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The maximum Laplacian separators of bicyclic and tricyclic graphs
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Abstract: Let G be an undirected simple graph of order n, L (G) be the Laplacian matrix of G,
and p, (G)=p, (G) =++=pu, (G) be the eigenvalues of L (G). The Laplacian separator of G is
defined as S; (G) =y, (G) — p, (G). Here the maximum Laplacian separators of bicyclic and

tricyclic graphs of a given order were studied, and the corresponding extremal graphs were

characterized.
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0 Introduction

We consider only finite undirected graphs
without loops and multiple edges. Let G=(V,E)
be a simple connected graph of order n with vertex

set V=V(G)={v;.v,,*sv,) and edge set E=

Received:2016-03-14 ; Revised: 2016-12-29

E(G)={e;se5+*"ve,, ). Um=n—1+k, then G is
called a k-cyclic graph. Especially, if #=0, 1, 2 or
3, G is called a tree, unicyclic graph, bicyclic
graph or tricyclic graph, respectively. In general,
we denote a star, cycle, path of order n by K,

C,, P,, respectively. Denote K,,_, + se the
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special graph which is obtained from K,,_, by
adding s nonadjacent edges. Denote W, the special
graph which is obtained from K,,-, by adding 2
adjacent edges.

The degree matrix of G is denoted by D(G) =
diag(d (v,),d (vy), *+, d(v,)), where d (v)
denotes the degree of a vertex v in the graph G.
The maximum degree of G is denoted by A(G), or
A for brevity. The adjacency matrix of G is defined
to be a matrix A (G) =[a, ] of order n, where
a; =1 il v, is adjacent to v; , and a,; =0 otherwise.
The Laplacian matrix of G is defined by L (G) =
D(G)—A(G). The signless Laplacian matrix of G
is defined by Q(G) =D (G)+ A (G). Obviously,
A(G), L (G) and Q (G) are real symmetric
matrices. So their eigenvalues are real numbers and
can be ordered. Let A, (G) =2, (G) =++=4,(G)
be the eigenvalues of A(G). The separator of G is
defined as S, (G) =1, (G) — A, (G)HM, Let
11 (G) =, (G) =+++=p,(G) be the eigenvalues of
L (G). The Laplacian separator of G is defined as
SL(G)=p (G =y (GOHM | Let ¢, (G)=q,(G) =
<« =¢q, (G) be the eigenvalues of Q (G). The
signless Laplacian separator of G is defined as
So(G)=q,(G)—q, (GO,

Recently, the separator or Laplacian separator
or signless Laplacian separator of G has been
studied. Li et al."!' researched the maximum
(Laplacian) separators of tree, unicyclic graph. Li
et al.’” characterized the extremal graphs which
obtained the largest or second largest Laplacian
separators of connected graphs. You et al.l”
presented the extremal graphs which obtained the
maximum signless Laplacian separators of tree,
unicyclic, bicyclic graphs, tricyclic graphs.
Motivated by these researches, we study the
maximum Laplacian separators of bicyclic graphs,
order and present the

tricyclic graphs of =

corresponding extremal graphs respectively.
1 Preliminaries

Lemma 1.1'"  Let G be a simple nontrivial

graph of order n, H=G —e be the graph which is
obtained from G by deleting the edge e. Then
11 (G) = p (H) = p (G) =
po(H) = o = 5, (G) = p, (H).
Lemma 1.2 Let G be a simple graph of
order n, then

21 (G) < max{d(v;) +m(v)},

1<=i<n

d('U]‘)

where m (v;) =
' d (v;) viv, EEW

Suppose we have two graphs G, and G, (where
V(G,) and V(G;) are disjoint) with v, € V(G,)
and v, €V (G,); the coalescence of G, and G, with
respect to v; and v, is formed by identifying v, and
v, and is denoted by G, * Gy.
VG, » GH=VGHOUVGHU{v ) —{v, vy},

with two vertices in G, * G, adjacent if they are

In other words,

adjacent in G, or G,, or if one is v~ and the other
is adjacent to v; or v,

Let L, (G) be the principal sub-matrix of
L (G) obtained by deleting the row and column
corresponding to the vertex v of G. Denote

P(Gi;x) =det(x] —L(G)),
D(L,(G);a) =det(x]l —L,(G)).

Lemma 1.3 Let G, * G, be the coalescence
of G, and G, with respect to v, and v, as defined
above. Then we have

DG, » Gy 2) =DP(Gy; )DL, (G x) +
D(Gy; )P, (G sx) —
x®@(L,, (G); )DL, (Gy); x).

For convenience, we give some formulas in
the following.

(K, ,sx)=x(zx—n—D@—D"",

oL, (K, ;x))=(—1)" } (1)
where v, is the center of K,.,.

D(Cy32) =a(x —3)7,
P(L,, (Cy32)) =(x—D(x— 3)}

(2

Ky pit2e W,
Fig.1 All bicyclic graphs of order n with A=n—1
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where v, is one vertex of Cj.
Let K,, . +2¢ and W, be the
bicyclic graphs in Fig.1, n=7, then
S, (W,) <SS, (K, 1+ 2e)=n—3.
Proof @ K,, . + e can be seen as the

coalescence of C; and K, ,—; with respect to v; and

Lemma 1.4

v, s where v; is one of the vertex of C,;, v, is the
center of K, 5. By Egs.(1), (2) and Lemma 1.3,
we get
DO(K i,y tesx)=x(x—1D"*(x—3)(x—n)
(D)
@ K., 1 +2e¢ can be seen as the coalescence
of C; and K, + e with respect to v, and v, .
where v, is one of the vertex of C;, v, is the
vertex of K., te with d (v,)=n—3. By (3) and
simple calculation, we get
K, steix)=aax—D"""(x—3D@—n+2),
DL, (K, ;+e)x)= (x—D""(x—3)
where v, is the vertex of K,,, ; T e with d (v,) =
n—3.
By Egs.(2), (3), and the above equations,
and Lemma 1.3, we get
DK, 1 +2e;2)=a(x—3)(x—D""(x —n).
Sos i (K, +2e)=n, p, (K, +2¢)=3,
and then S; (K., ; +2e¢)=n—3.
@ W, can be seen as the coalescence of W, and
K ,.,—, with respect to v, and v;, where v, is the
vertex of W,with d (v,) =3, and v, is the center of
K,.,—,. By simple calculation, we get
OW,;2) =a(x —2)(x —4)*,
(L, W)sx)=(x—D(x —2)(x —4)
where v, is the vertex of W, with d (v;)=3.
By (1) and Lemma 1.3, we get
OW,52)=x(x— D" " (x—2)(x —4d(x—n).
So, 1 (W) =mn, p, (W,) =4, and then
S, (W,)=n—4. Thus the result follows.
Lemma 1.5 Let Gy, G,,» Gy, » Gy, s Gs, be
the tricyclic graphs in Fig.2, n=9, then
S1(Gy,) < S (Gy,) < S (Gy,) =
S1.(Gs,) < S (Gy,) =n—3.
Proof LetG,.,G,, G;, G,, G; be the graphs
obtained from G, , G, s Gs,» G,,» Gs, by deleting

PR
< A

Fig.2 Al tricyclic graphs of order n with A=n—1

FANtGavEviv;
@ A

Fig.3 The graphs obtained from Fig.2
by deleting the pendent vertices

pendent vertices (see Fig.3). G, can be seen as the
coalescence of G, and K, ; with respect to v, and
v, , where v, is the vertex of G, with d (v,) =6,
v, is the center of K, ,—;, namely G,, is G, *
Ki..—7. Gy, can be seen as the coalescence of G,
and K,,—¢ with respect to v, and v,, where v, is
the vertex of G, with d (v,) =5, v, is the center of
K,.,.—s» namely G,, is G, * K,,_¢. G, can be seen
as the coalescence of G5 and K, ,,—; with respect to
v, and v,, where v, is the vertex of G, with
d(v,)=4, v, is the center of K,,_5, namely G,
is Gy * Ky, 5. G,, can be seen as the coalescence
of G, and K, ,—5 with respect to v, and v,, where
v, is the vertex of G, with d (v,) =4, v, is the
center of K,,—5, namely G4, is G, « K,,—5. Gs,
can be seen as the coalescence of G; and K, _,
with respect to v, and v, , where v, is the vertex of
G; with d (v,) =
namely G5, is G5 * K, ;.

By calculation, we get

O(Gix)=x(x—D*(x—3)(x—T7),

3, v, is the center of K, , ;.
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DL, (G sx)=(x—D*(x—3)°,
where v, is the vertex of G, with d (v,)=6;
P(Grix)=x(x— D —2D (=@ —Da—6),

DL, (Gysx)= (x—D*(x—2(x—3)D(x—4d,
where v, is the vertex of G, with d (v,)=5;
D(Gss2) =x(x—3)(x—5) (x> —6x+7),
DL, (Gsx)=(xr—D(x—3N*—6x+7),
where v, is the vertex of G; with d (v,)=4;
D(G,3x) =a(x —2)"(x —5)7,
DL, (Gsx)=(xr—D(x—2)(x—5),
where v, is the vertex of G, with d (v,)=4;
D(Gysx) =a(x—4)°*,

DL, (Gysx)=(xr—D(x—4)7,
where v, is the vertex of G; with d (v;)=3.

By (1) and Lemma 1.3, we have
O(Gsx0)=x(x—D""(x—3)(x—n),
then (G =n, p:(G,)=3, S;. (G},)=n—3;

D(Gyy5x) =
a2(x—D" (=2 —3)(x—D(x —n),
then ) (Gy)=n, u: (G ) =4, S, (G,,)=n—4;

D(Gs,52) =
2z —D"" (=D& —6x+T(x—n),
then /1, (Gy,)=n. 1,(G3,) =342, S, (G;,) =

n—(3+42);

D(Gysa)=a(x—D" " (x—2)(x —5)(x—n),
then p, (G =n, p:(G,,)=5, S, (G,,)=n—5;
D (G, 520) =a(x — D" " (x —*(x —n),
then p (Gs,)=n, u:(G;,) =4, S; (G;,)=n—4.

So,
Si(GL) < S (Gy) < SL(Gy,) =
S1(Gs,) < S, (Gy,)=n—3.

2 Main results

The girth of graph G is the length of a
shortest cycle in G, denoted by g (G). Denote by
B(n) and T (n) the sets of bicyclic and tricycle

YARVAN

F F, F;

Fig.4 All unicyclic graphs G of order 5 with g(G) =3

graphs of order n, respectively. G’ is a subgraph of
a graph G such that V(G) SV (G), E(G)H <
EG). HV(G)=V(G), we call G' a spanning
subgraph of G. Suppose we have two graphs G,
and G, (where V(G,) and V (G,) are disjoint),
denote G, U G, the graph with V (G, U G,) =
V(GHUVI(G,) and E(G,UG,) =EG)UE(WG,).

Theorem 2,1 Let G be a graph in B (n)
(n=11), then S (G)<S, (K, 1 +2¢), and the
equality holds if and only if G=K, | +2e.

Proof Let G be a graph in B(n) (n=11). If
A(G)=n—1, then G=K,, | +2e¢ or W,. By
Lemma 1.4, the result follows.

Next, suppose A (G)<<n — 2, we will prove
that S; (G)<<S (K, 1+2e).

If AG)<=n—2,

Assertion 1

5
(G <14,

Let u€V(G), and
d(u) +m(u) = max {d(v) +m(v)}.
veV(IG)

When d (u)=1,
m(GH<IHAGH<1+n—2=n—1.
When 2<<d (u) <n — 2. By Lemma 1.2,
we get
11 (G < dw) +mu) <
2n+1D —dw) —n—1—dw))
d(u)

n+3
du)’

n+3

X

du) +

d(u) +

Let f(x)=x+F LI x>0, () =0,

then f(x) is a convex function. So,

#xG><HM%2+"+3,n—2+"*3}=
2 n—2
5
n—1+7172 )
Thus, if A(G)<n—2, we have
5
#1(G)<n—1+ .
n—2

Assertion 2 If A(G)<<n—2, p,(G)> 2.6.

When g(G)=3, oneof F,Un—5K,, F,U
(n —5)K, and F; U (n —5) K, must be the
spanning subgraph of G, where F,, F,, F; are
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given in Fig.4. With calculation, we get
w2 (F) =3, po(Fy) =3, p, (Fy) > 3.6 (5)
By (5) and Lemma 1.1, we have
22(G) = min{u, (F, U (n —5)K,),
po(Fyo Ut —5)K ) p(Fy U (n —5K )} =3
(6)
When g(G)=4, P; U (i —5)K, must be the
spanning subgraph of G. Because p, (P;) >2.6,
and by Lemma 1.1, we have
p2(G) = py, (Py) > 2.6.
Thus, if A(G)<n—2, we have p,(G)> 2.6.
According Assertion 1 and Assertion 2, we
have that
SL(G) = (G) — p, (G) <

n*1+if2.6<n*3,
n—2

when A(G)<<n—2.

By Lemma 1.4, S, (G)< S, (K, T 2¢),
when A(G)<{n —2. Then the result follows.

Theorem 2,2 Let G be a graph in T (n)
(n=14), then S; (G) < S, (K., 1 +3¢), the
equality holds if and only if G=K, -, +3e.

Proof Denote K,,—,+3¢ by G,,. Let G be a
graph in T(n) (n=14). f A(G)=n—1, then GE
{(Gi,» Gos Guwy Guys Gs, ). By Lemma 1.5, the
result follows.

Next, suppose A (G)<<n — 2, we will prove
that S, (G)<<S, (G,,).

If A(G)=n—2,

7
n—2

Assertion 1

Let u€V(G), and
du) +m(u) = max {d(v) +m(v)}.

vEVIG)

When d(u)=1,
G <L1+A G 1+n—2=n—1.
When 2<<d (u) <<n — 2. By Lemma 1.2,
we get
21 (G) < dw) +mu) <
2n+2)—dw) — i —1—dw))
d(u)
n+5
du)’

d(u) +

d(u) +

n—+5

x

Let f(x)=x+F x>0, () =0,

then f(x) is a convex function. So,

#1(G)<maX{2+n+5, n—2+”+5}=
2 n—2
7
n_l+n—2'
Thus, if A(G)<Xn—2, we have
7
i (G)<n—1+ .
n—2

Assertion 2 If A(G)<<n—2, 4, (G)> 2.6,
When g(G)=3, oncof F;,Un—5K,, F, U
(n —5)K, and F; U (n —5) K, must be the
spanning subgraph of G, where F,, F,, F; are
given in Fig.4.
By (5) and Lemma 1.1, we have
22(G) = min{u, (F, U (n —5)K ),
po(Fyo U (n —5)K ) p (Fy U (n —5)K )} =3.
When g (G)=4, P; U (n—5)K,; must be the
spanning subgraph of G. By u, (P;) > 2.6 and
Lemma 1.1, we have
p2(G) = py (Ps) > 2.6.
Thus, if A(G)<n—2, we have p,(G)> 2.6.
According Assertion 1 and Assertion 2, we
have that
S1L(G) = (G) — 1, (G) <<
7
-
when A(G)<n—2.
By Lemma 1.5,
SL(G) << S (Gy,) =S, (K, +2e),
when A(G)<{n—2. Then the result follows.

n—1-+
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