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Gradient estimates for f/-exponentially harmonic
functions on complete Riemannian manifolds
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Abstract; For smooth metric measure spaces (M, g,e 'dvol), the gradient estimates of positive
solutions to the f-exponentially harmonic functions was considered by using the maximum
principle. Then a Liouville type theorem was obtained when the Bakry-Emery Ricci tensor was
nonnegtive and the sectional curvature was bounded by a negative constant. This generalizes a
result in Ref. [Wu J, Ruan Q, Yang Y H. Gradient estimates for exponentially harmonic
functions on complete Riemannian manifolds. Manuscripta Mathematica, 2014, 143(3-4). 483-
4897, which is covered in the case where f is a constant.
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functions, see Ref. [2]. In Ref. [ 3], Hong

0 Introduction _ o 4
obtained a Liouville type theorem for exponentially

The notion of exponentially harmonic function harmonic functions by assuming that the sectional
was put forward by Eells and Lemaire'”. For some curvature is nonnegtive.
useful properties of exponentially harmonic Recently, Wu et al. " considered the same
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question under a weaker condition. Actually, they
obtained a Liouville type theorem for positive
exponentially harmonic functions. They proved the
following
Theorem 0. 1

complete Riemannian manifold with nonnegative

Let M be an m dimensional

Ricci curvature and sectional curvature bounded
below by —K, K>0, p&€M, B,(R) the geodesic
ball at p with radius R. Then for a positive
exponentially harmonic function on M, one has the
following estimate on B, (R)
C, (m C,(m,K

1122 ) 4 _(R ))

where C, and C, are constants.

In Ref. [5], Kotschwar et al. deal with the p-

(supuw)?,
BP(ZR)

[ Va <

harmonic function in a general way.
In this paper, we study the f-exponentially
M be a

Riemannian manifold with a

harmonic function. Let complete
smooth metric
measure spaces (M, g, e /dvol), where f is a
smooth real valued function on M. Consider the
following equation;

div(exp(e(u)) Vu) —exple(u))V f+ Vu=10

(D

2

on M, where e(u):% | Vul?. In fact, it is the

Euler-Langrange equation of the following

weighted exponentially functional

E,(w :J exp(e(u))e 'dvol.

M
If u satisfies (1), we call the function u an f-
exponentially harmonic function.

The Bakry-Emery Ricci tensor is defined by
Ric,=Ric+Hess f. Based on Ref. [4]’s argument
we obtained the following Liouville type theorem:

Theorem 0. 2

manifold with smooth metric measure (M, g,

Let M be a complete Riemanian

e ’dvol) with Ric, >0 and sectional curvature is
bounded below. If « is a bounded f-exponentially
harmonic function defined on M, then u is a
constant.

Actually, we will show the following gradient
harmonic

estimates for the f-exponentially

functions.

Theorem 0.3 Let (M, g, e /dvol) be a
complete smooth metric measure space with Ric,=>
0 and sectional curvature bounded from below by
—K, K>0, p€M, B,(R) the geodesic ball at p
with radius R. Assume RZ=1. Then for a positive
f-exponentially harmonic function on M, one has
the following estimate on B, (R) .

C (‘a)

C; (o, K)
2<( > 2 9 ) o ) 2’
| Vul” < R* + R (Bz?zg)u)
where o = max Ag (¢g), C, and C, are
q€ {q:d(p.p=1
constants.

1 Proof of Theorem 0. 3

We will calculate in a local orthonormal frame
field {e;se55**se, . Under this local orthonormal
frame, the f-exponentially harmonic function

equation can be written as
exp(e(u))(z (ajuy; — fu;)) =0,
i

where a; =06; tuw;, 6; =0, i7#j and §; =1, i=}.
It is easy to see that (a;) is a positive definite
matrix.

We also use a C* cut-off function p=x(2), t€
[0,+2o), which is defined as follows

le € [0,1];
P =40, 1€ (1,2); (2
0, 1€ [2,+0)
satisfying that as 1€ (1,2),
0= 1D — ¢ (3)
n° ()
and
|7 [<C 4

for some constant C>>0.
Let p(x) denote the geodesic distance between

p and x and set

po = 4(%7) %)
Then we have
Vel _ 4P _C
é 77RZ < R? (6)
We sometimes use » and its derivatives to express
their composition with ‘(% > € 8 77:77<‘(%>'

We begin to prove Theorem 0. 3. Consider the
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function where « = max Ay (g). Also, using the
2 g€ {q:d(p,=1}
G — M ) Hessian comparison theorem, we have
@—w!

where =2 sugu and [ is a positive constant

Since G

vanishes on the boundary of B,(2R), we can

which will be determined later on.

assume G achieves its maximum at an interior point
xo € B, (2R).
assume that G(x,) >0 and that x, is not in the cut-

Without loss of generality, we can

locus of p (a standard argument, see Ref. [ 6]).
We set =

principle, we have at x,

In G. Then by means of maximum

VE=0 (7)
and
(F;) <0 (8)
Since (a;) is positive, we have
CL,']'FI‘]‘_F[figo (9)
A direct computation shows that
Foo$ o I Vuli | g 10
+| Vul? _’_G*u (10
EF, = i jé_l@+ | Vulj +
$ 40 | Vaul
,&lillj ﬁl:‘j 7‘Vu‘i ‘vu‘f
(ﬁ—u)z_‘_@*u | Vu | ab
As wu is f-exponentially harmonic, we have

azju; — fiu; =0. So the above (9) together with

(11) can be written as

aidi — fidi _aspid;  a; | Vuli—| Vulif:
3 FE [Vu I N
2 2
pLatit, | V‘uv\u ‘MW <o ap

We begin to estimate the first term of (12).
By using (4), we get
aiby — [igi _
$
7 A+ wupi0;) + Ry (Ajp + w5 -
R*¢ -

(1 BTN T ) =

VIS
—(1+| Vu |? >+771L<Afp+uujpy> (13)

C
7R’
C

R
If 1<<R<<p(x;)< 2R, by the Theorem 2. 1 in Ref.

[7], we have

/ / C
fﬁA@}iﬁa 2*77? | o« | (14)

iuu] 1//
R0 =R
- JK) | Vu | >

fcoth(«ﬁp) | Vu |2 >

—vg’e(p*wﬁ) | Vu 2 (15)
Now we have the estimate of the first term
aij ij¢_fi 1277}%(1_’_‘ vu |2)7

lal C_C 2
= VKD | V| =
R R

u ‘2)7w(1_~_/§)*
U

C
SA+VE) | Vu P =
7R

C )
CHrvB (e
7R

[+ Vul|?) =

ul?) —

77%(1+/F)(A—H Vu|?) =

1 CcC C CVK
A+ VU \)( S-5-Y ) (16)

where A=max{|al,1}.

If 0<<p(xy)=<R, then 77/20, since (1) =1 for
t€[0,1]. The above estimate still holds according
to (13).

The second term of (12) can be estimated

easily by using (6),

_ b | Vg [Pt uuigip
¢2 ¢2
77R2 ¢2 =
c u|?
77R 77R
—C At vu D an

w

Next, we estimate the third term of (12).

Computing directly, we have

a; | Vulli—| Vulif,
| Vu |
2ajuiuy 4 2auu; — Zugu;fi
| Vu|?
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2| Viul? +% | VI VP 1 4 2a5u s — 2uzu; fi
| Vu |?
(18)
Since aju; — fiu; =0, we have
wjuy g +agug = fiu + fa.

On the other hand, observe that

Ry uuuu, = RGNV u,Vu,Vu,Vu) = 0.
By means of Ricci identity,
= 2a; (uj, + w Ry du, =
2auu, + 2Ric(Vu, V.

Hence, one get

Zaz'ju.\u.\ij

Za,vju‘\u_\ij - 214,'}'11]'][1' - ZRIC(Vua Vu) +
Z'M.\-(f,su,‘ +f‘iui.\' T UisU UG 7uiujsuij) — Zuljujfi -
2Ric,(Vu,Vu) —| V | Vu |*|* (19
Also, it is easy to see that
2 |2
2 2> | v ‘ Vu ‘ ‘
2| Viu |t > 2 Vul? (20)

For the proof, see Ref. [8].
Hence, (20) together with (18) and (19)
gives the estimate of the third term,

a; | Vuli —| Vulifi

| Vu |?
2| VP ul' =4 |V | ul? |+ 2Rie(Vus Vo
3 =
| Vu |
AR AR
2| Vu | 2| Vu |? =
| V | Vul®|?
T Vel (A+| Vu P @D
The fourth term of (12) can be estimate as
Bajuu;, _ B| Vul 1 2y >
G—w’ G I VelD=
Bl Vul? 1 AN
T <1+A|Vu\ )
fxievi”'mﬂ Vu|h (22)
The final term of (12) can be estimate
as follows
a; | Vuli | Vul}
Vall S
LV IV P P g v <
| V|t -
|V Val P :
e 2
Tl (A+| Vu D (23)

Substituting (16), (17),(21),(22) and (23)

into (12), we obtain

l(fgﬁg cﬂ?)fgf
7 R? R R 77R2
31V IVul®>? Bl Vul®
2TV lt AQG—w? =0 Y

By (10), one has
f3\V|Vu|2|2:7§<ﬂ+ P >2>

2| Vu | 2\¢ O0—u
(S’f | Vul
<¢ + st )=
—3C | Vul?
7R* (0—w? (25
Substituting it into (24), we have
;(_g_g_c/l?)i 4ac |
Y] R? R R 7]RZ
Bl Vul[*(1—3A3
A —w?* <0
Then, at the point x,
| Vul? <
G@—w?r
C C«F LU)A(@*ZD? s
(e tet g+ 51— 34D

Let g€ (O’SLA» Since G attains its maximum

at x, on B,(2R), so G(x)<G(x,) for xE€ B, (R).
Also, we have ¢ =1 for x € B, (R). We
conclude that

, C cf ACT\ BA
| Vu < ( TR +RZ)BG 3A8)°

for x€ B, (R).
Let R—>+oco, we get | Vu| =0, when u is
bounded on M. So we get the Liouville type

theorem for f-exponentially harmonic function.
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