a \rangle$ and $\langle a_2 \rangle$. Then $G_p = \langle a \rangle \times \langle a_2 \rangle$. Write $a_1 = aa_2$. It is easy to see that $\langle a_1 \rangle \cap \langle a_2 \rangle = 1$. Thus $G_p = \langle a_1 \rangle \times \langle a_2 \rangle$. Since $\langle a_1 \rangle = D\langle a_1 \rangle / D \leqslant Z(G/D)$, it can derive $\langle a_1 \rangle \leqslant Z(G)$. Similarly, we have that $\langle a_2 \rangle \leqslant Z(G)$, and so $G_p \leqslant Z(G)$, and so G is nilpotent for $D \leqslant G_p$, a contradiction.

Therefore, D is a Hall subgroup of G.

(N) Final contradiction.

Suppose that p is any prime divisor of |D| and P is a Sylow p-subgroup of D. By (\blacksquare), P is a Sylow p-subgroup of G and P \leq G. Let P₁ be a maximal subgroup of P. A similar argument to step (||||) of the proof of (||||), we have that $P_1 \triangleleft$ G. It follows that every maximal subgroup of D is normal in G. If $2 \mid \mid D \mid$, then D has a maximal subgroup M such that |D/M| = 2. It implies that $G = C_G(D/M)$ and $D/M \leq Z(G/M)$. Therefore, G/M is nilpotent. It follows that $D \leq M$, a contradiction. Hence | D | is odd. Consequently, by Schur-Zassenhaus Theorem, $G = D \rtimes C$ is supersoluble, where $D = G^{\mathcal{N}}$ is a nilpotent Hall subgroup of G of odd order whose maximal subgroups are normal in G. This contradiction completes the proof of theorem.

Theorem 2. 4 Let G be a p-soluble group. Then G is p-supersoluble if and only if for any non-Frattini p-chief factor H/K of G, there exists a maximal subgroup P_1 of some Sylow p-subgroup of G being S-c-propermutable in G and $H/K \not \leq P_1K/K$.

First we prove the sufficient part of the theorem. Suppose that the result is false and let G be a counterexample with |G| minimal. Let N be a minimal normal subgroup of G. We claim that G/N satisfies the hypothesis of the theorem. Suppose that (H/N)/(K/N) is a non-Frattini pchief factor G/N, then $(H/N)/(K/N) \leq$ $\Phi((G/N)/(K/N))$, and so H/K is a p-chief factor of G and $H/K \leq \Phi(G/K)$. By hypothesis, there exists a maximal subgroup P_1 of some Sylow p-subgroup P of G being S-c-propermutable in G and $H/K \leq P_1 K/K$. If N is a p'-subgroup, then $P_1 N/N$ is a maximal subgroup of PN/N. Assume that N is a p-subgroup and $N \leq P_1$, then $P = NP_1$. Since Sylow p-subgroup of G covers all p-chief factors of G, $H \leq PK = P_1K$, which contradicts $H/K \leq P_1 K/K$. Hence $N \leq P_1$, and so P_1/N is a maximal subgroup of P/N. This follows from Lemma 1.1 that $P_1 N/N$ is S-c-propermutable in

G/N. Clearly, $(H/N)/(K/N) \leq (P_1 N/N)/(K/N)$. The choice of G implies that G/N is psupersoluble. If $N \leq O_{p'}(G)$, then G is psupersoluble, a contradiction. Thus N is an abelian p-subgroup. Clearly, N is a non-Frattini chief factor of G. By hypothesis, there exists a maximal subgroup G₁ of some Sylow p-subgroup G_{\flat} of G being S-c-propermutable in G and N $\leq G_1$. Then $G_p = NG_1$. Hence G has a subgroup B such that $G = N_G(G_1)$ B and for any $q \in \pi(B)$ with $p \neq q$, there exists a Sylow q-subgroup of B such that $G_1Q=QG_1$. A similar argument to Step (II) of the proof of Theorem 2.3, we obtain that $N \cap G_1 \triangleleft G$. This implies that $N \cap G_1 = 1$ or $N \leq G_1$, which are all impossible. Consequently, the sufficiency holds.

Suppose that G is p-supersoluble and H/K is a non-Frattini p-chief factor of G. Then |H/K| = p and there exists a maximal subgroup of G such that $H \not \leq M$ but $K \not \leq M$. Clearly, |G:M| = p. Let P be a Sylow p-subgroup of M, then P is a maximal subgroup of some Sylow p-subgroup G_p of G and $H/K \not \leq PK/K$. Obviously, G = HM. Since H/K is a p-chief factor of G, $H/K \not \leq G_pK/K$, and so $G/K = (G_pK/K)(M/K) = (N_G(P)K/K)(M/K)$. It follows that $G = N_G(P)M$. Let q be any prime divisor of |M| with $p \neq q$. Since M is p-soluble, there exists a Sylow q-subgroup Q of M such that PQ = QP by Lemma 1. 8. It implies that P is S-C-propermutable in G. Hence the necessary part holds.

References

- [1] Doerk K, Hawkes T. Finite Soluble Groups [M]. Berlin/ New York: Walter de Gruyter, 1992.
- [2] Guo W. The Theory of Classes of Groups [M]. Beijing/ New York: Science Press/ Kluwer Academic Publishers, 2000.
- [3] Huppert B. Endliche Gruppen I [M]. New York: Springer, 1967.
- [4] Yi X, Skiba A N. On S-propermutable subgroups of finite groups [J]. Bull Malays Math Sci Soc, 2015, 38(2): 605-616.
- [5] Huang J, Guo W. The S-conditionally permutable subgroups of finite groups[J]. Chin Ann Math, 2007, 28A: 17-26.
- [6] Guo W. On F-supplemented subgroups of finite groups [J]. Manu Math, 2008, 127: 139-150.
- [7] Chen X, Guo W. On n-supplemented subgroups of finite groups[DB/OL]. arXiv: 1307.0089
- [8] Gorenstein D. Finite Groups [M]. New York: Chelsea, 1968.
- [9] Guo W, Skiba A N. Finite groups with given sembedded and n-embedded subgroups[J]. J Algebra, 2009, 321: 2 843-2 860.
- [10] Skiba A N. On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups[J]. J Group Theory, 2010, 13: 841-850.
- [11] Su N, Li Y, Wang Y. A criterion of p-hypercyclically embedded subgroups of finite groups [J]. J Algebra, 2014, 400: 82-93.
- [12] Skiba A N. On weakly s-permutable subgroups of finite groups[J]. J Algebra, 2007, 315(1):192-209.
- [13] Du Z. Hall subgroups and π-separable groups [J]. J Algebra, 1997, 195; 501-509.