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Abstract: The classifications of all the solutions to the linearized Yamabe equations and fractional

Yamabe type equations are crucial to the proof of the compactness of the scalar curvature

problems and the fractional scalar curvature problems respectively. These classifications, though

having been proved in an analytical way before, have been proved by adopting some new

geometric approaches from the perspective of conformal geometry.
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with the equality holding were constructed

0 Introduction ,
separately by Aubint” and Talenti®” in 1976, with

The classical Sobolev inequality in R" says that the form
there exists a constant K(n) >0 such that wor (D) = (n(n— 2y : Y : =7
. NN : ‘ Nt a—al
w2 W 2
<J]R" Lul?do < K(H)JR” | Vuldz for any a€ R" and A>>0. Later in 1989, Caffarelli
holds for all u€ C; (R"). The extremal functions et al. © proved that these functions are exactly all
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the solutions to the following Yamabe type

equation

Au+ uw? =0, u>0, in R” (D)
These functions are so-called bubbles, which
played an important role in solving the Yamabe

[4-5]

problem*™. For simplicity, here we denote by

n
2

u () 1= wy, () = (71(71*2))"72(1 +| 2 |®
Here we call u, the standard bubble. The equation

(1) is conformally invariant in the following sense:
if wis a solution to (1), let
o(x) = )uL?Zu(y(x* &),

for any §&€R" and x>0, then wstill solves equation
(1). For the linearized equation

n+2 ﬁz

2 0

of (1) at u;» Chen and Lin" proved the following

Ap+ D= 0. in R (2)

theorem.
Theorem 0. 1%
to (2). If

Suppose that ¢ is a solution

‘lim” ¢ (x) = 0, then there exist

constants C;, i=0,1,**,n, such that

+21,fﬂ +2 ‘9“’ (3)

The elegant result played an

=G|

Remark 0.2

important role in analyzing the concentration
behavior of a family of bubbles derived from the
scalar curvature problems (see Refs. [6-7]).

al.®¥) initiated the

Recently, Gonzalez et
research on the fractional Yamabe problem. A
natural question is:; does there exist a similar
classification theorem on the solutions of the
fractional Yamabe

linearized equations? The

answer is affirmative. In order to set up this
problem, some notations are needed on the
fractional Laplacian. For y€ (0,1), the fractional
Laplacian operator (—A)” is defined as a pseudo-

differential operator by Fourier transformation

(—Nf(O =] &7f(®
for function f:R"—=>R. It follows that its principal

symbol is And it can also be defined by

singular integral

S — [(©

| x—& "

(=AD" f(x) = Cln,7y) p.v. j d&,

where C(n, ¥) is some normalized constant and
Frank
proved the so-called Hardy-Littlewood-

p.v. stands for Cauchy principal value.
et al. [’
Sobolev inequality: there exists constant K(n, y) >0

such that

.

holds for all w& G (R™).

to some constant factors,

2Zn n?2
w|"tda)

< K(n,}')J | (— AT w | Pda
i

And the functions, up

( N | B2

wy. () = [mJ
are all the optimizers of the inequality with some
A>0 and a€ R". And also these are exactly all the

solutions of the fractional Yamabe equation

nt2y

(—AD)"w = ¢yw™, w>0in R" (4)
r [§7+7

where 67177:227777’ where I' is the Gamma
I [?* Y

function.  This nonlocal equation is also

conformally invariant like the previous Yamabe
type equation (1). Here we denote by w,(x) :=
"(L‘1.Q(I) — (1+‘ I|2)7(rr27)'2

linearized fractional Yamabe equation of (4) at wy ,

n+27
— 27

Then the similar classification theorem on the

and consider the

(—AD7d = coy "’”(ﬁ,ln R” (5

solutions holds for equation (5).

Theorem 0. 3
to (5) and Y€ (0,1), then there exist constants
Ciy =0,

o n—2Y ‘ - _aub] - L dwy
¢*Cu{ 5 w;+;naxl +2L'31-'

Let ¢ be any bounded solution

,n, such that

<1

Remark 0.4 ([ ) The functions 77;27w) +
J d wy .
2 X 7w’ % , i=1,++,n, all are solutions to
Eq. (5).

(Il ) In fact, the solutions of (5) can be
expressed directly by

N nJFZ)’J 1
() Gy oy,

Applying the above integral formula, Davila et
al. ' had proved Theorem 0. 3.

wl () (O dE

R | 1_7&-‘71 2y

In this paper,

however, we use some scattering operators from
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conformal geometry to give a new proof of this
classification theorem of the solutions. Moreover,
using these geometric approaches, we can also give

a geometric proof of Theorem 0. 1.

1 Preliminary

Firstly, we recall the definition of
asymptotically hyperbolic Riemannian manifolds.
Suppose that X"' is a smooth manifold with
smooth boundary M" for n=3. A [unction p is
called a defining function of boundary M"in X" ' if
p>0in X', p=0on M", dp % 0 on M".
We say that metric g is conformally compact if,
for some defining function p, the metric g= o' g~
extends to X"'' so that (X"'", g) is a compact

Riemannian manifold. This induces a conformal
class of metric h = g |y on M" when defining

functions vary. And the conformal manifold (M", )
is called the conformal infinity of (X"'', g' ).
Moreover, if the sectional curvature of conformally
compact metric g approaches —1 at infinity, then
g" is called asymptotically hyperbolic.

It follows from Refs. [11-12], given any f€

C"(M"), that Re<s>>§ and s(n—s) is not an

L*-eigenvalue for —A, , then the generalized
eigenvalue problem

—Aru—s(n—9u=0, in X" (6)
has a solution of the form
u= Fp" "+ Gp's F,G€ C (X", Fl,, = f.
Ref. [11] introduced the meromorphic family of

scattering operators as
SHfF=GI,
which is a family of pseudo-differential operators.,

for the asymptotically hyperbolic manifold ( X"™', g7)
and a choice of representative h of the conformal

infinity (M",[ h]). Instead one often considers the
normalized scattering operators

L'y )S

r" — o2y
Pla bl =27 07

n
2y,

for €&

O,?n] , Y& N. And for Y€ N, Graham-

Jenne-Mason-Sparlingt™ constructed the so-called

GJMS operators as
Pk[gi ’ ’jlj - CkRC Sy g‘ks( 5) ’
¢ = (—DR2%R1I(R— DI,
And when k=1, we get the conformal Laplacian
n—2

Pl[g 9]1] :7Az+4(n*1)Rz’

where R; is the scalar curvature of metric h.

Actually, for all y€&

O,?n] , the normalized

scattering operators P, [ g~ . h] are conformally
covariant in the sense that, for any w, ¢ €

C"(M"), and w>0, it holds that

Pl i ]($) = w ~oP, [ gt i]Cap) (7

Secondly, using Caffarelli and Silvestre’s

d", we can express the nonlocal

extension metho
operator ( — A,)” on R" with y € (0, 1) as a
generalized Dirichlet-to-Neumann map for a
weighted elliptic boundary-value problem with
local differential operators defined in the upper
half-space R"''={(x, y): xER", y>0}, i. e. the
nonlocal equation

(=AD" f = h, inR" &

is equivalent to

—div(y7"VU) =0 inR"' ,l
—d, limy' 9, U=h onR", | (9)
=0
U= -~
2y 1 LY
—o2y 1
where d,=2 (-7

From now on, we assume that ¥ € (0, 1)
throughout the paper. If we choose X"''=R1'",
g =gn and p=yE€R , then the hyperbolic space
(R, gw), where gy=1y *(dy*+[dx|?*), which
is certainly asymptotically hyperbolic. It was
proved in Ref. [15] that P,[ gu.|dx|?] agrees with
(—A,)" as defined on R".

Theorem 1.1Y70 If U is a solution of the
extension problem (9) and f=U/|,,, then u=

vy *U is a solution of the eigenvalue problem (6)

n
for s= o -+ 7, and moreover

Py[gHv ‘ dx Zj(f) -
— dy limy" 0, U = (— A f.

y =0
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Let II: (S"\{0,+++,0,1}, g )= (R", [dx|?) be

the stereographic projection. Then the inverse map

9 n dw
2 y“wo + 2 X =
i=1

b
.

lel‘:(l'ly"‘yl‘”) GRW"
E:(Elv"'vénvgnl)GS"\{O’°'°7O’1}
is given by
2x .
1.:7‘)’7 :17"" ’
e "
| x|°—1
én = T 7, a-
|
It is well-known that
(ITI)Xg@:wl"%“\dx\z,
where
= E ]gzg ()
w () = I = wy ().
Denote
n

G (2) 1=

Jd
libl(l) = (a'l;j-)’ 1= 19"'97’1.

It is easy to check that all the ¢, (k=0,+-,n) are
solutions of Eq. (5). In order to prove Theorem
0.3, we only need to show that any solution of Eq.
(5) can be the linear combination of ¢ (k=0,++, n).

The proof will be given in the next section.
2  Proof of Theorem 0.3

The fractional Laplacian on S" can be defined

as P$', which is also called intertwining operator

(see Ref. [16]), i. e. for any f€ C” (8", by

stereographic projection,

(PS I = [#} %T(—A )7 .
’ | a[*+1 !
2 R 1]
[[\x|2+1] fo 1
2y ~
= w, " T(— A (wy fo I D) (10)

On the other hand, Branson''"™ showed that P$" can
be rewritten in terms of —Ag" as

l\
r B+7+2J
)

1
PB=v+5] (an

—1 2
B= /—Asn+ ["T]

Now let us turn to the proof of Theorem 0. 3.

s"
Py =

b

—

Proof of Theorem 0.3 For any f€ C”(S"),
by Theorem 1.1 and the conformal covariant
property (7), we get from (10) that

.- 2y .
(P eI =w"?"(—A)(w f-II") =
2y 2 "

w, " “Plgus | dx [P ]Cwy fo I =

Py Lgusw) @ [ da |*](F = ) (12)

Suppose that ¢ is a solution to the linearized

equation (5). Then also by the conformal

covariant property (7) and Theorem 1.1, we have
Pyl gu w™ | da |” J(wi' ¢) =
_nizy )
wy rZh/P"/I:g]HIa | dx ‘4](4)) -

nt2y

w (= A)T$ =

nZ n+2vy,, =2 o
w, Z/C”'yn—Z}/(z Fw)" T =
rw/24+y+1D

1
T(n/2— vyt ? (13)

Choosing }': wy '¢o I, it follows from (12)
and (13) that

s~ In/24+7v+1) - u
Pi S = Tz —yr 1/ on SO

With some modification to Ref. [ 17, Proposition 2. 7 |,

9091}.

if ¢ is bounded in R", we can prove [ actually
solves the equation on the whole sphere, i. e.

_F(n/2+7+1)* n
B F(n/Z*}’Jrl)f7 on 5.

Let @/\, (Ia y)

o -
Py f
be a homogeneous harmonic

n\l’ then

polynomial of degree kin R
A @, (x,y) = 0 and & (x, ) = *$,(5),
where r= | (x, y) | and €€ §". It is easy to

check that
Ag ¢, (O + k(n+k—1)4¢,(5 = 0.
In particular, for k=1, we have
Agr ¢y (§) + ngy (§ = 0.
Then Proposition 1 of Ref. [18] implies ¢,(& =¢,,
i=1,*+,nt+1, which are the same as the previous
ones, i. e. the coordinates functions restricted on

S". Then due to (11),

In [”*1J2+y+ Jc

Do

| fat
P}'S“ EE -
I +

ISP
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rn/24+y+1D

F(n/2—y+ Do 1= bront L

Then
}.: 8;7 i=1,,n+1,
i e.
L, 2 _ 2o,
R A e W Ty
i=1, s Ny
or
x| —1 2 2y
wll?S*} }2+177wl1n*27 z l,bo.
Hence ¢ can be achieved by n + 1 different
. 2 e
solutions — 2}/2 s 1 = 1l,+,n, and
n—
S 2”_’;79&). Thanks to the linearity of
n—2Yy

equation (5), there exist some constants C,(i=0,

1.+, such that ¢ = Z Ci¢;. This completes the

i=0
proof of Theorem 0. 3. ]

Remark 2.1 The same approach is valid for

L6]

the proof of Chen-Lin’s Theorem by using

P.[ gu,ldx|?] instead of P,[ gu.,|dx|?].
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