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A new estimate of DoA for saturated systems and its applications
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Abstract: A new method for estimating the domain of attraction(DoA) for saturated systems was
presented. Compared with the existing results, the advantage of the new result is mainly
twofold: (D It does not include any product by the system matrix and the Lyapunov matrix; @ It
does not result in heavy computing cost. It will be seen that these features are essentially
important in system analysis. For comparison, the new result was extended to uncertain
saturated systems, which shows that it leads to less conservativeness. Numerical examples verify
the correctness of the conclusion.
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engineering. In the past decades, it has attracted

0 Introduction
much attention. In the field of saturated systems,

Saturated actuators are widely encountered in the invariant set or DoA is an important topic.
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There has existed a lot of work, for example!'" is to be investigated in this section.
and the reference therein. By placing the saturated x(k+1) = Ax (k) + BSat(u(k)) D

control signal into the convex hull of a group of
linear ones, Hu et. al. developed a method (Ref.
[5] for discrete-time and Ref. [6] for continuous-
time cases), and proved that it has the result of
Ref. [ 2] as a special case. By choosing a
saturation-dependent Lyapunov function, another
result was presented in Ref. [7], and it was
claimed that the result was less conservative,
Alamo et al.'® presented an SNS concept to
estimate the DoA, and proved that it contains all
possible estimations obtained by LDI through a
complex recursive procedure. In Lu Ref. [9], a
switching anti-windup method was designed to
enlarge the DoA of the closed-loop system. As is
known, uncertainty is often the potential cause of
instability and poor performance, which is
inevitable in engineering. Hence, the problem of
presenting an applicable method to estimate the
DoA of uncertain systems is of vital importance,
which has not been solved as seen the references
above,

In this note, a new result will be presented,
and we shall prove that it is equivalent to both
Refs. [5] and [7]. Moreover, the result does not
involve any product by Lyapunov matrix and the
system dynamics matrix. This °decoupling’ is
essentially important for investigating on uncertain
systems (see Refs. [10-12]), hence it allows the
new result to be extended to uncertain saturated
systems. To illustrate the effectiveness, the DoA
estimation problems for wuncertain saturated
systems will be solved by both Hu, et. al. ™ and
the new result. It will be seen that the new result
has its own advantage in conservativeness
reduction. Numerical examples are presented to

verify the rightness.
1 A new result on estimation of DOA
for saturated systems

1.1 Problem statement

The following discrete-time saturated system

u(k) = Fx (k)

Here x € R"denotes the system state, u(k) &
R is the control input. A, B, F are all constant
matrices with compatible dimensions. The function
Sat(.) R "R " is the vector-valued saturation
function, which is defined as follows:

Sat(u) = [ Sat(u;), Sat(uy) e+, Sat(u,) .
where,
Sat(u;) = sgn(u;) min{l; | u; |}.

Here, we have slightly abused the notation by
using function Sat( ) to denote both the scalar
valued and the vector valued saturation functions.
We recall some useful assumptions and results in
Hu, et. al. ®,

Let f; be the jth row of F, and define /A(F) a
(xeR". | fio |<< 155 € [1 m]}. Here [1 m]
denotes the set containing all the integers from 1 to
m. Note that Y(F) denotes the region in which
u(k) =Sat(Fx(k)) is linear in x(k).

Let P be a positive-definite matrix.
ellipsoid &(P,p) =

Moreover,

For a
positive
{(xeR": x'Px <p}.
E(P,p) is inside of Y(F) if and only if*"

Let D be the set of m X m diagonal matrices

scalar  p, an

an ellipsoid

whose diagonal elements are eitherl or 0. Hence,
there are 2" elements in D. Each element of D is
labelled D;; j € [1 2"], then D={D;: j €
[1 2"]}. Denote D; =I—D;. Clearly,D; is an
element of D if and only if D; €D. In this paper, if
not explicitly specified, ¢ * 7 denotes the transpose

of corresponding elements introduced by
symmetry.
1.2 A new estimate of DoA for saturated systems

We recall the following proposition given in
Ref. [5].

Proposition 1.1 Given two feedback matrices
F, H € R ™", suppose that | hjx | <1 for j €
[1m], we have that

Sat( Fxr) € co{D;Fx + D, Hx

“

e[l 2.

where “co” denotes the convex hull of a set.
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It follows

»
Sat(Fx) = > () (D,F+ D H)a
i=1

o
where 7, (x) is dependent on x satisfying Z 7 (x) = 1.

i=1
al. B!

presented a criterion to determine whether an

Based on the proposition, Hu, et.

ellipsoid is contractively invariant (obviously in the
DoA).

ellipsoid to be an estimate of the DoA. To evaluate

Then we could choose the “largest”

the “largest”, two kinds of reference sets are

usually used: ellipsoids defined as Xz = {x € R" :

OP1 inf %
Q.Z
.
s.t. (al) [71 ka> 0.k € [15];
X Q
[ e
(AQ +B(D,FQ +D;Z))
1 ZJ' .
(cD) [z}‘ Q}}O, 7€ [1m].

Denote the optimal value as ¥/ , then the size
of the largest ellipse with respect to Xi is A =
1/ /.

The same problem is also investigated in Ref.

[7] by choosing a so-called saturation-dependent

oP2 infl 7y,
Q. >0;

1

o

z
F’z *
x. 0'+0—0Q
[ s+ neos
(AQ+B(D,FQ+D: 7))

i

We denote the optimal value as 5 .

In Ref. [ 7], it was claimed that Lemma 1. 2 is
less conservative,
letting @ = Q' =

subsection , we will present a new result to reduce

as it covers Lemma 1.1 by

Q.. In the remainder of the

the complexity. Moreover, we shall prove that our

Q' +0—-0,

x"™Rx <1}, R> 0 or polyhedrons defined as Xz =
co{xi,»s x,} x, ER", k=11 5]

For a set Xg and S C R", define the largeness
of § with respect to X as:

AR (S) = sup{d: XXz C S).

Then the following work is to choose the
“largest” contractively invariant ellipsoid to be the
estimation of the DoA. Hu, et. al. ™ investigated
the problem and achieved the following result.

Lemma 1. 1%

estimate of the DoA for system (1) could be

If Xg = co{xy;.**", x,} , an

expressed as the following optimization problem:

*
>0,ie€[1 2n];
o]

Lyapunov function, and the following result is
presented.
Lemma 1. 2%

estimate of DoA for system (1) could be expressed

If XR - Co{x]a"'y x,\-}y an

as:

]>o,k cllslicl 207

J> Oavlaje[l 2]”];

*
T Q]>o, Vielml,ie[1 2m].

result is equivalent to both Lemma 1. 1 and Lemma
1. 2, which indicates that Ref. [ 7] did not reduce
the conservativeness as it was declared.

Theorem 1. 1

conclude that the following optimization problem is

If Xg = col{xys=*s x,} ., we

equivalent to both Lemma 1. 1 and Lemma 1. 2.
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OP3 inf s
Q>0:QiZ
@ |7 sokens
s. t. (a = 0.k &€ Ss
x. Q'+0—0
(b3) [ e }> 0,¥ie [l 2v]
’ 1 i
(AQ+BID.FQ+D:2)) Q' +0—0
1 *
3 [ }2 0, Vj 1 m].
(¢3) — Vjel[lm]
The corresponding optimal value is denoted as y5 . yi << 7 : Note that OP3 owns only part of the

Proof
by letting
Q'=0=0,. Yie[1 2v].

That is to say, the constraints of OP1 are more

v, < ¥ : Note that OP2 covers OP1

restrictive. Hence, a less infimum may be obtained

in OP2 , which implies that y5° <y .

OP4 inf
Q>0:Q:7
{ 4)[” } 0.k € [15]
s.t. (a ’ S1s
x. Q00 QT
(bd) [
(AQ +B(DFQ +DZ)
(C4)|: A }>O Vi€ [1m].
zT

The optimal value is denoted as 7, . Owing to
Eq. (3), we have y; < y4.
Let 00,'0" = T > 0,

transformed into

Then (ad) is

T
(aad) [” xk]> 0. ke [15s]
X T

L L [0
Pre- and post-multiplying (b4) with [ 0 J

and it transpose respectively, we have that (b4) is

equivalent to

T
[AT+B(DFT+IT 27T T
Letting ZQ 'T =Y , it follows

T *
bb4 [ } 0,
( ) AT+ BD.FT+DY) T -
Yiel[l 27

.'0"

J> 0, Vie [l 2v].

OP2, hence OP3 is less
conservative, which leads toy; <7y, .
yi <y : ForQ, > 0, we deduce that Q in
OP3 is of full rank. It is noted that
Q' +0—0, <00'0" (3
Replacing Q" +Q — Q, with 0Q,'Q" leads to:

constraints  of

*

]> 0nLVie [l 27

Pre- and post-multiplying (c4 ) with

LI) (;QT} and its transpose respectively yields
1 * )
Substituting z;Q ' T with y; , we have (c4) is

equivalent to

1
(ccd) [ .

j

;7:]2 0, Vj&[1lm]

Then OP4 is transformed into the following

equivalent optimization problem OP4,
6}52" lrlf :;’4
T.Y
s. t. (aad) — (ccd).

The optimal value of OP4is ;/f , and obviously
Vi =i

Note that OP4 is just the same as OP1 , hence
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7 :;’f =v,. Wing tor, <rj , we haver; <rs.

By now, we have shown y; =y, =75 , hence
we declare that OP1, OP2 and OP3 are equivalent to
each other.

Remark 1.1 Note that the order of

complexity in OP3 is 2", which is only % of OP2 ,

hence the computation cost is obviously reduced,
especially for high-order systems.

Remark 1.2 Compared with OP1, OP3
introducs a slack variable Q, which is not even
required to be symmetric. It doesn’t involve any
product between Lyapunov matrix and the system
dynamics, which may help to construct a
parameter-dependent Lyapunov function to reduce
conservativeness. And also due to the extra
freedom (See de Oliveira et al. ', Ref. [10] for
the discrete-time system case, and Cao et al. 'Y for
the continuous-time system counterparts), further
results may be obtained for uncertain systems.

Remark 1.3
&(R,1), we only have to replace (al) with
[yR R

I 0 I 0"+0—0

. m 1 m I
1 & [1 2 ] » and (a3) Wlth[ I QT —|—Q_Ql

For an ellipse reference set X =

1
J}O , (a2) with [ J} 0,

=

1.3 A numerical example

Example 1.1 Consider the following system

1 1 0.5
a=l) L=k
0 1 1.0
F=[—0.6167 —1.2703].
Xz = &R,1) is the reference set, with R =

bl

Utilizing the Mincx solver in LMI toolbox of

dynamics:

Matlab, we solve Lemmas 1. 1, 1. 2 and Theorem

1.1 and obtain

OP1. 7/ =0.1724, Z =[—0.3721 —2.8658],
[ 44,9992  —14. 1592}
and Q = .
—14.1592  13. 3806
OP2. y; =0.1724, Z=[—0.3721 —2.8658],

T 449992
and@=0,=0. = L 14. 1592
OP3. 7. = 0.1724, Z = [—0. 3721
44.9992  —14.1592
[— 14. 1592 13. 3806 :|
Obviously y1 = y = 5,

— 14, 1592}
13. 3806 J°
— 2. 86587,

and Q = Q) =

hence the
numerical example shows that OP1 ~ OP3 are

equivalent to each other.

2  Extension to poly-topic uncertain
saturated systems

In this section, the DoA estimation problem is

investigated for poly-topic uncertain satuated
systems. We will investigate the problem first
with Lemma 1. 1, and then with Theorem 1. 1. we
shall see that Theorem 1. 1 leads to a less
conservative solution when it is applied to
uncertain systems.
2.1 Problem statement
Let us consider the following discrete-time

uncertain saturated systems.

x(k+1) = Al@)x(k) + BSar (u(k))

u(k) = Fx (k)

x € R"denotes the state vector andu € R" is

4

the control input. F is the feedback gain. The
dynamic matrix A(g) belongs to a convex poly-topic

set defined as:

M M
oAy = {A(a) : Ala) = Z(LAM Zaizl’ ai>o}-
i=1 i=1

In the next subsection, we are aiming at

giving an estimate of DoA for Eq. (4).
2.2 Estimation of DoA for uncertain saturated systems

Now, we shall investigate the problem with
Lemma 1. 1. First of all, we consider the following
problem: If &(P,p) is in the DoA of all the vertex
systems (the systems whose dynamic matrices are
given by the vertices of A (@), then under what
conditions is £(P,p) also in the DoA of the entitle
system (4)? Should this question be answered, we
would take &(P,p) as an estimate of DoA for
system (4).

Lemma 2, 1
exists H € R™,

For an ellipse &(P,p) , if there
such that
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—P<0, Vie[1M],jell 2] (&
and &(P,p) € Y(H) , then we conclude &(P,p) is a

contractively invariant set (in the DoA) for Eq.

S| ’ )
%A, +BID,F+D H))
That is

P
Lua) +B(D,F +D; H))

which is equivalent to
(A(e) +B(D,F +D; H))"P(A(a) +B(D,F +
D, H)—P<0, Yje[l 2] (8
Note &(P,p) C Y(H) , therefor &(P,p) is a
contractively invariant set for Eq. (4).
Based on LLemma 2. 1, we have the following
theorem.,
Theorem 2.1 Assuming Xg = co{x;,***sx,} »

we could give an estimate of DoA for system (4)

OP5 inf vy,
Q.7

Ys ¥
s. t. (ab) [ }207 ke[l sl;
x. 0
wl e
(AQ +B(D,FQ +D; Z)

1 =x )
(c5) [ZT Q}} 0,7€[1 m]

J

Denote the optimal value of ys as y: , the

corresponding size of the estimate of DoA is given

byrs =1/ /vi

Proof Based on the analysis above, the proof
is trivial, hence we omit it here.

The deficiency of the above result lies in
choosing a single Lyapunov function to check the
stability of the entire system with uncertainty. In
other words, we take the common contractively
invariant set of all the vertex systems as the
As is

claimed in the previous section, a less conservative

contractively invariant set of Eq. (4).

result may be obtained by utilizing Theorem 1.1

lrl

(D.
Proof
convexity, Eq. (5) leads to

By Schur complement lemma and

]>o, Vie[IM].jel[l 2] (6)
* .
o [Fovien 2 )

by solving the following problem

sup  As
P>0.p.H

s.t. () A Xg CE(P, )5
(b) (A;+B(D,F+D; H))"P(A,+B(D,F
+D;H)—P<0, Yic[1M], ;€
(1 2"];
(c) &(P,p) C Y(H).

It could be easily transformed as

Z)]>o,ie[1MJ,je[1 27

This

inspires us to propose the question: Given the

due to its ¢ decoupling’ characteristics.
contractively invariant set &(P;,p) of every vertex
system, could we conclude that there exits the
contractively invariant set £&(P(a),p) of the whole
uncertain system (4)%

Lemma 2.2  If there exists &(P;,p) and H; €

R, satisfying é(P;,p) C Y(H;) , such that

P, *
[X[A;+B(EjF+E]HZ»)] XT+X—P,}>O’
vie [1M], jell 2] (9
Then we conclude there exist £&(P(a),p) and
H(o) , satisfying &(P(a),p(a)) C HAH(2)) ,
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such that
(A(e) +B(D,F+D; H(a)))"P(a)(A() +
B(D,F+D, H())) —
P(a) <0, Yje[1 2] (10
Hence, &(P(a),p(a)) is a contractively the
invariant set of system(4).
Proof Note that &(P;,p;) C Y(H;) , and also
by convexity, we have

M 1/ hij
> ai|:th P}>o, viellm] aD
i=1 ij i

M Pi
el

-1 LXA, +BMD,F+D;, H;))
It follows
|: Pl
X(A() +BD;F +D; H(x)))
Owing to X" +X—P(a) < XP' ()X,
it holds
|: P(a)

X(A() +B(D,F+D; H))

By Schur complement lemma, we have
(A(e) +B(D,F +D; H()))"P(a) (Ala) +
B(D;F +D; H(a))) —P(a) <0,
Ve[l 2m] (17

Eq. (13) together with Eq. (17) ensures that
E(P(a) sp) is a contractively invariant set of system
(D.

Lemma 2. 2 tells us the existence of &(P(a)p).
However, it” s unlikely to be easily constructed,
because we don’t know « exactly. Since

M
P, = {x: x"(D)aP)x<p),
i=1

i

and
M
NAH(a)) = {x : ‘ (Za;hj)x‘< 1, Vj €1 m]}.
i—1
We deduce

M
‘Dl g(Pm[O) _ S(P(a) ,(0) ’

and

HAH;) C XH)) .

k=

=1

M M
Denote ZQ[PI': :P(a> >Oa ZQ/{ Hi: -
i=1 i=1

H(o) , and let h;(a) denote the jth line of H(a) .
It yields

[ 1/p h_,-(a)}>o, viellm] a2
h () P2
Hence,

E(P(a)pla)) C Y H(a)) (13)

(9) leads to

*
) 0, Vje[1 2~ a4
o x_p O ViEn 2]
) J 1 2] (15
O, - m
X+ x—pl VI E )
. } (1 2~] (16)
0, ] "
xpoxtl Ve

Owing to &(P;,p) C Y(H;) , we also have

M M
) &P;.p) C) Y(H .

Then we have no choice but to choose a

M
smaller set Dl &(P;,p) in place of &(P(a),p) ) to be

the estimation of DoA. However, we will see that
it 1s still less conservative than Theorem 2. 1. The
optimization problem is transformed as:

sup A

P,>0,0>0, H,
s.t. () AXg C &P, Vie [1 Ml;
(b) (A, +B(D;F+D; H))"P,(A,+B(D,F +
D H))—P, <0,
ViellM]l,jell 27];
(o) &P.p) C AH), Yie [1 M.
By now, we are able to present a less
conservative estimate of DoA for system (4)
Theorem 2.2  Assuming Xz = co{x;, ***s X},
we could give an estimate of DoA for system (4)

by solving the following problem
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OP6 inf
Q;>0-Q.Z; i€ [1M]
¢ (6)[% * }>o Vee[ls], i€ [1M]
s.t. (a =0, ss 1 ;
Xy QT+Q—QM
(b6) [ Q. . }>o Vie 1M, jE[1 2]
’ 1 ’ 5
(AQ +BID,FQ+D; Z)) Q" +0—0, !
1 i
(CG)[T ‘ }20,1’6[1 M], ;€1 m].
ztj QI[

Denote the optimal value of y; as y¢ ., the
corresponding size of the estimate of DoA is given
by ys =1/ /VT

Proof The proof is omitted for its simplicity.

Remark 2. 1 It is noted that Theorem 2. 2
could cover Theorem 2. 1 by restricting Q = Q' =
Q1 » hence Theorem 2. 2 is less conservative. For

an ellipse reference set Xg = &R, 1), we only

L [R :
have to replace (a5) w1th[ I QJ , and (a6) with

[}/R 1
I Q0'+0—0

2.3 A numerical example

]>o, ie[1 M),

In this subsection, we consider the following
uncertain saturated systems.
xe+1) = ([1 I}Lg{o 1J>x</e>+[o'5Jsat<u</e>>l
0 1 1 1 1.0
u(k) = Fx (k) {
where the uncertain parameter & is unknown,
but belongs to the known range [0, 0. 25]. That
i poly-topic uncertain

is, the wvertices of the

system are

1 1 1 1. 25
T
0 1 0.25 1.25

We might as well choose Xy as a unit ball, i. e.
X =¢&,1); F=[—0.6167 —1.2703].

By solving Theorem 2. 1, we obtain that y;' =
0. 5021 , hence the size of the estimate of DoA isA$
= 1.4113 . The other parameters are

Z=[—0.6721 —1.2499],
B [ 12.8757 —4. 3482}
© L—4.3482  3.7290

By solving Theorem 2. 2, we obtain that y; =

0.4183 , which implies the estimate of DoA is
given by ¢ = 1. 546 2. The other parameters are

Z, =[—1.0777 —1.02217.

Z, =[—1.3645 —1.1612].
35.8653 —11.1976

- [—11.1976 6. 1421 }

55.2209  — 14, 6295

e L 14.6295  5.6224 }

26,8412 —7.9035

2 L 7.9035  4.9521 ]

Obviously, y¢ > 72 , hence we have obtained
a larger estimate of DoA for system (4) by
theorem 2. 2.

Finally, to further illustrate the effectiveness
of our results, we will consider the problem of
uncertainty tolerance. From the information
above, both Theorems 2. 1 and 2. 2 conclude that
the unit ball £&(I,1) is in the DoA of system (y; =
1.411 3 and ¢ =1.546 2) . Our aim is to find the
max value of € to keep the unit ball inside the DoA
of system (4). Then the result given by theorem
2.11is & = 0.449 42 , while theorem 2. 2 gives
& =0.476 25. Again, we see that the new result
obtained in the previous section is more effective in
coping with poly-topic uncertain systems with

actuator saturation.

3 Conclusion

A new method is presented to estimate the
DoA for saturated systems. Due to the fact that
the result does not involve any product by
Lyapunov matrix and the system dynamic matrix,

it provides more ‘freedom’ for system analysis.
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As an application, the new result is extended to
investigate uncertain saturated systems, and a less
conservative result is obtained. Future work is to

be focused on further conservativeness reduction.
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