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Abstract: The multisymplectic structure-preserving scheme for the Schrodinger-KdV equation
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0 Introduction

The interaction of nonlinear wave between
long and short waves in dispersive media can be
modeled by the coupled Schrédinger-Korteweg-de-
Vries (SKdV henceforth) :

iS,+S,.,—SL =0, 1

. : (D
2 =—1,2€ R, 1>0/
1 2y 2y
LA Bl + a2, — (| S |H, =0, ] .

where S and L. denote the complex amplitude of the
short wave and the long wave, respectively, « and
8 are the nonlinear and dispersive parameters. The
model is used in situations where the phase velocity
of the long wave is almost equal to the group
velocity of the short wave. We perfect (1)~(2) by
prescribing the initial-boundary conditions

l‘im S(x,t) =0, l‘im L(x,t) =0 (3)

|x]—>co | x| >0

S(x,0) = So(x), L(x,0) = L,(x) €Y)

By straightforward computation, we have the
following proposition.

The SKdV system (1)~ (4)

has at least the following four conserved quantities

Proposition 1

or invariants.

The first one is wave energy
a0 = [ 18 Pde=[ 18 Pdr = %0
(5
The second one is the number of particles
1) = | Ldr = 50) (6)
The third one is the Hamiltonian energy

HD [ (1S FHLISF+E 120 )de =

H(C0) ("

The last one is the wave momentum
M) = J-R[(SE. —SS,) + L*]dx = M) (8)

For detailed proof of the proposition, see Ref. [22].
The SKdV equation has been studied theoretically
[1:2:5:10.19.-22] © There were some

SKdV-like

. However, fewer numerical methods have

by some authors

numerical about  the

[4,9]

investigation

equation

been proposed for SKAV equation (1)~(2).

Multisymplectic integrator has been a hot

[3.8,11-13,15-18.21]

topic over the last decades Hong et

al. studies the multisymplecticity for a Runge-

Kutta  method for  Hamiltonian  systems

thoroughly'*'®/. Wang et al. consider the theories
and application of multisymplectic integrators and
extended the idea to general local structure-preserving

[6-7,11]

integrators Now multisymplectic integrator

simulations for
[13]

was widely used in numerical

, various
[3.21]
b

Hamiltonian PDEs, such as Dirac equation
Schrodinger  equations®,  KdV  equation
SRLW equation''®’. The SKdV equation (1)~(2) is
a multisymplectic Hamiltonian system, We will discuss
its multisymplectic integrator in the paper.

The paper is outlined as follows: In Section 1,
the multisymplectic structure of SKdV equation
(1) ~ (2) is presented. In Section 2, a
multisymplectic integrator is constructed. Some

numerical results are presented in Section 3.

1 Multisymplectic structure of the
SKdV

In this section, we investigate the
multisymplectic structure of the SKdV equation
and other local conservation laws.

Let the short wave complex function S= p—+
iq. Introducing the Legendre transformation p, =
¢ . =¢s Lo=7, 9.=L, and let == (p.q,¢:¢. 7,
L, v, w)T, we get the multisymplectic formation
of SKdV equation (1)~(2)

Mo,z +Kd,.z = V.S(2) [€))

where M, K are skew-symmetric matrices of the

SKdV (1) ~(2) with

ro 1.0 0 0 0 0 0
—1 0 0 0 0 0 0
00 0 0 0 0
00 0 0 0 0
M:ooooo%oo,
0 000 —L 0 0 0
4
0
L 0 |
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m o —1 0 0 0 0 0]
0 0 —1 0 0 0 0
0 0 0 0 0
0 1 0 0 0 0
0 0 O 0 0 0 0 %

0 O 0 0 0 0 *%ﬂ 0
1
0 O 0 0 0 ?B 0 0
1
0 O 0 0 — = 0 0 0
L 2 i

and with the Hamiltonian function
S() == LLG +¢) + (g + ¢ +

1
12

Correspondingly, we have the following three local

1 1.,
oL’ — 5 Lao + .

conservation laws.
(D The multisymplectic conservation law is
(,)[w JF(,)J.K,‘ — O (10)

where the symplectic density is

w=dz A dz = 2dp A dg+dy A dL.
and the symplectic flux is

k(z) =2de A\ dp+2dg N\ dg+
dyp A dw—+pdy A dL.
@ The local energy conservation law is
JE(z)+d,F(z) =0 1D

where the energy density is

E@ = LGP ) — L b @+ + L,

and the energy flux is
F(2) = (wy, —BL.y) — 2@ p, +¢q).
® The local momentum conservation law is
A I(2) +9,G(z) =0 (12)

where the momentum density is
1) = gp—ppt 412 = ASS) + L1,
the momentum flux is

Lw—%‘g}ﬂ + (pg, —qp) 7%[4771.

The local conservation laws are point-by-

point, which means that changes in density along

the time direction are just offset by changes of flux
in the space direction. With suitable boundary

conditions, such as periodic or homogenous

conditions, integrating the local
(10>, (11) and (12),

respectively, over the whole considered domain,

boundary

conservation laws

the global symplecticity, energy and momentum

conservation laws were obtained

d _
EJRw(Ist)dx — o,

d _
EJRE(x,t)dx — 0, (13)

d i _
EJRI(l ,t)dr =0

It should be noted that the latter two global
conservation laws of (13) are just the conservation
laws (7) and (8), respectively. This provides a

new way to obtain global conservation laws.

2 Multisymplectic ~ structure-preserving

integrator

As mentioned in the previous section,
preserving the original geometry structure as much
as possible has become a basic principle for
construct numerical integrators. The Hamiltonian
SKdV satisfies the

However, in general, it is

form of the three local
conservation laws.
impossible to require a numerical method to
preserve all the three local conservation laws. We
will devise a multisymplectic numerical integrator
which preserves the multisymplectic conservation
law (10).

Application of the midpoint scheme to (9),

results in  the

multisymplectic  preserving
scheme!'*
Z”:::ll _27;1 Z”‘%izn‘% ,+1
ity ity it i iy
M +K ; = VzS(zﬂ%)
(14)
where
”7% _ 1 7’47; ’H"I) _ 1 1 1 -1 -1
2= E(zj +20) = Z(zﬂ +Zn + ).

The component formulation is
1 nt % nt % o ”Jr% ”Jr%
*I(go_m‘ —¢, ") =1L

p
P

(15a)

l(qn(ll _n 1)
T

ity it
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1 il n 1 s 7H’; g ”‘F; 1 e nty 7177 n—
?(PH%*PH%>+I(¢J‘HZ* j >_L.i) i Z[‘Sﬁé |2 *|S 2 \Z‘HS ‘ *|S Z ‘ ]
(15b) aan
1 n+% nty a . .
Sl ) = (15 3 Numerical experiments
%(q;i% —q;-r%) = ]il% (15d) In this part, we investigate the proposed
iy
) . I 1 multisymplectic integrator (16) ~ (17) numerically,
Z(L;T% — L) = Z(u'ljilz - w;ﬁz ) (15e) including the convergence rate and the conservation
1 o . il properties. For this purpose, we present the exact
o D+Ea =y =
22 T j solution of the SKAV system (1)~ (2)27,
—a (L’_*f )2+ | s”“ 2 +w’*2 (15D S(x.t) = Asecthu—mexp(%i(x—w)),1
1 1 nht 1) =— 6p? 2 _
%(L;ilg fL;H’Z) _ Vii (15¢) Lizx,t) 6p*sech” p(x— ) (
! e (18)
1, ity g
el T ) =L (15h) where PZ*TB A*=18p' (2B and V_*_%.

Eliminating the canonical momentum, one
obtains a more convenient and more practical

multisymplectic integrator
8/(57];, +S. ) —|— 6‘5"% =

n¢7

L3S 7+L”‘Zs . (16)

ol

zH’o

—[(L’*’ 2L L Ty

179

(L;;E—FZL_? LI+

Jj[(L”" LT 3L L)+

1 1 1 1
(L7 —3L T 4+3LF — L )] =
7l+9

[(L’_*’ = (LT

77*)

(L;iz'y—(L DH
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08F
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Three parameters are taken from (18): g=1,
a=1/2 and A = 1.

condition (3), we take the spatial interval [a,b]

To satisfy the boundary

large enough such that the error due to boundary
negligible.  The
domain is [ — 200, 200 ] X [0, 6]. We use

multisymplectic scheme (16) ~ (17) to simulate

truncation is spatial-temporal

the problem with the mesh division h=0. 1, t=
0.03. We present the profiles of wave functions
over the spatial interval [ —16, 24 ] instead of the
200, 200] so that the pictures

The profiles of the numerical and

whole interval [ —
can be clearer.
exact solutions at 1 =16 are plotted in Figs.1 and
2(a). The numerical error in the maximum norm
In the
figure, we use different time levels N=[100, 200,

of the solution is presented in Fig. 2 (b).

1.8 T T T T
Lo
14F
121
1.0r
0.8F
0.6
0.4+
02f
ok
-0.2 ®) . . . . . ’
-10 -5 0 5 10 15 20 25
x

imag (S)

Fig. 1 The real and imaginary parts of the wave function. (a) real; (b) imaginary
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Fig. 2 The wave function L (a) and the error v.s. N (b)
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Fig. 3 The residuals of the number of particles (a) and wave energy (b)
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Fig. 4 The residuals of Hamilton (a) and momentum (b)

400, 800, 1 600, 3 200 ] with fixed h. Figs. 3 and
4 report the residual of conservation quantities,
including the number of the particles, the wave
energy and the

energy, the Hamiltonian

momentum. From these figures, it is observed that

the scheme can simulate the original problem very
well and is of second convergence rate. Moreover,
the scheme can preserve the number of particles
and wave energy exactly, and the residuals of

Hamiltonian energy and momentum are very
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small, up to 1 X107° all along.

4 Conclusion

In this paper, we developed a multisymplectic
method for the coupled Schrédinger-KdV equation
to describe the motion between long and short
waves. The new method can perfectly simulate the

motion of the waves during a long time.

Furthermore, the invariants of the continuous
problem can be well preserved. Their residuals can
be controlled in a small range despite of not
exactly. Establishing the numerical theory for the
multisymplectic integrator of SKdV equation is our
future work. Constructing efficient multisymplectic

method for SKdV equation will be considered.
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