JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2015)06-0431-05

Vol. 45, No. 6 Jun. 2 0 1 5

The Lagrangian surfaces with constant curvature in Q_2

LI Kang¹, HU Sen^{1,2}

(1. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China; 2. Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, Hefei 230026, China)

Abstract: A class of H-minimal Lagrangian surfaces with constant curvature in Q_2 was described, and an example was given of minimal Lagrangian S^2 with Gaussian curvature K=2.

Key words: Lagrangian surfaces; constant curvature; H-minimal

CLC number: O186. 1

Document code: A

doi:10.3969/j. issn. 0253-2778. 2015. 06. 001

2010 Mathematics Subject Classification: 53C42

Citation: Li Kang, Hu Sen. The Lagrangian surfaces with constant curvature in $Q_2[J]$. Journal of University of Science and Technology of China, 2015,45(6):431-435.

Q₂ 中常曲率拉格朗日曲面

李 康1,胡 森1,2

(1. 中国科学技术大学数学科学学院,安徽合肥 230026; 2. 中国科学技术大学中国科学院吴文俊数学重点实验室,安徽合肥 230026)

摘要:描述了复流形 Q_2 中一类常曲率 H 极小拉格朗日曲面,并且给出 Q_2 中一个高斯曲率 K=2 的极小拉格朗日球面.

关键词:拉格朗日曲面;常曲率;H极小

0 Introduction

Let (N, J, ω) be a Kähler manifold with $\dim_{\mathbf{C}} N = n$, where J is the complex structure and ω is the Kähler form. An immersion $f \colon M \to N$ from a q-dimensional manifold M into N is called totally real if $f^*\omega = 0$. In particular, a totally real immersion f is called Lagrangian if q = n.

A vector field V along a Lagrangian immersion $f: M \rightarrow N$ is called a Hamiltonian variation if the 1-form $\alpha_V := \omega(V, \bullet)|_M$ is exact on M. A smooth family $\{f_t\}$ of immersions from M into N is called

a Hamiltonian deformation if its derivative is Hamiltonian, and a Lagrangian immersion $f: M \rightarrow N$ is called Hamiltonian minimal or H-minimal if it satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \text{vol } f_t(M) = 0$$

for all Hamiltonian deformation. The Euler-Lagrange equation of H-minimal Lagrangian submanifolds is $\delta \alpha_H = 0$, where H is the mean curvature vector field of f and δ is the codifferential operator on M with respect to the induced metric. In particular, minimal Lagrangian

submanifolds are trivially H-minimal.

Many examples of H-minimal Lagrangian submanifolds in complex space form have been constructed in the past years. Castro et al. [1] classified S^1 -invariant H-minimal Lagrangian submanifolds in \mathbb{C}^2 . Schoen et al. [2] studied the minimal Lagrangian cones in \mathbb{C}^2 . Ma et al. [3] gave a family of Hamiltonian stationary Lagrangian tori in $\mathbb{C}P^2$. Mironov et al. [4] constructed a family of conformally flat H-minimal Lagrangian tori in $\mathbb{C}P^3$. Jiao et al. [5] completely determined all the totally real conformal minimal two-spheres with constant curvature in \mathbb{Q}_2 .

However, there are less results about the H-minimal Lagrangian submanifolds which are not in the complex space form. In this paper, we describe a class of H-minimal Lagrangian surfaces with constant curvature in Q_2 , and give a example of minimal Lagrangian S^2 with Gaussian curvature K=2.

1 Preliminary

In this section, we give the basic formulae of surfaces in a Kähler surface, for a more general case, see Ref. [6]. Throughout this paper, we use the following conventions for index ranges:

$$1 \leqslant A, B, \dots \leqslant 4$$
; $1 \leqslant i, j, \dots \leqslant 2$; $3 \leqslant \alpha, \beta, \dots \leqslant 4$.

Let M be a smooth surface. Locally, we choose an orthonormal frame $\{e_1, e_2\}$ of M, and its dual $\{\theta_1, \theta_2\}$. The first Cartan structure equation of M is given by

$$d\theta_i = -\theta_{ij} \wedge \theta_j$$
, $\theta_{ij} + \theta_{ji} = 0$ (1) where θ_{ij} are connection forms with respect to the coframe θ_i . Let N be a Kähler surface. Locally, we choose a unitary frame field $\{\varepsilon_1, \varepsilon_2\}$ of $(1, 0)$ -type on N , and denote its dual by $\{\varphi_1, \varphi_2\}$. The first structure equation is given by

$$\mathrm{d}\varphi_{i} = -\varphi_{ij} \ \wedge \ \varphi_{j} \ , \ \varphi_{ij} + \bar{\varphi}_{ji} = 0 \tag{2}$$
 where φ_{ij} are the connection forms with respect to the coframe φ_{i} .

Let $f: M \rightarrow N$ be an isometric immersion. Set

$$f^* \varphi_i = f_j^i \theta_j \tag{3}$$

Taking the exterior differentiation of Eq. (3), we obtain

$$(\mathrm{d}f_j^i - f_k^i \theta_{kj} + \varphi_{ik} f_j^k) \wedge \theta_j = 0 \tag{4}$$

Set

$$Df_{j}^{i} = \mathrm{d}f_{j}^{i} - f_{k}^{i}\theta_{kj} + \varphi_{ik}f_{j}^{k} = f_{jk}^{i}\theta_{k} \qquad (5)$$
 the covariant derivative of f_{j}^{i} , then $f_{jk}^{i} = f_{kj}^{i}$ by Eq. (4). The tensor field $\prod^{\mathbf{c}} = \sum_{ijk} f_{jk}^{i}\theta_{j} \otimes \theta_{k} \otimes \varepsilon_{i}$ is called the complex second fundamental form of f , and the vector field $H^{\mathbf{c}} = \sum_{ij} f_{ij}^{i}\varepsilon_{i}$ is called the complex mean curvature vector field of f .

Proposition 1.1^[6] Let $f: M \to N$ be an isometric immersion from a surface M into a Kähler surface N, H the mean curvature vector of f, and ω the Kähler form of N, then

$$\alpha_{H} := \omega(H, \bullet)_{M} = h_{j}\theta_{j},$$

$$h_{j} = \frac{\mathrm{i}}{2} (f_{kk}^{l} \overline{f}_{j}^{l} - \overline{f}_{kk}^{l} f_{j}^{l})$$

$$(6)$$

Therefore, the codifferential of α_H is given by

$$\delta \alpha_H = -\sum_j h_{jj} \tag{7}$$

where $h_{jk}\theta_k = \mathrm{d}h_j - h_k\theta_{kj}$.

2 The Lagrangian surfaces in the complex quadric Q_2

Let Q_2 denote the hyperquadric in $\mathbb{C}P^3$, which is identified with G(2,4), the Grassmann manifold of oriented two planes in \mathbb{R}^4 : $[v+\mathrm{i}w] \leftrightarrow [v \wedge w]$, where $[v+\mathrm{i}w]$ denotes the point in Q_2 given by the homogeneous vector v+iw in \mathbb{C}^4 and $[v \wedge w]$ denotes the oriented two-plane in \mathbb{R}^4 spanned by the ordered pair $v,w \in \mathbb{R}^4$.

As a homogeneous space $Q_2 = SO(4)/SO(2) \times SO(2)$. Let $\{e_A\}$ be a basis of \mathbb{R}^4 , then

$$de_A = \omega_{AB}e_B$$
, $d\omega_{AB} = \omega_{AC} \wedge \omega_{CB}$ (8)
where ω_{AB} are the Maurer-Cartan forms of $SO(4)$
satisfying $\omega_{AB} + \omega_{BA} = 0$. Let $f: M \rightarrow Q_2$ be an
isometric immersion from a surface M , and locally
 $f = [e_1 + ie_2] = [e_1 \wedge e_2]$. Set

$$\omega_3 = \omega_{13} + i\omega_{23}, \ \omega_4 = \omega_{14} + i\omega_{24}$$
 (9)

then the metric on Q_2 coming from the Fubini-Study metric on $\mathbb{C}P^3$ is given by

$$ds_{FS}^{2} = \frac{1}{2}(\bar{\omega_{3}\omega_{3}} + \bar{\omega_{4}\omega_{4}}) = \varphi_{1}\bar{\varphi}_{1} + \varphi_{2}\bar{\varphi}_{2} \quad (10)$$

where $\varphi_1 = \frac{1}{\sqrt{2}}\omega_3$, $\varphi_2 = \frac{1}{\sqrt{2}}\omega_4$. And the Kähler form of Q_2 is

$$\omega = \frac{i}{4} (\omega_3 \wedge \overline{\omega}_3 + \omega_4 \wedge \overline{\omega}_4) = \frac{i}{2} (\varphi_1 \wedge \overline{\varphi}_1 + \varphi_2 \wedge \overline{\varphi}_2)$$
(11)

Locally, we choose an orthonormal coframe θ_1, θ_2 on M, then

$$f^* ds_{FS}^2 = \theta_1 \theta_1 + \theta_2 \theta_2 \tag{12}$$

The connection form $\theta_{12} = -\theta_{21}$ is fixed by the structure equation of M_1

$$d\theta_1 = - \, \theta_{12} \, \wedge \, \theta_2$$
 , $d\theta_2 = - \, \theta_{21} \, \wedge \, \theta_1$

Set

$$\omega_{AB} = a_{AB}\theta_1 + b_{AB}\theta_2 \tag{13}$$

then

$$\omega_3 = a_3\theta_1 + b_3\theta_2$$
, $\omega_4 = a_4\theta_1 + b_4\theta_2$ (14)

where

$$a_3 = a_{13} + ia_{23}$$
, $b_3 = b_{13} + ib_{23}$,
 $a_4 = a_{14} + ia_{24}$, $b_4 = b_{14} + ib_{24}$.

Let

$$C = \frac{1}{\sqrt{2}} \begin{pmatrix} a_3 & a_4 \\ b_3 & b_4 \end{pmatrix},$$

then we have the following proposition.

Proposition 2. 1 Let $f: M \rightarrow Q_2$ be an immersion from a surface M, then f is isometric and Lagrangian if and only if the matrix C is Hermitian, i. e. $CC^{\dagger} = I$.

By Eqs. (12) and (14), f is Proof isometric iff

$$a_3\bar{a}_3 + a_4\bar{a}_4 = 2$$
, $b_3\bar{b}_3 + b_4\bar{b}_4 = 2$,
 $a_3\bar{b}_3 + a_4\bar{b}_4 + b_3\bar{a}_3 + b_4\bar{a}_4 = 0$,

and $f^*\omega = 0$ iff

$$a_3\bar{b}_3 + a_4\bar{b}_4 - b_3\bar{a}_3 - b_4\bar{a}_4 = 0.$$

Consequently, $CC^{\dagger} = I$. From structure equations of Q_2 :

$$\mathrm{d} arphi_1 = - \, arphi_{11} \, \, \wedge \, \, arphi_1 - arphi_{12} \, \, \wedge \, \, arphi_2 \, , \ \mathrm{d} arphi_2 = - \, arphi_{21} \, \, \wedge \, \, arphi_1 - \, arphi_{22} \, \, \wedge \, \, arphi_2 \, ,$$

we, by Eqs. (9) and (10), get the connection forms of Q_2 :

$$\varphi_{11} = \varphi_{22} = i\omega_{12}, \ \varphi_{21} = -\varphi_{12} = \omega_{34}$$
 (15)

The construction of Lagrangian surfaces with constant curvature in Q_2

In this section, we will describe a family Hminimal surfaces with constant curvature in Q_2 , and give some examples of Lagrangian two-spheres with constant curvature in Q_2 . Giving a Lagrangian isometric immersion $f: M \rightarrow Q_2$ from a surface M, locally choose a isothermal coordinates (x, y) on M such that

$$\theta_1 = e^u dx, \ \theta_2 = e^u dy \tag{16}$$

where u(x, y) is a differentiable function on M. Taking exterior differentiation of Eq. (16), we get

$$\theta_{12} = e^{-u} \left(\frac{\partial u}{\partial y} \theta_1 - \frac{\partial u}{\partial x} \theta_2 \right) \tag{17}$$

Let $U = (a_{AB}), V = (b_{AB}),$ and suppose $a_{2\alpha} = \lambda a_{1\alpha}$, $b_{2\alpha} = \lambda b_{1\alpha}$, i. e. U,V have the following forms

$$U = \begin{pmatrix} 0 & a_{12} & a_{13} & a_{14} \\ a_{21} & 0 & \lambda a_{13} & \lambda a_{14} \\ a_{31} & \lambda a_{31} & 0 & a_{34} \\ a_{41} & \lambda a_{41} & a_{43} & 0 \end{pmatrix}$$
(18)

$$V = \begin{pmatrix} 0 & b_{12} & b_{13} & b_{14} \\ b_{21} & 0 & \lambda b_{13} & \lambda b_{14} \\ b_{31} & \lambda b_{31} & 0 & b_{34} \\ b_{43} & \lambda b_{43} & b_{42} & 0 \end{pmatrix}$$
(19)

where $a_{AB} = -a_{BA}$, $b_{AB} = -b_{BA}$, and λ is a smooth function. Let $\varphi_i = f_j^i \theta_j$, then by Eqs. (18) and (19) we have

$$f_1^1 = \frac{1}{\sqrt{2}}(1+\mathrm{i}\lambda)a_{13}, \ f_2^1 = \frac{1}{\sqrt{2}}(1+\mathrm{i}\lambda)b_{13} \ (20)$$

$$f_1^2 = \frac{1}{\sqrt{2}}(1+\mathrm{i}\lambda)a_{14}, \ f_2^2 = \frac{1}{\sqrt{2}}(1+\mathrm{i}\lambda)b_{14} \ (21)$$

By Eqs. (5), (15) and (17) we get

$$f_{11}^{1} = \frac{1}{\sqrt{2}} (e^{-u} \frac{\partial a_{3}}{\partial x} + e^{-u} b_{3} \frac{\partial u}{\partial y} + i a_{12} a_{3} - a_{34} a_{4})$$

$$f_{22}^{1} = \frac{1}{\sqrt{2}} \left(e^{-u} \frac{\partial b_{3}}{\partial y} + e^{-u} a_{3} \frac{\partial u}{\partial x} + i b_{12} b_{3} - b_{34} b_{4} \right)$$
(23)

$$f_{11}^2 = \frac{1}{\sqrt{2}} (e^{-u} \frac{\partial a_4}{\partial x} + e^{-u} b_4 \frac{\partial u}{\partial y} + i a_{12} a_4 + a_{34} a_3)$$

(24)

(22)

$$f_{22}^{2} = \frac{1}{\sqrt{2}} \left(e^{-u} \frac{\partial b_{4}}{\partial y} + e^{-u} a_{4} \frac{\partial u}{\partial x} + i b_{12} b_{4} + b_{34} b_{3} \right)$$
(25)

So, by Eq. (6) and Proposition 2.1,

$$h_1=-rac{1}{1+\pmb{\lambda}^2}rac{\partial\pmb{\lambda}}{\partial x}-a_{12}$$
 , $h_2=-rac{1}{1+\pmb{\lambda}^2}rac{\partial\pmb{\lambda}}{\partial y}-b_{12}$

(26)

The structure equation $\mathrm{d}\omega_{AB}=\omega_{AC}\wedge\omega_{CB}$ of SO(4) give

$$e^{-u} \left(\frac{\partial b_{AB}}{\partial x} - \frac{a_{AB}}{\partial y} - a_{AB} \frac{\partial u}{\partial y} + b_{AB} \frac{\partial u}{\partial x} \right) =$$

$$a_{AC}b_{CB} - b_{AC}a_{CB}$$
(27)

which, by Eqs. (18) and (19), are

$$e^{-u} \left(\frac{\partial b_{34}}{\partial x} - \frac{a_{34}}{\partial y} - a_{34} \frac{\partial u}{\partial y} + b_{34} \frac{\partial u}{\partial x} \right) =$$

$$(1 + \lambda^{2}) \left(-a_{13}b_{14} + b_{13}a_{14} \right)$$
(28)

$$e^{-u} \left(\frac{\partial b_{13}}{\partial x} - \frac{a_{13}}{\partial y} - a_{13} \frac{\partial u}{\partial y} + b_{13} \frac{\partial u}{\partial x} \right) = -a_{14}b_{34} + b_{14}a_{34} + \lambda(a_{12}b_{13} - b_{12}a_{13})$$
(29)

$$e^{-u} \left(\frac{\partial b_{14}}{\partial x} - \frac{a_{14}}{\partial y} - a_{14} \frac{\partial u}{\partial y} + b_{14} \frac{\partial u}{\partial x} \right) = a_{13}b_{34} - b_{13}a_{34} + \lambda(a_{12}b_{14} - b_{12}a_{14})$$
(30)

$$e^{-u} \left(\frac{\partial b_{23}}{\partial x} - \frac{a_{23}}{\partial y} - a_{23} \frac{\partial u}{\partial y} + b_{23} \frac{\partial u}{\partial x} \right) =$$

$$- a_{12} b_{13} + b_{12} a_{13} + \lambda (-a_{14} b_{34} + b_{14} a_{34})$$
(31)

$$e^{-u} \left(\frac{\partial b_{24}}{\partial x} - \frac{a_{24}}{\partial y} - a_{24} \frac{\partial u}{\partial y} + b_{24} \frac{\partial u}{\partial x} \right) =$$

$$- a_{12} b_{14} + b_{12} a_{14} + \lambda (a_{13} b_{34} - b_{13} a_{34})$$
(32)

$$e^{-u}\left(\frac{\partial b_{12}}{\partial x} - \frac{a_{12}}{\partial y} - a_{12}\frac{\partial u}{\partial y} + b_{12}\frac{\partial u}{\partial x}\right) = 0$$
 (33)

By Proposition 2.1, Eqs. (31) and (32) give

$$a_{12} = -e^{-u}\frac{1}{1+\lambda^2}\frac{\partial \lambda}{\partial x}, b_{12} = -e^{-u}\frac{1}{1+\lambda^2}\frac{\partial \lambda}{\partial y}$$

(34)

which imply, by Eqs. (7) and (26), that $\delta \alpha_H = 0$ if and only if

$$(e^{-u} - 1) \left(\frac{\partial^{2} \lambda}{\partial x^{2}} + \frac{\partial^{2} \lambda}{\partial y^{2}} \right) - \frac{2\lambda (e^{-u} - 1)}{1 + \lambda^{2}} \left[\left(\frac{\partial \lambda}{\partial x} \right)^{2} + \left(\frac{\partial \lambda}{\partial y} \right)^{2} \right] - \left(\frac{\partial \lambda}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial \lambda}{\partial y} \frac{\partial u}{\partial y} \right) = 0$$
(35)

Considering Proposition 2.1, we let

$$a_{13} = \sqrt{\frac{2}{1+\lambda^2}}\cos\theta, \ a_{14} = \sqrt{\frac{2}{1+\lambda^2}}\sin\theta$$
(36)

$$b_{13} = -\sqrt{\frac{2}{1+\lambda^2}}\sin\theta, \ b_{14} = \sqrt{\frac{2}{1+\lambda^2}}\cos\theta$$
(37)

where $\theta(x,y)$ is a smooth function on M. By Eqs. (28) \sim (30), we get

$$e^{-u} \left(\frac{\partial b_{34}}{\partial x} - \frac{a_{34}}{\partial y} - a_{34} \frac{\partial u}{\partial y} + b_{34} \frac{\partial u}{\partial x} \right) = -2 \quad (38)$$

$$-e^{-u}\left(\frac{\partial\theta}{\partial x} + \frac{\partial u}{\partial y}\right) = a_{34}$$
 (39)

$$-e^{-u}\left(\frac{\partial\theta}{\partial\nu} - \frac{\partial u}{\partial x}\right) = b_{34} \tag{40}$$

Theorem 3.1 Given an isometric immersion $f: M \rightarrow Q_2$ from a surface M with the induced metric $ds^2 = e^{2u} (dx^2 + dy^2)$, where (x, y) is an isothermal coordinates and u a smooth function on M. Suppose the coefficients of the pullback of the Maurer-Cartan form are Eqs. (18) and (19), then f is H-minimal Lagrangian if and only if the Eq. (35) holds and the function u(x, y) satisfies

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2e^{2u} \tag{41}$$

Proof It suffices to insert Eqs. (39) and (40) into Eq. (38).

By the surface uniformization theorem, we get **Corollary 3.2** Suppose as in Theorem 3.1, if M is closed, then M is the two-sphere S^2 with constant curvature 2.

So it is known

$$u = -\ln(1 + \frac{1}{2}(x^2 + y^2)) \tag{42}$$

and Eq. (35) becomes

$$\frac{\partial^{2} \lambda}{\partial x^{2}} + \frac{\partial^{2} \lambda}{\partial y^{2}} - \frac{2\lambda}{1+\lambda^{2}} \left[\left(\frac{\partial \lambda}{\partial x} \right)^{2} + \left(\frac{\partial \lambda}{\partial y} \right)^{2} \right] + \frac{4}{(x^{2} + y^{2})(2 + x^{2} + y^{2})} \left(x \frac{\partial \lambda}{\partial x} + y \frac{\partial \lambda}{\partial y} \right) = 0$$
(43)

Theorem 3.3 Suppose as in Theorem 3.1 and M is closed, if λ is constant, then $f: S^2 \rightarrow Q_2$ is a Lagrangian immersion with the Gaussian curvature K=2 which is totally geodesic, and the coefficients of the pullback of the Maurer-Cartan form are

$$U = \begin{bmatrix} 0 & 0 & \sqrt{\frac{2}{1+\lambda^2}}\cos\theta & \sqrt{\frac{2}{1+\lambda^2}}\sin\theta \\ 0 & 0 & \lambda\sqrt{\frac{2}{1+\lambda^2}}\cos\theta & \lambda\sqrt{\frac{2}{1+\lambda^2}}\sin\theta \\ -\sqrt{\frac{2}{1+\lambda^2}}\cos\theta & -\lambda\sqrt{\frac{2}{1+\lambda^2}}\cos\theta & 0 & -e^{-u}\left(\frac{\partial\theta}{\partial x} + \frac{\partial u}{\partial y}\right) \\ -\sqrt{\frac{2}{1+\lambda^2}}\sin\theta & -\lambda\sqrt{\frac{2}{1+\lambda^2}}\sin\theta & e^{-u}\left(\frac{\partial\theta}{\partial x} + \frac{\partial u}{\partial y}\right) & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 & 0 & -\sqrt{\frac{2}{1+\lambda^2}}\sin\theta & \sqrt{\frac{2}{1+\lambda^2}}\cos\theta \\ 0 & 0 & -\sqrt{\frac{2}{1+\lambda^2}}\sin\theta & \sqrt{\frac{2}{1+\lambda^2}}\cos\theta \\ -\sqrt{\frac{2}{1+\lambda^2}}\sin\theta & \lambda\sqrt{\frac{2}{1+\lambda^2}}\sin\theta & 0 & -e^{-u}\left(\frac{\partial\theta}{\partial y} - \frac{\partial u}{\partial x}\right) \\ -\sqrt{\frac{2}{1+\lambda^2}}\cos\theta & -\lambda\sqrt{\frac{2}{1+\lambda^2}}\cos\theta & e^{-u}\left(\frac{\partial\theta}{\partial y} - \frac{\partial u}{\partial x}\right) & 0 \end{bmatrix}$$

$$(44)$$

where $\theta(x,y)$ is a function on S^2 and u(x,y) is as Eq. (42).

Proof It only needs to verify that f is totally geodesic. Taking Eqs. (44) and (45) into Eqs. (22) \sim (25), we know $f_{11}^1 = f_{22}^1 = f_{21}^2 = f_{22}^2 = 0$. Following the same procedure yields

$$f_{12}^1 = f_{21}^1 = f_{12}^2 = f_{21}^2 = 0.$$

Example 3.4 Let $\theta = \lambda = 0$ in the above, then we get

$$U = \begin{bmatrix} 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & -e^{-u} \frac{\partial u}{\partial y} \end{bmatrix},$$

$$0 & 0 & e^{-u} \frac{\partial u}{\partial y} & 0 \end{bmatrix},$$

$$V = \begin{bmatrix} 0 & 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{-u} \frac{\partial u}{\partial x} \end{bmatrix}.$$

$$-\sqrt{2} & 0 & -e^{-u} \frac{\partial u}{\partial x} & 0 \end{bmatrix}.$$

We note in this case that the coefficients of the pullback of the Maurer-Cartan form of SO(4) are the same as in Ref. [4], and by that result, up to a rigid motion, in local coordinates, f is given by

$$f = [x^2 + y^2 - 1, 2x, 2y, i(x^2 + y^2 + 1)].$$

We guess Eq. (43) has no non-constant solution.

Acknowledgement The authors are grateful to Dr. Xu Xiaowei for his introduction to this topic and his useful discussion, also to Dr. Wang Jun for his helpful advice.

References

- [1] Castro I, Urbano F. Examples of unstable Hamiltonian-minimal Lagrangian tori in C^2 [J]. Compositio Math, 1998, 111: 1-14.
- [2] Schoen R, Wolfson J. Minimizing volume among Lagrangian submanifolds [C]// Proc Sympos Pure Math: Vol 65. Providence, RI: Amer Math Soc, 1999: 181-199.
- [3] Ma H, Schmies M. Examples of Hamiltonian stationary Lagrangian tori in CP^2 [J]. Geom Dedicata, 2006, 118: 173-183.
- [4] Mironov A E, Zuo D. On a family of conformally flat Hamiltonian minimal Lagrangian tori in CP^3 [J]. Int Math Res Not, 2008, 2008; 10. 1093/imrn/rnn078.
- [5] Jiao X X, Wang J. Totally real minimal surfaces in the complex hyperquadrics[J]. Diff Geo Appl, 2013, 31: 540-555.
- [6] Hu S, Chen Q, Xu X W. Construction of Lagrangian submanifolds in CP^n [J]. Pacific Journal of Math, 2012, 258: 31-49.
- [7] Chern S S, Wolfson J. Minimal surfaces by moving frames[J]. Amer J Math, 1983, 105(1):59-83.
- [8] Yang K. Complete and Compact Minimal Surface[M]. Dordrecht: Kluwer Academic, 1989.