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Abstract; The rapid time decay for solutions to the generalized Hall-magneto-hydrodynamics

equations was studied. By developing the classic Fourier splitting methods, the more rapid L*

decay rate of the weak solutions as (1-+1¢) T was derived. The trick is mainly based on the even
lower frequency effect of the nonlinear term.
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i du+us Vut V= pAu+ (V XB) XB,
0 Introduction uTus Vu T = plu 1

IB—V X(uXB)+V XV XB)XB) =

The incompressible resistive viscous Hall- VvAB.,
magneto-hydrodynamics system (so called Hall- Veu=%Y «B=0
MHD) is an important mathematical model in the (D

fluid dynamics'', governed by the following

nonlinear partial differential equations:
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Here u(x,t) = (uy (s t) s up (s t) s us (x5 t)),
B(x,t)=(B, (x,t), By (x,t), By (x,t)) are the
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unknown velocity field and unknown magnetic
field.

Due to their importance in both mathematics
and physics, great importance has been attached to
the well-posedness and large time behavior for
solutions to the above Hall-magneto-
hydrodynamics fluid model'*. In particular, Chae
and Schonbek™' recently investigated the L? decay
Hall-magneto-

rates of solution for the

hydrodynamics fluid as follows:
lulz+ 1Bl <CA+n"T. >0 (2)
When the velocity =0, it is easy to find that
the Hall-magneto-hydrodynamics system (so-called
generalized Hall-MHD equations ) reduces the
following system:
9B —vAB+V X ((V XB) XB) =0,
Ve+«B=0
and the associated initial data
B(x,0) = B, €Y
As stated by Chae and Schonbek™, the
strongly nonlinear term of the generalized Hall-
MHD equations (3)~(4)
V X ((V X B) XB)

has the complicated structure and seems difficult to

(3)

deal with in a satisfied way. However, we find
that when we take the Fourier transformation of

that nonlinear term, it follows that

| FLV X ((VXB)XB)]|=
|JR3V X ((V X B) X Bye “dx | <

Cle

J B |*da.
-

Compared with the other nonlinear term of the
Hall-MHD equations (1) where the Fourier

transformation implies

| FLOY X B X B | =| [ (7 X B) x Be*da |

<Clel|, 1Bl
or

(FLue Vad |=| | ue Vuede |<

Clel| lul?de
R

Obviously,  the strongly nonlinear term

V X ((V XB)XB) of the generalized Hall-MHD
equations (3) ~(4) actually exhibits a much more
lower frequency effect for the finite energy solution
than the nonlinear terms in (1). This new
observation allows us to investigate the more rapid

time decay rate of the generalized Hall-MHD
equations (3)~(4) than the decay rate (1+0) 7
of the Hall-MHD equations (1) derived in Ref.
[4].

On the other hand, when the strong nonlinear

term V X ((V XB) XB) or magnetic field B of the
Hall-MHD equations (1) vanishes, the system

reduces the classic magneto-hydrodynamics
equations:
du+tuesVu+Vr=pAu+ (V XB) XB,I
I B —V X (uXB) =vAB,
Veu=V+«B=0 f
(5
and the classic Navier-Stokes equations:
du—+tuesVu+ V= plu, )
Veu=20

The time decay issues of the weak solutions have

been extensively investigated by many authors

both for the

equationst’+ 17 1%

classic magneto-hydrodynamics

and for the classic Navier-Stokes
equationst’ 10 11-18]

The study is focused on the rapid decay rate of
generalized Hall-MHD

equations (3)~(4). More precisely, we will study

the solution to the
the more rapid decay rate of solutions by
developing the generalized Fourier splitting
methods which was first used by Schonbek™"' (See
also Refs. [5,17]) who studied the decay rate of
incompressible Navier-Stokes equations. One may
also refer to some interesting asymptotic behaviors
results of the relevant nonlinear mathematical
mOdelS[G’S’w'w].

The remainder of this paper is organized as
follows. In Section 1, we will give some
preliminaries and state the main results together
with some remarks. In Section 2, we prove some
important lemmas which play an important role in

the proof of the main results to be stated in
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Section 3.

1 Preliminaries and main results

Here and in what follows, C stands for the
abstractly positive constant. L? (R*) with 1<{p<C
oo denotes the usual Lebesgue space. H*'(R?) with

s€ER is the fractional Sobolev space with the norm

Il =, 1

25 | JZ |2d"¢)1/2'

F[ /] or fis the Fourier transformation of f which
is defined by

FLA®] = @ = | e,

In order to state our main results, we need to
give a definition of the weak solutions generalized
Hall-MHD equations (3) ~ (4) (see also Ref.

[3D.
Definition 1.1
solution of the generalized Hall-MHD equations

B (x,t) is called a weak

(3)~(4) if the following conditions are valid:

@ u€L" (0, T; 'R AL 0, T;H (R ),
Y T>>0;

@ for any
Co (R*X[0,T)

smooth test function ¢ €

JRBB<z>¢<z>d1‘+VJ;JR3 VB - ¥ gdede -+
[ 75 (7 % B) % B e =

|'| Bagdedet | Bgporde, o<1 < Ty
) :
@ B(ax,1t) satisfies energy inequality

LA 1B Irdety] 1 VBPdr<0 D
2 dew Y

The following is our main result,

Theorem 1.1  Suppose B, € L* (R*) and

satisfies the following frequency growth condition:

o= " 1 By ) |de =

Crori 400G ), fory>2asr—0 (8

Then for the weak solution B (x, t) of the

generalized Hall-MHD equations (3) ~ (4), we
have the more rapid time decay rate as

IBO || <CA+D T, ¥e=>0 (9

Remark 1.1 Compared with the time decay

rate (2) of the ususal Hall-MHD equations (1),

our time decay rate here is obviously more rapid.
Our result is mainly based on the new observation
that the strongly nonlinear term V X ((V X B) X B)
of the generalized Hall-MHD equations (3) ~ (4)
actually exhibits a much more lower frequency
effect for the finite energy solution. This sort of
lower frequency effect allows us to derive the more
rapid algebraic time decay rate by developing the
classic Fourier splitting methods.

Remark 1.2 It should be mentioned that
although the term V X
((VXB)XB) of the generalized Hall-MHD

equations (3) ~ (4) may allow us to derive the

strongly nonlinear

more rapid decay upper bounds as

I B |2 <CA+0T, Y>>0,
we do not know whether or not the generalized
Hall-MHD equations (3) ~ (4) exhibits the same
time decay lower bounds. That is to say. the weak
solution to the generalized Hall-MHD equations
(3)~(4) decays as

IBO |l =CA+0 T, ¥Ye=>0 (10
It seems that the more new observation on the
strongly nonlinear term V X ((V X B) X B) is
required and we will focus on the challenge issue in

the future.

2  Some lemmas

In order to investigate the time decay issue of
the generalized Hall-MHD equations (3) ~(4), we
fist recall some time decay results of heat equation.

Lemma 2. 1[12. Proposition 3]
solution to the linear heat equation

b —yvAb =0,

b(x,0) = b,
with the initial data b, € L? (R*®) and satisfies Eq.
(8), namely

Suppose H(x,1) is a

1D

2r -
,o(r)EJ | b0 Gw) |Pdw = G +0G ),
0

fory>2asr—0,
then
oo [z <CA+n 7, ¥e>0 (12)
The next two lemmas are to investigate the

frequency estimate of the weak solution of the
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generalized Hall-MHD equations (3) ~ (4) which
play a central role in the proof of the next section.

Lemma 2.2 B(x,t) is the weak solution to
the generalized Hall-MHD equations (3) ~ (4)
with the same condition in Theorem 1.1, then

we have
~ p ~ P t 9
Bl | By 1+ Clel| IBIds

(13)
Proof Firstly, applying Fourier transformation

to (3), one shows that

Bi4+v|&"B=—F[V X ((V XB)XB)]
(1D
According to the definition of weak solution
Fourier

and applying the properties of

transformation, we have for the right hand side of
14)
| FIV X ((V XB)XB)]|[=

\JRN X ((V X B) X B) e*dr [<

Clel|, |B .

Hence by solving the ordinary differential
equation (14), it follows that

B =B, —

f PEV X ((VXB)XB)]ds <

—
o

By L e e B s <
B [ C g B s (15)
L]

Lemma 2.3 B(x,1) is the weak solution to

the generalized Hall-MHD equations (3) ~ (4),
then we have

Ojl\p B [z < | By || 2 (16)

The proof of Lemma 2.3 can be derived

directly through energy inequality (7) and here we

omit it.
3 Rapid time decay

In this section, we are now in a position to
derive the rapid time decay of the weak solution to
the generalized Hall-MHD equations (3)~(4).

Firstly, from energy inequality (7), namely

1d
2 dt

we apply Plancherel’s theorem to give

| 1B Pa+y 1 9B <o,

SIBIE+20) VBIE <o an
and Fourier transformation property implies
Al I Ben lfdera 12 | B e<o
tJR R

(18)
Let

5

_ 3 2
o) — {56R el <gaTs)

then

ZVJR3 ‘ g ‘2 |B(57[) ‘ZdE:
2 el B e+
af el Beo =
‘o

wf el Bl

5 J |2 _
14+t (B hde

o
141t

therefore

d ~
Al 1B | de+

D |2 o B D |2
JRS | B *de lJrz‘Jam | B 7ds (19)

o
1+t

| B(&.p) |%de (20)

| IBGo Pd<

il
1+ t)on
Now multiplying by (1-+1£)° to both side of
(20) yields

A+0° LB +5a+0' | B Pde<
t R
5<1+f,>4j | Beo) |2de
o)

or

d 5 B2,
(Ao B2 <

c<1+x>1jg() B |Pde (2D

Applying Lemma 2.2 and Lemma 2.3, the
right hand side of (21) is bounded by

| 1B 1<
[7€3)

J ‘ ew\s\erO +
oo
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el B s <

C
| ree, 2de+

2]

ol el 1Bl Pde<
oo 0

J«

| Ner[ IBlas
00 0

I+7 (22)
Applying Lemma 2.1 and Plancherel’s

e B, [2de+

theorem, for I,

I :J 5 ‘ eﬁy‘s‘ZtBO
R

| VewB, Pde<cat+n s 23

For J,

T=| el Bl s <

:Jo(r)
| e[ B s 1rde<
o 0
| lelvae<
o

(™
CJH dwj PQEm) ‘06Z‘Zd[0<
wl=1

0

Ca+n (24)
Plugging the estimates I and J into (22)
gives, note that y>2

Jo() | Be.o) |Pde<<CA Lo *  (25)

Then inserting the above auxiliary decay rate
(25) into (21) yields

%((1+t)5 IBI2)<CA+D '+ 7+ <
CU+0n7? (26)
Integrating in time
[ Bll:<CO+pn Tt (26)

Now repeating the argument in the derivation of
(22), it follows that

[ B 1rae<
[ reBorc e[ Bl Rds Pde<
o) 0
CA+0+
2| NS e
CJM 3 J0(1+s) ds

fde<

CA+0) 27+CL(0 e lide<
ca+n+cf dejo(m) o do<
Ca+p 7 27

Inserting the decay estimate (27) into the
right hand side of (21)

decato 1Bl <ca+ot,
and then integrating in time, we obtain the rapid
decay rate
IBll:<CQ+n*
or

IBW |2 <CA+p* (28)
The proof of Theorem 1.1 is completed. []

References

[ 1] Sermange M, Teman R. Some mathematical questions
related to the MHD equations[ J ]. Comm Pure Appl
Math, 1983, 36: 635-664.

[ 2 ] Acheritogaray M, Degond P, Frouvelle A, et al
Kinetic formulation and global existence for the Hall-
magneto-hydrodynamics system [ J ]. Kinet Relat
Models, 2011, 4. 901-918.

[ 3] Chae D, Degond P, Liu J. Well-posedness for Hall-
magnetohydrodynamics J ]. Annales de 'Institut Henri
Poincare (C) Non Linear Analysis, 2014, 31:
555-565.

[ 4 ] Chae D, Schonbek M. On the temporal decay for the
Hall-magnetohydrodynamic equations[ J]. J Differential
Equations, 2013, 255: 3 971-3 982.

[ 5] Dong B, Li Y. Large time behavior to the system of
incompressible non-Newtonian fluids in R*[J]. ] Math
Anal Appl, 2004, 298: 667-676.

[ 6 ] Dong B, Chen Z. Asymptotic profiles of solutions to
the 2D viscous incompressible micropolar fluid
equations| ] |. Discrete Contin Dyn Syst, 2009, 23:
765-784.

[ 7] Dong B, Song J. Global regularity and asymptotic
behavior of the modified Navier-Stokes equations with
fractional dissipation [ J ]. Discrete and Continuous
Dynamical Systems, 2012, 32: 57-79.

[ 8] Guo Y, Wang Y. Decay of dissipative equations and
negative Sobolev spaces|[J]. Comm Partial Differential
Equations, 2012, 37. 2 165-2 208.

[ 9] Han P, He C. Decay properties of solutions to the

incompressible magneto-hydrodynamics equations in a



732 T EAFHARARFEFR

5 A5 &

half space[J]. Math Methods Appl Sci, 2012, 35:
1 472-1 488.

[10] He C, Xin Z. On the decay properties of solutions to
the non-stationary Navier-Stokes equations in R*[]].
Proc Roy Soc Edinburgh Sect A, 2001, 131: 597-619.

[11] Kajikiya R, Miyakawa T. On L? decay of weak
solutions of Navier-Stokes equations in R"[J]. Math
Zeit, 1986, 192, 135-148.

[12] Oliver M, Titi E S. Remark on the rate of decay of
higher order derivatives for solutions to the Navier-
Stokes equations in R"[J]. J Funct Anal, 2000, 172;
1-18.

[13] Qin X, Wang Y. Large-time behavior of solutions to
the inflow problem of full compressible Navier-Stokes
equations| J]. SIAM J Math Anal, 2011, 43. 341-366.

[14] Schonbek M E. L? decay for weak solutions of the
Navier-Stokes equations [ J ].  Arch Rational Mech
Anal, 1985, 88. 209-222.

[15] Schonbek M E, Schonbek T P, Siili E. Large-time
behaviour of solutions to the magneto-hydrodynamics
equations| J ]. Math Ann, 1996, 304, 717-756.

[16] Agapito R, Schonbek M E. Non-uniform decay of
MHD equations with and without magnetic diffusion
[J]. Comm Partial Differential Equations, 2007, 32;
1 791-1 812.

[17] Wiegner M. Decay results for weak solutions of the
Navier-Stokes equations in R"[J]. ] London Math Soc,
1987, 35: 303-313.

[18] Zhang L.

incompressible  Navier-Stokes

New results of general #n-dimensional

equations [ J ]. J
Differential Equations, 2008, 245. 3 470-3 502.

[19] Zhao C, Liang Y, Zhao M. Upper and lower bounds of
time decay rate of solutions to a class of incompressible
third grade fluid equations[J]. Nonlinear Anal Real
World Appl, 2014, 15. 229-238.

(L% 720 )

[4]Wu]J, Ruan Q, Yang Y H. Gradient estimate for

exponentially  harmonic  functions on  complete
Riemannian manifolds[ J ]. Manuscripta Mathematica,
2014, 143(3-4) . 483-489.

[ 5] Kotschwar B, Ni L. Local gradient estimates of p-
harmonic functions, 1/H-flow, and an entropy formula
[J]. Annales scientifiques de 1'Ecole Normale
Supérieure, 2009, 42(1): 1-36.

[6]Li P, Yau S T. On the parabolic kernel of the

Schrodinger operator [ J ]. Acta Mathematica, 1986,
156(1); 153-201.

[ 7 ] Wei G, Wylie W. Comparison geometry for the Bakry-
Emery Ricci tensor [ J ].  Journal of Differential
Geometry, 2009, 83(2): 337-405.

[ 8 ] Li P. Lecture notes on geometric analysis[ R]. Seoul:
Seoul National University, Research Institute of

Mathematics, Global Analysis Research Center, 1993.



