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0 Introduction

Since the discovery that quantum error

correcting codes protect quantum information as
classical error correcting codes protect classical

information™', quantum error correcting codes

In Ref. [2], the

construction of binary quantum error correcting

have made great progress.

codes was taken from a classical binary self-

orthogonal code with respect to a certain inner

Received:2013-09-27 ; Revised : 2014-01-05

product. Since then, many good binary quantum
error correcting codes have been constructed by
using various techniques in Refs. [3-6]. With the
development of the theory of binary quantum error
correcting codes, nonbinary quantum error
correcting codes have received much attention.
Works on nonbinary quantum error correcting
codes are likely to become extremely useful,
shown, for example, by the proof of concept

implementation in certain ion trap models. Many
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nonbinary quantum error-correcting codes have product if C=C-. For a=C(ay>a;»***»a, 1) € R",

been constructed by using classical linear codes
over finite field F,"*. Recently. in Refs. [9-10],
nonbinary quantum codes were constructed from
cyclic codes over finite ring F, + uF; and F,+ uF,.
This motivates us to consider linear codes over F,
+ uF, to obtain good nonbinary quantum codes.

In this paper, we find self-orthogonal codes
with respect to symplectic inner product over F, as
images of cyclic codes over F,+ uF,. These codes
are used to construct quantum codes. This paper is
organized as follows. In Section 1, we give a
construct for quantum codes from linear codes over
F,+ uF,. We introduce a map from F,+ uF, to
F,%. Using this map, we derive symplectic self-
orthogonal codes over F,. In Section 2, we study
cyclic codes over F,+ uF,. and give a sufficient
and necessary condition for the existence of
Hermitian self-orthogonal cyclic codes over F, +
uF,. Then we construct quantum codes from the
codes. Finally, a

symplectic  self-orthogonal

summary of this result is given in Section 3.

1 A construction of quantum codes

Let g be a prime power and F, the finite field
with g elements. Consider the polynomial residue
ring R = F, [u]/{u)>, where u denotes an
indeterminate. The ring R is a finite chain ring
with maximal ideal {w). Structurally, R can be
expressed as F, + uF,, where « = 0. Given
n-tuples
a= Caprars* sdpri)s b= Cbysbyrssb4) € R,
their Euclidean inner product is defined as

a*b= ab +ab ++a .0, € R
Two wntuples a, b are called orthogonal with
respect to the Euclidean inner product if a « b=0.
A code over R of length n is a nonempty subset of
R", and a code is linear over R of length nif it is an
R-submodule of R". For a linear code C of length n
over R, the Euclidean dual code C' is defined as

C ={a€ F/|la+b=0forall b&e C}.

A linear code C of length n over R is called self-

orthogonal with respect to the Euclidean inner

the Hamming weight of a is the number of nonzero
components of a, we denote the Hamming weight
of a by wt;; (a). The minimum Hamming weight
of a linear code is the smallest nonzero Hamming
weight among all its codewords. Let «/=(alb) be
any element in F.", where a= Cays a1 ***» a1 ) »
b=Cbys bys *+, b,—1) € F;. Then we define the
symplectic weight of </ as
wts(of) = #{i| e Z0or b 720, 0 < i< n—1}.
For #/= (al b), 4= (d' | b) € F?", define the
symplectic inner product as
(AsB)s=asb —a «bE F,.
For a gqary linear code ¢ of length 2n, the
symplectic dual code ¢ ° is defined as
¢'s =€ Fr| (dyBs =0 for all 4 € €).

A q¢ary linear code ¢ of length 2nis said to be self-
orthogonal with respect to the symplectic inner
product if ¢S, We use the notation [[nsksd]]
to denote a quantum error-correcting code for n
qubits having ¢* codewords and minimum distance
d. Any [[ n, ks d]] quantum code must meet the
quantum singleton bound, i.e. , k<<n—2d+2. Ifa
quantum code attains this bound, i.e., k=n—
2d+2, it is called a quantum maximum-distance-
separable (MDS) code. The following important
construction of quantum codes was proposed in
Ref. [11].

Theorem 1 Let ¢ be a gary self-orthogonal
[2n, k] code with respect to the symplectic inner
product. Then there exists a gqary [[n, n— k. d]]
quantum code with

d = wits(€ *\'O) = min{wts(@) € ¢ >\,

Our goal is to construct gary self-orthogonal
codes with respect to the symplectic inner product
by employing linear codes over R. Observe that
each element c€ R can be written in the form c=
at ub, where a, b€ F,. We first introduce a map
from R to F,” given by $(c)=(alb). This map can
be naturally extended to R" as follows:

(1): Rﬂ*) FZn

q
C:(Coa Cls **° C;hl)*)

Cagsaps**s a1 ‘ bysbys=es b, 1)



% 34

Quantum codes from cyclic codes over ring F,+ uF, 201

where ¢;= a;+ ub; with a;,b,€ F, for 0<{i<<n—1.

For a linear code C over R of length n, it is
easy to verify that ¢ (C) is a g-ary linear code of
length 2n. Note that a+ ub= 0 if and only if
a=0b=0, so the map ¢ is a weight-preserving map
from R" ( Hamming weight) to F?" ( symplectic
weight). For ¢=a+ ub with a, b€ F,, define the
conjugation of ¢ to be ¢= a— ub. Given ntuples
s 1)y b=Cbys iy s b)) €ERY,
their Hermitian inner product is defined as

(asb)iy = aby+ ab + -+ a, 1b, 1.

Two mntuples a, b are called orthogonal with

a:(ao,al,"‘

respect to the Hermitian inner product if (a,b) y=
0. For a linear code C of length n over R, its
Hermitian dual code C' " is defined as
C"={a€ R'| Casb)y =0 for all b € C}.
The Hermitian dual of a code over R was
[ 12 ] to build unimodular

lattices, and a mass formula for self-dual codes

introduced in Ref.

over R with respect to the Hermitian inner product
was given in Ref. [13].

Lemma 1 If C is a self-orthogonal code of
length nover R with respect to the Hermitian inner
product, then ¢(C) is a g-ary self-orthogonal code
of length 2n with respect to the symplectic inner
product.

Proof Let /= (alb) and 4= (a'|b") be two
codewords in $(C). Then ¢c=a+ ub,c'=a'+ ub’' €
R". Since C is self-orthogonal with respect to the
Hermitian inner product, it follows that

(eycHy=Ca+ ub) » (a'— ub") =

a-a —uCa+b —a «b =0.
This gives that a » b’ —a’ + b=0. So we have
(A B)s=0, and /€ ¢(C) . Therefore,
$(0) = $(O)Fs. O

Observe that the map ¢ is a bijection.
Combining the above lemma with Theorem 1 we
get the following construction of quantum codes.

Theorem 2 If Cis a self-orthogonal code over
R of length n with respect to the Hermitian inner
product and contains ¢* codewords, then there
exists a qary [[ n,n—k,d]] quantum code with

d = wty(C "\ ) = min{wty(a) € C' "\C}.

From the above theorem we see that quantum

codes can be directly constructed by using
Hermitian self-orthogonal codes over R. In the
following, we will obtain Hermitian self-
orthogonal codes over R by employing cyclic codes

over R.

2 Cyclic codes over I, + ul,

Cyclic shift on R" is defined as
TCoscismsCrt) = (Cts st s G2 ) s

and a linear code C of length n over R is cyclic if
the code is invariant under the cyclic shift . We
identify a codeword ¢= (¢, ¢ ***s c,—1 ) and its
polynomial representation

) =g+ agat-+cia"".
Then xc(x) corresponds to a cyclic shift of ¢(x) in
the ring R[ x]/{a2"—1). As usual, a cyclic code of
length n over R is precisely an ideal of R[ x]/{x"—1).
Throughout this paper n is coprime to p. The
following lemma gives the structure of cyclic
codes.

Lemma 2% Suppose C is a cyclic code of
length n over R, then there are unique and monic
polynomials G, (2), Gy (a), G, () € F, [ «]
such that

C=(G (G (D) uGy ()G (1)),
where Gy ()G ()G ()= 2" — 1, and | C| =
ety | deetG)

It was shown that R[ x]/{x"—1) is a principal
[12-13]. We will give an

alternative generator for a cyclic code of length n

ideal ring in Refs.

over R as follows.

Theorem 3 Let Gy (x), G, (x) and G, (x) be
defined as in Lemma 1. If C is a cyclic code of
length n over R, then

C=(Fi(nDF (o) =
(G ()G (D) s UGy () G () ) s
where F;(x) € R[ x] such that
FF(oF (o F~(o0=2"—0+w,
F:(x) = G;(2) (mod w
for i=0,1,2. Moreover, |C|l=¢', where
t = 2n— (deg(F,(x)) +deg(F,(2))).
Proof Let F;(x)=G;(2)+ uH;(2) for some
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H. (€ F,[x], i=0,1,2. Since G,(x) and G, (x)
are coprime in R[ x], there exist a(x), b(x) €
R[ «] such that a(®) Gy (x)+6(2) G, (x)=1. Then
Fi(oF (o =
(G () + uH, (D][G () + uH; () ]* =
[Go() +2uH: () + ub(2) G () Hy ()] -
G ()G () + ua() H ()G ()G (D).
It follows that
(FICO Fi(0)) S AAG ()G () s uGo ()G ().
On the other hand,
uGo () Gy, () =
[Fo(x) —uHy () JP[Fo(2) — uH, ()] =
uFo () F(2) =— FA2( F (0 F (.
This shows uG, (1) G, () € (F; (2) F5(2)). Since
Gy (1) G, () and G, (x) are coprime in R[ x|, there
exist sCx),t(x) € R[ x] such that
() Gy () Gy () + ()G () = 1.
Multiplying both sides by G; (), we get G (x) =
()G in RLa]/(x"—1). Similarly, G, (x)=
t()GE(x) in R[ x]/¢(x*— 1), for some v(x) €
R[ x]. Computing in R[ x]/{(x"—1), we have
GG () = G () ()G (x) =
[Fi(x) —uH, () [ Fo(2) — uH: () J* =
() o() [ Fi(x) —2uH, (x) +
2F, (o) FE (o) Hy () JF () Fi (o).
This gives G () Gy () €E(F () F5 ().

Hence,
(Fi()F()) 2(G(0)G (1), uGo () Gy ().
The desired result follows. []

L4 each monic polynomial

By Hensel’s lemma
F;(x) has a unique decomposition as product of
irreducible  pairwise

monic  basic coprime

polynomials. Thus, a cyclic code of length n over
R can be written in the form C = <Hf,»(x)k1>,
i=1
where f;(x) (1<{i<{r) are monic basic irreducible
divisors of 2"— (14+ w) in R[ x] and 0k, <<2. To
study the dual of a cyclic code. we need the
following result. Its proof is similar to that of
Proposition 2. 12 in Ref. [157] and is thus omitted.
Lemma 3 Let
(o) = a+axtta, 2

b(x) = b+ b x+t -+ b 2" € RLx].
Then a(x)b(x) =0 in R[ x]/{x"—1) if and only if
(ays ais ***» a, 1) is Hermitian orthogonal to
(by1sbyss==sby) and all its cyclic shifts.

For a polynomial f(a) whose degree is t, the
reciprocal polynomial of f(x) is

(o = 2'f(x D).

So that the roots of f* (x) are the reciprocals of
the corresponding root of f(x). We denote by
fT(2) the conjugation of the reciprocal polynomial
of f(x),ie. [f(x)=[" (2. Let ¢ be a primitive
nth root of unity. Then it is easy to check that if ¢*
is a root of f(x) for some integer z, then f'(z)
has ¢ * as a root.

Theorem 4 Let C = ( [| () be a cyclic

i=1
code of length n over R, where f;(x) are monic
basic irreducible divisors of #"— (1+w) in R[ =],
and 0<<k;<<2, 1<{i<r. Then

C =[] Cffcans*o,
i=1

and |C "|=¢', wheret= Zk;deg fi(o).

i1

Proof Let
D= ([[¢ficon™ ) S RIal/an =1,
i1
a direct computation shows that

r

11 o] crican ot =
i1

i1
Il i o = ] o =
i=1 i=1

(" — A+ w)? =0,
Hence, D& C ". For each i, let a; denote the

constant of f;(x). Since 2" — (14 w) = H fito,
i1

we have H a; =— (14 w. It follows that each a;is

i=1

an invertible element of R and a; is a leading

coefficient of fI(x). For each i, let bi=a; ', then

H b, = HZLZ '=— (14w, and b, f](2) is a monic
i=1 i=1

polynomial. Thus,

T brico =] o] fico = 2" — A+ w.
i=1 i=1 =1
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We know b; /1 () also are monic basic irreducible
divisors of " — (1 + w) in R[x], so | D |=

d,;k’degf‘('r). On the other hand, from |C||CH|=
" we find that | D|=[C "[. Therefore. C"" =

S IRSHE Y O
i1

Let i be an integer such that 0<Ci <<n—1, and
let m; be the smallest positive integer such that

i¢""=i(mod n). Then C,= {i, ig,*, ig

the g-cyclotomic coset modulo n containing i. Let ¢

"Vis

be a primitive nth root of unity in F ., where m=
m;. The minimal polynomial of ¢ over F, is
m;(x) =ILiec (x—¢). Let I be a complete set of ¢-
cyclotomic coset representatives modulo n  For
each i€ I, let M;(x) be a basic irreducible divisor
of #» — (1 -+ w) in R[ =] such that M, () =
m;(x) (mod w). We note that if M;(x) is a basic
irreducible polynomial over R, then M| (x) is also
a basic irreducible polynomial over R, and if C; is
the set of zeros of m; (x), then C , = C, ; =
{—imod n| i€ C,} is the set of zeros of m' (). It
is easy to verify that M{(z2)=m!(x) (mod w).

Let [ ={i€ Il —i€ G}, L={i€ Il —i€ C;}.
From Theorem 3, we obtain that the generator

polynomial of C has the form
Mo ] M (oM ()

i€ i€ 1,
where 0<Cj;, k;» ;<< 2. In the following., we will
give a sufficient and necessary condition for the
existence of Hermitian self-orthogonal cyclic codes
over R.
Theorem 5 et
C= (][ M ][] MM (2
= i€,
be a cyclic code over R of length n, where 0<C
jiskis ;<<2. Then CE=C " if and only if j; =1,
ki+1,=2.
Proof Let
F(o) = [[Mi(o [[ M ()M (2,
= i€l
then
CH=(G() =
M7 [ Mo M5 (o).

ic 1y ic I,

For the code C,C=C' " if and only if G() | F(x),
comparing the indexes of G(x) with those F(x),
we can get the result. L]

To determine the Hamming distance of a
cyclic code C of length n over R, we associate the
code C with the torsion code of C: Tor(C) =
{x€ FZI‘| ux€ C}. The

determines the torsion code of a cyclic code over R,

following theorem

which is a generalization of Theorem 8 in

Ref. [9]. Its proof is similar.

Lemma 4 Let C = ([] f7(2)) be a cyclic

i=1

code of length n over R, where f;(x) (1<i<{r)
are monic baisc irreducible divisors of 2" — (1-+ w)
in R[ x] and 0<Ck;<<2. Then

D Tor(O=<]] g("), where g= f.(mod w

i=1
;=0 1if k,=0o0r 1, and ©.=1 if k;,=2.

@ du(O=du(Tor(O).

Combining Theorem 5 with Theorem 2., we
can produce the following construction of quantum
codes.

Theorem 6 et

C= ]I M [ M (M (2
€l i€,
be a cyclic code over R of length n with size ¢,
where 0<{j;, ki ;<<2. If j;=1,k+1,>2, and the

. . g
Hamming distance of C " is d, then a quantum

ks d]] can be

code with parameters [[ n, n —
obtained from C.

Example 1  Suppose that q is an odd prime

power. Let m=q— 1 and a be a primitive element
q 2

of F,. Thena"—1 = H (x—d) in R x]. Hence,
=0
a1

=+ w = H(x*(l* wa)in R[ x]. Let C

i=1

be a cyclic code over R of length m= gq— 1 with

generator polynomial

[a— (0 —w]la— 10— u)aLZ]]Z .
&1
H[x* (11— wadl* -
-

H[r*(l* wd Fla— A —wa 't ',

i=d
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where 1<Cd<<(q+1)/2.
By Theorem 5, C is a Hermitian self-

orthogonal cyclic code over R with size ¢"“ " and
d 1
C'v = ([[Lx—Q—wd]®.
i1

By Lemma 4, Tor(C ") isa[q—1,q—d,d] RS
code over F,and d(C ")=d. Applying Theorem 6
yields a [[q—1,q—2d+ 1, d]], quantum MDS
code.
Example 2 Consider cyclic codes over F; +
uF; of length 13. In (Fs+ uF) [ x],
=0+ w = fi() i) (0 f () fi(x),
where
folx) = (x— A+ w),
filoo=2>""—0—wxz—1,
D) D2+ A4+ wd—1,
fs(o) =2F"—A4+w—A—wx—1,
filto) =2 4+U0+ w4+ A —wa—1.
Let C={(g(x))={fo ()° f1 ()" f2 () f, (2)*).
By Theorem 5, CZ=C " and C "=<( f5;(2)?*). We

find that the Hamming distance of C " is equal to
3. From Theorem 6, a [[13,7,3]]s quantum code
can be obtained.
Example 3  Consider cyclic codes over F; +

uFs of length 11. In (Fy+ uF) [ x],

=04+ w = fo(o 1D (0,
where
folx) = a— U —w,
il =2—04+wd+7F—T—wa— A+ w,
fl) =2+ 01— wa*+

A4+ wd+ 22— A+ w.
Let C=(g(x))={(fo (0 fi(0)?). By Theorem 5,
C=C " and C'"=(f (2)?). We find that the
Hamming distance of c' s equal to 5. From
Theorem 6, a [[11,1,5]]; quantum code can be

obtained.

3 Conclusion

We have obtained symplectic self-orthogonal
codes over F, by virtue of cyclic codes over F,+
uF,. This enabled us to come up with a method for

constructing quantum codes. Some good quantum

codes have been constructed from cyclic codes over
F, + uF,.
computer algebra system MAGMA to find more

In future work, we will use the

good nonbinary quantum codes.
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