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0 Introduction

Recent years have witnessed a rapid
development of distributed coordination control of
multi-agent systems. A critical problem for
distributed coordination is to design an appropriate
algorithms or protocols to guarantee that all the
agents can reach an agreement on certain quantities
of interest, such as the formation center in

formation control, the destination in the

rendezvous problem, and so on. This problem is
called consensus. In the past few years, as a
fundamental problem in distributed cooperative

consensus has been studied

[1-6]

control,
extensively
In the reference, most of the existing work on
the consensus problem considered the case which
single-integrator

each agent 1is governed by

(.23, when acceleration is

dynamics However,

considered as the control input, each agent should
be modeled as a double-integrator dynamics!”'*.
So double-integrator dynamics can be used to
model more complex processes in reality, and the
insight into the second-order consensus problem is
especially meaningful. In this case, the consensus
problem becomes more challenging. Many
consensus algorithms have also been proposed for
the second-order multi-agent systems in the
presence or absence of communication delays with
directed or undirected network information flow.
Ren et al.""* analyzed the consensus problem for
second-order multi-agent systems under directed
and fixed network topology, necessary and
sufficient conditions were derived under which
consensus can be reached. In Ref. [ 14 ], on the
basis of the finite-time control technique, the
finite-time consensus tracking algorithms were
given for double-integrator kinematics.

In practical situations, the disturbance of
time-delay is usually unavoidable, which might
make the multi-agent system to oscillate or
diverge, and therefore it is important to investigate

its effects on the behavior of the multi-agent

system. Generally speaking, there are two kinds of

delays in  multi-agent  systems. One s

communication delays, which 1is related to
communication from one agent to another. The
other one is input delays, which occurs between
actuators and controllers,

Compared with conventional control systems,
dealing with delay-related problems in multi-agent
systems is much more difficult and complex, since
usually

the closed-loop system matrices are

singular. Recently, many results have been

systems with the
[15-20]

reported for multi-agent

disturbance of time delay Bliman et al.
focused on the average consensus problem and
extended the results of Ref. [2] to the time-delay
case™ . Sun et al. investigated the average
consensus problem for first-order multi-agent
systems with switching topologies and multiple
time-varying communication delays''™. Ref. [17]
considered consensus tracking problems for both
first-order and second-order multi-agent systems
with communication and input delays, timed-omain
and frequency-domain approaches were used to
derive the consensus algorithms under a fixed
directed network topology. Ref. [18] investigated
the consensus and robust consensus problems for
first-order multi-agent systems with time-varying

which the

communication topology was fixed and assumed to

communication delays, in
have a spanning tree. In Ref. [19], the robust
consensus problem of second-order multi-agent
systems with constant input delays and time-
varying communication delays was investigated,
and the communication topology was assumed to
Ref. [20] discussed the

problem of leader-following consensus for second-

have a spanning tree.

order multi-agent system with time delay, and
some sufficient conditions were given to make the
system reach consensus.

In this paper, we will investigate the
consensus problem for second-order continuous-
time-varying

time multi-agent systems with

communication delays. For the communication
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topologies, both cases are discussed. Firstly,
under the fixed directed network topology, the
consensus problem for second-order multi-agent
systems with time-varying delays are studied.
Secondly, when the network topologies are
directed arbitrary switching topologies, and each is
assumed to have a spanning tree, the consensus
problem with time-varying delays are discussed. In
both cases, the consensus algorithms are given,
sufficient conditions are obtained which guarantee
that all agents asymptotically reach consensus.
These conditions are expressed as linear matrix
inequalities (LLMIs), readily solvable by available

numerical software.,

1 Preliminaries

Throughout this paper, R represents the real
number set. AT means the transpose of the matrix
A. I, is an n X n -dimensional identity matrix. We
say X >Y if X —Y is positively definite, where X
and Y are symmetric matrices of same dimensions.
a=1[a, *+, a]' is a column vector of appropriate
dimension, where a is a constant.

1.1 Graph theory

LetG= (V, e, A) describe a directed graph of
order n with the set of nodes V = {1, 2, -+, n},
e © V X Vis an edge set with element ( z, j ) that
describes the communication from node i to node
j . The node indexes belong to a finite index set
I'= {1, 2, == n}. If the state of node i is available
to node j , there will be an edge (i, j) € ¢, and
we say node 7 is a neighbor of node j. The set of
neighbors of node 7 is denoted by N; = {; € V. (7,
j) € e . A directed path is a sequence of ordered
edges of the form (iy, i3), (i34 iy), =*=, where (i},
i+11) € e in a directed graph. The weighted
La; ] . the

element a; associated with the arc of the digraph is

adjacency matrix is defined as A =

positive, 1. e. , a; >0&(i, j) € e. Moreover, it is
usually assumed thata; = 0 for all: € V.

A digraph is strongly connected if any two
distinct nodes of the graph can be connected via a

directed path. A directed tree is a digraph, where

every node has exactly one parent except for one
node, called the root, which has no parent, and
the root has a directed path to every other node. A
(directed) spanning tree of a digraph is a directed
tree formed by graph edges that connect all the
nodes of the graph. We say that a graph has (or
contains) a (directed) spanning tree if there exists
a (directed) spanning tree that is a subset of the
graph. Note that the condition that a digraph has a
(directed) spanning tree is equivalent to the case
where there exists at least one node having a
directed path to all the other nodes.

The in-degree and out-degree of node i are,

respectively, defined as follows: deg;, (i) = Za,j R
JEN,

dego. (i) = Zaﬁ, i € V. A digraph is called

J€N,
balanced if all of its nodes are balanced, that is,
deg;, (i) = deg..(i), i € V. Then the Laplacian of
the weighted digraph G is defined as L =
diag{deg;, (1), *++, deg,(n)} —A € R,

In contrast to a directed graph, the pairs of
nodes in an undirected graph are unordered, where
the edge (i, j) denotes that node ¢ and j can obtain
information from each other. An undirected graph
is connected if there is an undirected path between
every pair of distinct nodes. In this paper, we
assume that graph G is directed.

To describe the
topology, we define a switching signal

o= s(t) : [0,00) > ¢ = {1,2, «=-,N}
( N € Z" denotes the total number of all possible

variable interconnection

directed graphs ) is a switching signal that
determines the network topology. The set ¢ = {1,
2, +=+, N} is finite because at most a graph of order
n is complete and has n(n —1) edges. In this case,
the Laplacian matrix of the graph G, can be
represented by L, . If s is a constant function, then
the corresponding interconnection topology is
fixed.

Example 1. 1  Consider the directed graphs
Gy, G, and Gs; in Fig. 1, the communication
topology of each figure has a spanning tree, and

the corresponding adjacency matrices are limited to
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0-1 matrices. According to the above description,

we can get that;

1 —1 0
0 —1 0
L]Z @)
0 1 —1
0 0 0
1 =1 0 0
0 1 —1 0
L, = (2)
0 0 1 —1
—1 0 0 1
1 0o 0 —1
—1 1 0 0
L, = (3
O —1 1 0
0 0

0 0
O—® O—0» O—~[0)
HO— O— O ©
Gy G, G;
Fig. 1 Interconnection topologies for four agents

1.2 Related lemmas

Lemma 1. 1) For Laplacian L associated

with digraph G, then there exists a non-
singular matrix
1 X% cee X%
1 ¥ cen Ea
U= |, . . |R™ )
1 X% %
such that
0 a'
U—ILU_{ L}_AGR;zXn’aeRnl
n—1

(5)
Lemma 1. 2% For anya,b & R, K > 0 and

real positive definite matrix ¥, we have
2" b< Ka'W 'a+ bW (6)

Lemma 1. 3™
matrix is partitioned as
S S,
S=| D)
ST S,
where S; and S; are square. $<C0if and only if §; <
0, S; _SZTSTISZ < 0OorS; <0, S _5253_152T < 0.

Suppose that a symmetric

1.3 Model description and problem formulation

In this paper, the continuous-time model of n
agents is described as follows:

xi=u ER" i =1,2, ., n (8)
where R” denote the space of a real m-dimensional
vector.

This information states can also be written by

T =

v, =, 1= 1,2, < am @)
where x; € R", v; € R", u; € R™ are the state,
information state derivative and control input,
respectively.

We say the consensus is  globally
asymptotically achieved if the states of the agent
satisfy:

H Xi — X || — 0, H Vi T Y H — 0,
t—>c0, 1, ] €V (10)
for any x;(0) € R", v;(0) € R". Without loss of
generality in the following analysis, let m = 1 just
for notational simplicity.
In order to solve the consensus problem, a

second-order consensus protocol is proposed as

follows! "
u; =— Za,-] [(x; —a;) +yCo,—v)] (D)
JEN,
where : = 1,2, -+, n, y > 0 are constants.
However, in  practice, there may  be

interconnection delays, and not all agents can
instantly get the information from others. Thus,
the feedback u; () should be constructed based on
x;(t — 7 () and v; (z — () for some j € N, and
time-varying delay z(z) > 0, a continuously
differentiable function satisfying:
0<c() <dy, r<<d, <1 (12)
Therefore,

following two local control schemes:

for each agent, we use the

( I) Fixed topology with time-varying delay.
w =— Da;[ (it — () —x;(t — (D)) +
JEN,
Yo (t— (1) — v, (t — ()] (13)
(ID Switched topology with time-varying delay.
w =— Da; ([ (t — () — x;(t — (1)) +
JEN,

Yo (t— (1) — v, (t — (1)) ] (14
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) In)T? Vv = (711 sUg s *°°»
0,07 . The closed-loop system (9) with Eq. (13)

can be written in a matrix form

Take x = (21,25 »

x=v L
. - (15)
b= Lx(t— () — At — () |
and system(9) with Eq. (14) can be written as
xX=v
. 1 (16)
= Lux(t — () — vt — ()]
where & = ¢(¢), L, = L(G,) is the Laplacian of
graph G, is defined as above.
In the following, we will demonstrate the
convergence of the dynamics systems (15) and

(16), that is, x; > x;, v; > v; ast —> oo,
2 Main result

In this section, we will solve the consensus
problem for second-order consensus multi-agent
system (8). Two cases for the communication
topology are considered ; (O directed networks
with fixed topology and time-varying delays,
where the directed graph is assumed to have a

@ directed

dynamically changing topologies and time-varying

spanning tree; networks with
delays, where each directed graph is assumed to
have a spanning tree,

This section will give two subsections to
discuss the consensus problem for system (8). In
the  first  subsection,  we  consider the
communication topology as fixed directed network
with time-varying delays, and can prove that
protocol (13) makes all agents reach a consensus
state. In the second subsection, we consider the
communication topology as directed networks with
dynamically changing topologies and time-varying
delays, and will prove protocol (14) guarantees
that the states of system (8) converge to a same
value.

2.1 Fixed coupling topology with time-varying delays

Theorem 2.1 Consider a directed network of
agents with both fixed topology and time-varying
delay ¢ , which satisfies Eq. (12). Suppose the
communication topology G has a spanning tree. Given

protocol (13), globally asymptotical consensus of Eq.

(8) can be achieved if there exist some symmetric
matrices P> 0, Q > 0, M >> 0 satisfying:

A PB 0
B'P —diM 0 |<0 an
1
0 0 Ay
and
Ay = P(C+B) + (C+B)"P+Q -+ 2d,C"MC
(18a)
Proof Three steps will be given to prove the
theorem.
Step 1  According to Lemma 1. 1, with a
coordinate transformation.
x=U'x,v=U"v (19)
system (15) becomes:
.;'1 — ;1]
. _ ~ L(20)
= R () — T — () ]
and
;2 == 1:2
1 22D

by = Lo (1 — 2(0)) — v (1 — ()
For subsystem (21), let
— ';2 n—1
&= (;Z Je R

Then we have a compact form:

e) =Ce() +Beg(t—1) (22)
where,
0 I, 0 0
C:( ),BZ(if 77) (23)
0 0 A
Step 2 For system (22), take a Lyapunov
function:
V=V +V,+V, (24)
where,

Vo= 0P, V. = | 87 (0 (ds(25)

V, = JO J e (s )Mg(s)dsdo (26)
—J 10

and P, Q’ M 6 R(n*l)><(n*1).
derivative of V,(: = 1,2,3) along with the solution

Consider the time

of Eq. (22) respectively, yields:
Vi =g " ()(C"P+PC)e(t) 4 26" (1)PBg (t — 1)
Q27
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V,=e"(0D0e(t) —(1—0e"t—0)Qe(t—1)
(28)

Vw:ﬁﬁﬁMéu%iréWQMém

T

29

According to Lemma 1. 2, let a' =
— (B"Pe" ()", b=¢g(s), ¥=M, K=1and from
Leibniz Newton formula we can obtain that:
2¢' (OPBe(t — 1) = &' (1)(PB+B'P)e(1)

*JL 2" (1)PBg (5)ds <

e ()(PB+B'Pe(t) +
=" (\)PBM™'B"Pg (1) +

| & oM ods (30)
Consequently,
V, <" O[(C+B)'P+P(C+B) +
PBM 'B'Pg(1) +
| e omids (31)

Similarly, we can get that
V, = " ()OC"™MCe (1) +&" (t —)B"MBg (t — 7) +

26T (1)C™MBg (t — 7) | —Jr g (s )Mg (5)ds <

2c[e"(OHC"™MCe (1) +&"(t —o)B"MBg (t — 1) | —

| e omids

From Egs. (28), (31) and (32), we can
obtain that

V' (O[(C+B)™P+P(C+B) +d PBM 'B"P+

Q-+ 2d,C"MC Je(1) +
ST(t - T) I:i (1 - dz )Q + 2d1B’rm]8(l‘ - ‘L')
(33)

Then, by Lemma 1. 3, the sufficient condition
for V< 0 is that matrix inequality (17) holds.

(32)

Step 3 From the discussion above, that Eq.
(17) holds means that x, —> 0, sv, — 0, as t—>co,
For subsystem (20), let x;(0), v, (0) be the initial

values of x1 (), v1(¢) , we have

)}1 - ;](O)t“i’i'](o)
- N } (34)
Vv, = xl(O)
From transformation (19), we can get
N v (024 x,(0)
x—Ux = fo[ }» 0, (35)
On 1
5 v, (0)
v—Uy = V*U[ 0 }» 0, (36)
n—1

So we derive the explicit formulation of consensus:
x =1, Ot +x,(0)), v=1y,(0) (37
Therefore, x;, —x; >0, s v; —v; >0, for all 7,

j € Vast—co, This completes the proof.

. 1,
Remark 1 Note that, if we choose =* as the
n

first column vectors of U, protocol (13) solves the
average consensus problems.

Remark 2 Note that in Theorems 2. 1, the
communication topologies are both assumed to
have a spanning tree. This is the lowest condition.
2. 2

varying delays

Switched coupling topology with time-

Theorem 2.2 Consider a directed network of
agents withboth switching topology and time-
varying delay z » which satisfies Eq. (12). Suppose
that the communication topology G is kept to have
a spanning tree. Given protocol (14), globally
asymptotical consensus of Eq. (8) can be achieved
if there exist some symmetric matricesP > 0, Q@ > 0,
M > 0 satisfying:

By P B, 0
1

B/P _IM 0 |<<0 (38)
0 0 B.,
and
B, = P(C+B,) +(C+B,)"P+Q+2d,C"MC
(39a)
By, =— (1—d,)Q+ 2d,BIMB,  (39b)

C is defined in Theorem 2. 1.
Proof
Theorem 2. 1.

Step 1 According to LLemma 1. 1, we give the

Similar to the proof procedure of

following coordinate transformation:

x=U'x.v=0U"v (40)
combining Eg. (16) with Eg. (40) , it can obtain

;1 — {71 l
- o - -(41)
e a' U — ) — " n— ()]
and
;2 — ‘;2

. o - 1 42)
v, =—Lyx,(t —7)) — L, vz(t—r(t))f
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For the subsystem (42), let

_ X
e = (72)6 Rn*l.
V2
Then we have a compact form:
£() =Ce@ +Belt—c(1))  (43)
where
0 0
B, = ( _ _ ) (44)
—L, — Ay
Step 2 In the next part, we mainly consider

system (43). Consider the following candidate

Lyapunov function:

V=V, +V,+V, (45)
where
V. =" (OP&(D). V, :j[ (D0 ds
(46)
_ 0 t . -
vV, :J J T (Mg (s)dsdd A7)
—(0)J 0

andp’ Q’ M 6 R(lhl)X(rhl).
Consider the time derivative of V;(i = 1,2,3)

along with system(43) respectively, we can have

V, = " () (C'P + PCe(1) +

2" (OPBg (1 — (1)) (48)

V., =& Qe —
A—ze"t—c(NQe(t—z(1))  (49)
V=& OMe(—|  Me(ds (G0
According to Lemma 1. 2, let 7 =

— (B/P&"(1)", b=g(s),w=M, K =1 and from
Leibniz Newton formula we can obtain that
26" (OPBg(t — (1)) = &" (1) (PB, + B/P)g(1) —
J’ 26T (OPB g (D ds <
e (1)(PB, +BP)e(t) +
r(Oe" (OPB.M'BIP g (1) +
f e (OMe)ds G
Hence. the derivative of V| can be written as
V. <"W[(«C+B)'P+

P(C+Bo) +c(OPBM BIP | £(t) +
| & oMads (52)

Similarly, the derivative of V; can be written as:

V, = t(D[e"()C"MCg(t) +&" (1 —
())BIMB g (t — (1)) +

"t

2" (DC'MBe (1 — ()]~ | & (OMa()ds <

t—(t
2e(D[e" (OCMGE (D) +&" (t — c())BMBg (t — (1)) | —
|" soMeods

Based on Egs. (49), (52) and (53), we have

(53)

V<g'[(C+B)"P+P(C+B,) +
d\PB.M 'BlP +Q +2d,C"MC] g(¢) +
e —cD[— A —d)Q+
2d,BIMB ] g(t — (1)) (54)

According to Lemma 1. 3, the sufficient

condition for V < 0 is that matrix inequality (38)
holds.

Step 3 From the discussion above, that Eq.
(38) holds means thatx, =0, , v, >0, , ast—>co
. For subsystem (41), let x;(0), v, (0) be the

initial values of x; (), v, (¢) » we have

;C] == ‘;](O)t+}1(o>
_ - } (55)
v, = V1(O)
From the transformation (40), we can get
L (Ot +x,(0)
fox:fo[ J»O” (56)
On*l
o ()
vav:va[O J»O“ (57)
n—1

so we derive the explicit formulation of consensus:
x =10 O+x0)), v=1v0 (58)
Therefore, x; —x; > 0,, v; —v; >0, for all i, j €
V as t — oo, This completes the proof.
Remark 3
matrix inequality (38) should be satisfied for all

Since L, is time-varying, the

the possible graphs.

Remark 4  Consensus problem for second-
order agents under switching topologies and with
communication delay are also investigated*", and

the consensus protocol is given as;
u =— /erZa,-j (it —c()) —v;(t— (1)) —
JEN,

Dla; (o) (x(t — () —x;t— ()] (59)

JEN,
where ¢(¢) are the time-varying communication

delays satisfying condition (12), k£, > 0 is the
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relative damping gain, the communication topology
G " is assumed to be strongly connected and
balanced. The consensus protocol (14) is similar
to algorithm (59). However, in this paper, the
directed graph is only assumed to have a directed
spanning tree, which is a weaker condition for

communication topology.

3 Simulation results

In this section, two numerical examples are
provided to illustrate our theoretical results derived
in the previous section. The directed network
graph is shown in Fig. 1. There are four agents for
each directed graph ( G;,G; and G; ), and we can
see that each of them has a spanning tree. We
choosea; = 1if (i, j) € e and a; = 0 otherwise.
Note that in Ref. [19], when

the communication topology G is fixed and has a

Example 3. 1

spanning tree, the following consensus protocol
U, _ b,‘V{(t) -
Dailxi(t —d; ) —x;(t —dy ()] (60)

JEN,
is proposed for system (8), where d; (¢) is time-
varying communication delay. In order to show the
performance of our control laws proposed in this

comparison between our
[19]
b

paper, we give a
controllers and the previous controllers Loe
we will compare the performance of controllers
(13) with that of controller (60).

In this example, the digraph network G; in
Fig. 1 is considered. In order to show the relation
between graph theory and multi-agent system
under digraph network G, , we first give the
mathematical model for system (8) with the

consensus protocol (13).

.k = I4V (613.)
. & —()

v— oo (ST @b
v(t — (1))

Wherex = (1‘1 s X2 s X3 ’.Iq)’ra Vv = ('Ul s U2 s U3 7'11,1)'1‘9

x(t—7 @) = (1 —())ya:(t — (D)) ya3 (1 —
() sy t—cONT, vt — (1)) = (0, (t—7(D))
vy, (t— 7)) yvs (t — (1)) yu, (t — (DT, I, is an

4 X4 dimensional identity matrix.

For both kinds of controllers, we choose the
time-varying communication delays to be ¢(¢) =
di(t) = 0.1]cos(3)| . To have a fair
comparison, the control efforts are limited to 5. 5.
Under these circumstence, the initial values and
parameters are chosen as follows; y = 1.5, b, = 0.7
(: = 1,2,3,4) . The simulation results are shown
in Fig. 2~Fig. 5. Figs. 2~3 show response state
trajectories (position and velocity state) for each
agent by using consensus protocols (13) and (60),
respectively. Figs. 4 ~5 show the control inputs
(13) and (60), respectively. It is easy to see that
the control efforts are limited to 5. 5 for both
control algorithms. From Figs. 2~ 3 we can see
that the consensus algorithm (13) can offer faster

convergence performance than controller (60).

agent 1

- - —agent 4(]

Positions/m

10 15 20 25 30

- - —agent |
. agent 2
B agent 3
L agent 4/

0 2 4 6 é)l'o 12 14 16
Time/s

Velocities/m s

Fig. 2 Response state trajectories by using protocol (13)

corresponding to fixed topology G,

4F
£ 3'.-"
= Z - - —agent 1
g agent 2
[~ | X RRT agent 3
0 ) ) ) ) <‘—r—ragent 4
0 5 10 15 20 25 30
Time/s
_ 40
‘v
£30r
£20p
5]
1
N o
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Fig. 3 Response state trajectories by using protocol (60)

corresponding to fixed topology (5,
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= o In this paper, the consensus problems of second-
o / . . . .
g_z_' | order multi-agent systems with time-varying delays
© 1 1 q1Q Q 11 <
-45 £ 5 s 55 53 3 have been investigated. The consensus stability has
Time/s been guaranteed under both fixed and switched
Fig. 4 Response curves of control inputs (13) interconnection topologies. In terms of linear matrix
6 inequalities (LMIs), Lyapunov-Krasovskii functional
=} agent 1 . . .
Z4 a3 method has been employed in the stability analysis.
- - —agent 4| . . .
é- ) = Numerical examples have been given to illustrate the
E ol _ theoretical result.
s
SO , , , , ,
0 5 10 15 20 25 30

Fig. 5 Response curves of control inputs (60)

Example 3.2 In this example, the consensus
protocol (14) is considered. The directed graphs
G, ,G, and Gs represent the information exchange
among agents, as shown in Fig. 1. We assumed the
switch sequence of the directed network is G; —
G; —>G; — Gy, — Gy, and communication topologies
are switched every five seconds. The parameter of
consensus protocol (14) is chosen as ¥y = 1.5 and
the time-varying delay is taken as ¢(#) = 3cos(61) .
The simulation results are shown in Figs. 6~7. It
can be seen that all agents will reach consensus

while the interconnection is dynamically changing.

6
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£4

'53 .............................

'52 agent 1

no_] 2 agent 2
~_.T e agent 3
(i' - - - —agent 4
01 2 3 4 5 6 71 8 9 10

Time/s

Fig. 6 Response trajectories by using protocol (14)

corresponding to switching topologies G, ,G, ,G;.
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Fig. 7 Response trajectories by using protocol (14)

corresponding to switching topologies G, ,G; ,G;.
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