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0 Introduction

Let (N, J, w) be a Kahler manifold with
dimgN=n, where J is the complex structure and w
is the Kahler form. An immersion f: M—N from
a g-dimensional manifold M into N is called totally
real if f"w=0.

immersion f is called Lagrangian if g=n.

In particular, a totally real

A vector field V along a Lagrangian immersion
f: M—N is called a Hamiltonian variation if the
1-form av :=w(V, * ) |y is exact on M. A smooth

family { f,} of immersions from M into N is called
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a Hamiltonian deformation if its derivative is
Hamiltonian, and a Lagrangian immersion f: M—
N is called Hamiltonian minimal or H-minimal if it

satisfies

% ol f,(M) =0

for all Hamiltonian deformation. The Euler-
Lagrange equation of H-minimal Lagrangian
submanifolds is day = 0, where H is the mean

field of f and & 1is the

codifferential operator on M with respect to the

curvature vector

induced metric. In particular, minimal Lagrangian
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submanifolds are trivially H-minimal.

Many examples of H-minimal ILagrangian
submanifolds in complex space form have been
constructed in the past years. Castro et al. '

classified S'-invariant H-minimal Lagrangian
submanifolds in C?. Schoen et al. ") studied the
minimal Lagrangian cones in C*. Ma et al. " gave
a family of Hamiltonian stationary Lagrangian tori
in CP?. Mironov et al. ' constructed a family of
conformally flat H-minimal Lagrangian tori in
CP®. Jiao et al."™ completely determined all the
totally real conformal minimal two-spheres with
constant curvature in Q.

However, there are less results about the H-
minimal Lagrangian submanifolds which are not in
the complex space form. In this paper, we describe
a class of H-minimal Lagrangian surfaces with
constant curvature in Q,, and give a example of

minimal Lagrangian S* with Gaussian curvature

K=2.
1 Preliminary

In this section, we give the basic formulae of
surfaces in a Kihler surface, for a more general
case, see Ref. [6]. Throughout this paper, we use
the following conventions for index ranges:

1<CA,B,oe <45 1<i,j, < 2;
I3 asfss < 4.

Let M be a smooth surface. Locally, we
choose an orthonormal frame {e; ,e,} of M, and its
dual {6,,6,}.
of M is given by

dg; =—0; N 05 6; +0; =0 (D

where 0; are connection forms with respect to the

The first Cartan structure equation

coframe @;. Let N be a Kihler surface. Locally,
we choose a unitary frame field {e;,e;} of (1,0)-
type on N, and denote its dual by {¢i,¢,}. The
first structure equation is given by

dor == @5 N @i» o5 +@s =0 (2)
where ¢; are the connection forms with respect to
the coframe ¢;.

Let f: M—N be an isometric immersion. Set

Taking the exterior differentiation of Eq. (3),
we obtain
dfi— fily +ouf N0 =0 D
Set
Df} = df‘}—fiﬁkj+go;kf§ = [0 (5)
the covariant derivative of f%, then fi = f; by Eq.

(4). The tensor field [[“ = D) /0, @0 D is

ik
called the complex second fundamental form of f,

and the vector field HS = > fie; is called the
i

complex mean curvature vector field of f.
Let f: M— N be an

isometric immersion from a surface M into a Kihler

Proposition 1.1

surface N, H the mean curvature vector of f, and
w the Kahler form of N, then
an = w(H, )y = h0, 91

i - : (6)
by =5 Ll =T |

Therefore, the codifferential of o is given by
80{11 —_ Eh_,‘_,‘ (7)
j
where h0, =dh; —h,0,;.

2 The Lagrangian surfaces in the
complex quadric Q,

Let Q; denote the hyperquadric in CP?, which
is identified with G(2,4), the Grassmann manifold
of oriented two planes in R'; [v+iw]|—[vAw],
where [ v+iw] denotes the point in Q. given by the
homogeneous vector v+ iw in C' and [v A w]
denotes the oriented two-plane in R' spanned by
the ordered pair v,wER".

As a homogeneous space Q, =S0O(4)/SO(2) X
SO(2). Let {es) be a basis of R*, then

der = wapeps dwas = wac N wes (8
where wap are the Maurer-Cartan forms of SO(4)
satisfying wap + wpr = 0. Let f: M—>Q, be an
isometric immersion from a surface M, and locally
f=le tie; ]=[e; Nes ]. Set

w3 — w13 _'_ 16023 s (W4 — W14 + iw2/1 (9)
then the metric on Q; coming from the Fubini-

Study metric on CP? is given by
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dS%«S - %(wa(:):; —|—a)/1c;/1) - §01;01 _’_902;02 (10}

where ¢, ZLZ 3s @2 :\/%wd. And the Kihler form
Of QZ iS
w :i(wg /\ 67)3 +w4 /\ 67)4) -
é%¢1Aéy+¢zAéﬁ (1)

Locally, we choose an orthonormal coframe
0,0, on M, then

[ dsks = 0.0, + 0:0- (12)

— 0 is fixed by the

The connection form 6, =

structure equation of M,

doy =— 0, A 025 A0, =—0:1 N O
Set
wap = aaply + a0, (13)
then
w3 — Clg@] +/)302, wy — a401 Jr/hﬂz (14)
where
as = aiz t1ass s by = b1z + 1by3
a; = ay +tias s by = by +iby,.
Let
1 [as a

9

/2

then we have the following proposition.
Let f: M—> Q; be an

immersion from a surface M, then f is isometric

]]3 b4

Proposition 2. 1

and Lagrangian if and only if the matrix C is
Hermitian, i.e. CC'=1.

Proof By Egs. (12) and (14), f is
isometric iff
azas +aia; = 24 bybs +b,by = 2,
asbs +a,b, +bias +ba, =0,
and f* w=0 iff
asb; +aiby — bsas —bay, = 0.
Consequently, CCT=1. ]

From structure equations of Q; :
ngl = ¢u A ©1 T Q2 A ©2 5

@22 A P2 s
we, by Egs. (9) and (10), get the connection

d<p2 = ¢z A @1

fOI‘l’l’lS Of Qg :

on = @ = lwizs @ = @2 = wy (15)

3 The -construction of Lagrangian
surfaces with constant curvature in Q;

In this section, we will describe a family H-
minimal surfaces with constant curvature in Q.
and give some examples of Lagrangian two-spheres
with constant curvature in Q.. Giving a Lagrangian
isometric immersion f; M—>Q, from a surface M,
locally choose a isothermal coordinates (x,y) on M
such that

0, = e“dx, 0, = e“dy (16)
where u (x, y) is a differentiable function on M.

Taking exterior differentiation of Eq. (16), we get

du,  Jdu
FRA alez) an

012 — e*u(
Let U= (aa),V=_(ba), and suppose as, = Aai,
by =Ab1,» 1. e. U,V have the following forms

0 aiz ais aiy

az 0 Aaiz Adis

U = (18
as  Ads 0 as
an Mg Qg 0

0 bis b3 b1y

b2 0 Az Ay
V= (19

by Ay 0 b3y

by Ay b 0
where ais = —apa sbas = —bpa s and A is a smooth
function. Let ¢;= f30;+ then by Egs. (18) and (19)

we have

A=La+iva,. f=1
V2 V2
ﬁ:éﬂﬁmmﬁ:%

By Egs. (5),(15) and (17) we get

(1+10)by; (20)

(I+iDby 2D

+lapas — asiay)

1 i —u % —u @
fl] 7ﬁ(e ;71 +€ bg E)y

(22)
ﬁ2 = i(GW 37/)3 +ea; @ + 101505 — b3104)
2 dy dx
(23)
2 _, da. _ J .
S = \/%(e “ % +e by f}+la12a4 +asas)

(24)
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ab _ du | .
fg = f - 3 +e"ay i+lblzb4 + b3 b3)
(25
So, by Eq. (6) and Proposition 2. 1,
1 A _ 1
hy = 122 dz arzs hy 1+}{29y bz
(26)

The structure equation dwap = wac N wep of

SO(4) give

*u(abAB_aAB_a 872"4’7[) @)—
dx dy 3y Max)

aaxcbes — bacacs 27
which, by Eqgs. (18) and (19), are

i~ ((7[)34 76134 —ag r7u _'_[)01 (771,[) _

dx dy dy dx

(142 (—aisbyy +bizawy) (28)
(b ais  du Ju _
€ < ox dy ais aerblx 93[)_

- a141134 +])14a34 JF/1(6112513 - b12a13> 29

(9D an Ju @)
¢ (al oy @ gy T o)

a131)31 - ])13(131 +A(a12b11 *blzan) (30)
—u abzg 7@7 Ju\
< dx dy + # (7.7;)_
—apbis + bass +A(— arbss + buas)
(3D
" by _ A @ al _
( ox ay gy b 9I>*
—aypby +bpay +ACaisbyy — bizas) (32)
,u(abl) al?*alz 9u+bu 3&)70 (33)
dx dy dy dx
By Proposition 2.1, Egs. (31) and (32) give
ap =—e*" 1 _ 94 =—ce" 1 _ 94
12 T2 oz’ 12 e dy
(34)

which imply, by Egs. (7) and (26), that day=0 if
and only if

@ =D(FE+8)-
e oy ()]
(55 et 90 54)=0 (35)

Considering Proposition 2. 1, we let

3 :\/Icos 0y an = 2 sin 0
I+ 1+
by —— ﬁsin 0, by, —
(37)

where §(x,y) is a smooth function on M. By Egs.
(28)~(30), we get

(36)

5cos 0

_z
142

(P as  du Ju_
< ox ay A3y ay+bs4 91)7 2 (38)
(0 duy_
(20 duy
(§ (ay af) — [)34 (40)

Theorem 3.1 Given an isometric immersion
f: M—>Q, from a surface M with the induced

metric ds? = e

(da* +dy*), where (x,y) is an
isothermal coordinates and u a smooth function on
M. Suppose the coefficients of the pullback of the
Maurer-Cartan form are Egs. (18) and (19), then
f is H-minimal Lagrangian if and only if the Eq.

(35) holds and the function ulx,y) satisfies

_ 2u
7 7y Ze 41D
Proof It suffices to insert Egs. (39) and (40)
into Eq. (38). L]

By the surface uniformization theorem, we get

Corollary 3.2 Suppose as in Theorem 3. 1, if
M is closed, then M is the two-sphere S* with
constant curvature 2.

So it is known
pp— 1n<1+%<x2 + ) (42)

and Eq. (35) becomes
2 J 2 J 2
el () T
4 A A
<12+y2><2+12+y2><lar 3y> 0

(43)

Theorem 3.3 Suppose as in Theorem 3. 1 and

M is closed, if A is constant, then f: S°—>Q, is a

Lagrangian immersion with the Gaussian curvature

K =2 which is totally geodesic, and the coefficients
of the pullback of the Maurer-Cartan form are
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2 2 .
0 0 1+A2C055 lJrAzsmé’
2 2 .
0 0 A cosf A ~sin @
1+ 1+
U= (44)
_ |2 _ 2 (20 4 du
1+A2COS@ A 1+A2COS@ 0 e (31‘+9y)
— 2 1 J— 2 1 U ﬁ @
1/1+Azs1n6 A 1+/125m6 e (af—ﬁ—ﬁy) 0
7 . 2
0 0 1_‘_Azsmé’ 1+A2CO§(9
2 . 2
0 0 —A sin A,/ cos 0
1427 1417
V= (45)
2 . 2 . (90 du
1+A251n6 A 1—0—/125111(9 0 e (E)y 8.7[)
2 2 (20 2u
1+/12c056’ A 1+A2COS@ e <3y 91> 0
where §(x,y) is a function on S* and u(x,y) is as
Eq. (42). Acknowledgement The authors are grateful to
Proof It only needs to verify that f is totally Dr. Xu Xiaowei for his introduction to this topic

geodesic. Taking Eqgs. (44) and (45) into Eqgs.
(22)~(25), we know fl, = fi, = f5 = f3, = 0.
Following the same procedure yields

ﬁz - f%l - ffz - f%l = 0. U]

Example 3.4 Let 0=X=0 in the above, then

we get
0 V2 0
0 0 0
U=|—yz 0 o0 —ev2%l,
dy
U(’)l
0 0 7y 0
0 V2
0 0
V=119 o 0 u Ju
dx
_, du
—/2 0 —er3m 0
ax

We note in this case that the coefficients of the
pullback of the Maurer-Cartan form of SO(4) are
the same as in Ref. [4], and by that result, up to a
rigid motion, in local coordinates, f is given by
f=14+ 3y —1,2x,2y,i(z +y* + 1D .

We guess Eq. (43) has no non-constant solution.

and his useful discussion, also to Dr. Wang Jun for

his helpful advice.
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