H4THH W ¥ B8 #4 2 £ A * & 3 4 Vol.47,No.9

201749 JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Sep. 2017

BG4S . 0253-2778(2017)9-0729-04

A weak-L” Prodi-Serrin type regularity criterion
for electro-hydrodynamics

SHAQO Guangming
(School of Mathematical Sciences s Anhui University, Hefei 230601, China)

Abstract: Regularity criteria for weak solution of the electro-hydrodynamics was studied. It was
proved that the solution (u.n,p,¥) remains strong on [0, T ] if « €L (0, T;L""(02)) or
[l o2y <<C. where (3/r)+(2/s)=1 and r € (3,20], C>0 depending only on r
and (.

Key words: electro-hydrodynamics; regularity criteria; weak solution; strong solution; weak-
L* functions

CLC number:0175.2 Document code: A doi:10.3969/j.issn.0253-2778.2017.09.003

2010 Mathematics Subject Classification: 76103

Citation: SHAO Guangming. A weak-L* Prodi-Serrin type regularity criterion for the electro-hydrodynamics[]J].
Journal of University of Science and Technology of China, 2017,47(9) .729-732.
A8, electro-hydrodynamics A2 55 L’ Prodi-Serrin B 1E N W [J]. b [ B} 25 4 R K223,
2017,47(9):729-732.

electro-hydrodynamics 52 HJ55 L’ Prodi-Serrin £ IF I #E N

# 6 A

CEBRFECF B2 B, AT 230601)

BWE.£ZH R T electro-hydrodynamics 7 A2 33 f# a9 E W AR, ERA T EAEMH « €L (0, T;L7"(Q)) K
lwll oo miran <<CHFG/H+@2/H)=1 LrEB,0], C=CGr.Q>0TF, BHHLEXE[0,T]L

A, A iR AR,
X H217 : electro-hydrodynamics; EE R £ W) ; B3 ; 3R ;35 LY 32 %

: dut(us Vu—~Lu+Va=A¥"vwe,
0 Introduction u+ (u u u T

v *u :O ]

Let QCR ° be an open bounded domain with om+ (u Vin=diviVn —anV¥),
smooth boundary 90 and let T >0 be fixed but O.p+ (u s V)p=diviVp —pV¥),
arbitrary. We investigate the following form of —A\¥=p—n
electro-hydrodynamics in the QX (0,T) with the initial conditions
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(wsnsp) |io =Cuosngsp) (), x € 2 (2)

and boundary conditions

Cusnsp) lageo.r =(0,0,0) (3)
where u,m,n, p, ¥ represent, respectively, the
velocity of the electrolyte fluid, the pressure,
anion concentration, cation concentration and
electrostatic potential.

Over the past decades, this model has been
widely studied by many authors, see Refs.[2-7],
to name but a few. A detailed analysis of the model
was given by Ryham et al. in Ref. [1]. In
particular, Zhao and Bai have given the existence
of the strong solution to this model on [0, T ] if
wu€L" (0, T;L "(2)) in Ref. [4], where (r,s5) is a
Prodi-Serrin pair, namely, (3/r)+ (2/s)=1 and
r€(3,00], s€[2,90). In Ref.[ 8], when ¢ =0,

the existence of a strong solution to (1) on the

whole interval [0, T ] is guaranteed if u €L (0, T ;

, 2
L™ (R *)) with *+§=1, 3<r<+o0 or Vu€
s

\ 2
L0, T;L" (R *)) with T+%:l’ %<r<+oo

In this paper, we aim to prove that the weak
solution of this model is strong on [0, T ] if
w € L0, T;L ()
or
lall o ore @ <C,
where C>>0 depending only on » and Q.
Our main results are the following.
Theorem 0.1 Let(u,n,p) with
w € L7, T:L W) N L0, T:H §,4,(2)),
(n,p) € L7, T;L*(2)) N L*0.T;H{(Q2))
be a weak solution of the system (1) with initial
data o € H §.4.(Q2)s Giyspo) €EL*(Q) and 1y, po
=0. f u€ L (0, T;L " (2)) for some Prodi-
Serrin pair (r,s). Then (u.n,p) remains strong
on [0,T].

Theorem 0. 2 Assume u, € H §.4,(2),
(ng»po) €L*(Q) and ny,po=0, and let (u,n,p)
be a weak solution of the system (1) with initial
data Cugs posno,). There exists a constant C >0
depending only on r and . such that if

el o wrw@ <C

for some Prodi-Serrin pair (r,s), then (u,n,p)
remains strong on [0, 7T ].

In Section 1, we provide some preliminaries.
Section 2 is devoted to the proof of our main

results.

1 Preliminaries

For p €
[1,°0), we denote the weak-L” () spacel’ by
L7 (2), and we set

I, =SE}?f[/x<x €| f)[>ep]7,

Let 2 be an open subset of R ".

where p is the Lebesgue measure.

Let '={v€&€C ;7 (Q2):div v=0}, the closures
of ¥in the norms of L*(2) and H () is denoted
by L*w(2) and H §.4.(2),
denote by P the orthogonal projection onto
L 3,(Q2) and A=—P/\ the usual Stokes operator
with domain

DAY =H ... (2) N H*(D).

We will give the following lemma which is

respectively. We

serviceable for us to prove the main results.
Let u € H ! 0o (2)NH2Q)

be given, and (r, s) be a Prodi-Serrin pair,

Lemma 1.1’

2
namely, r€ (3,90] and s €[2,90) satisly %+T:

1. Then
e Vull, <<C, Ml |V wll5 | Au 5.

2 Proofs of the results

In this section, we will give the detailed
proofs of the main results. For simplicity, C can
denote the different positive constants in the sequel.

The proof of Theorem 0.1 Taking the inner
product with n (resp. p) in (1);(resp. (1),) and

using (1),, we have

1 4
L d 2%+ HVn‘|§:JnV‘I’°VndI
2 dt

(€Y
1

sl IV pli=—] pVE -V pda

d
de

(5
According to (4), (5) and (1)5, we

can conclude
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1 d , ‘ ; )
S I+l 1D+ Vali+ 1V el =
JnVW-VndI*JpVW-Vde:

. 2 .
J(*A\If) 1 21) dJTZ*J[)—Z‘_n(p*n)zdx.

Thanks to Ref.[1], we have n, p=0 in 2 X
(0,T), then

d 2
g1l 5+

20 Valli+IIvplis) <o (6)
Applying Gronwall’ s inequality to (6),
we have
| Grsp) | Lo corirzaannizorimar < C - (7)
Applying the standard elliptic regularity
theory to (1); and using (7), we have
H W H Le=(0. T H2))NL20,. T;H3(2)) < C (8)
Applying the operator P to (1),, we have
Q,ut+Au—+Pl(u+ V)ul=P[ATVY¥] (9)
Multiplying (9) by Au

1 d : 2 _
LTl A s =

(10)

; ; 2C,
IV wle) | ¢ | v Uo l s+C | 7| 1,2<o.T;H3>)eXp<\%(

; 2C,
Vo 12+ C T e exp(=—

Due to the fact that u € L* (0, T3;L "7 (2))

and estimate (8), we can get
u € L7, T;H §.40(2)) (14)

To prove Theorem 0.1, we argue by contradiction.
Suppose that the solution remains strong only on
[0, T, with T"<<T. But if [0, T is the
maximal interval for the existence of the strong
solution, then

I Vu@ o4 a4+ T p@ I, +

| o) || g >0, ast — T,

However, (7), (8) and (14) guarantee that
the solution must be strong on [0, T ].

The proof is completed.

The proof of Theorem 0.2 The idea of the

From Lemma 1.1
| (P[(u s V)ul,Au) | <
e Vull, [Aull, <
Collull o I Va3 [ Au ] 572 <

%iG%BWWuMWHVuM+%HMH§
a1y
| (PLIATYVY ], Au) | <
ln—pl I Vel Aall, <
Clvel. lAul,<

|
CHVWH&+IHmW§<

, 1 ,
CH\PH ?1:%+IH Au Hé (12

Using (11) ~(12) on (10), we can get the

differential inequality

d ) )

d—HVuHEJr | Au |l <
t

2C, s - :

— (" e IV sHCl vl s

A Gyoum sd lulsc IV alli+Clwlh
(13)

By Gronwall’s inequality, we have

e o
o) Tl do) <

;)HJT I wio) | - do)
4(s —1) , Nuto)lly.edo).

following proof comes from Ref.[ 9] (see also Ref.
[11 D where the authors studied the weak-L?
Prodi-Serrin type regularity criterion for the
Navier-Stokes equations.
For >0, let
35+ 34 —s)
TS —24+c4—3s) v

then (r..s.) is a Prodi-Serrin pair.

) +((4_5)9

Through a standard interpolation
Fa e < a0 a6 <
Clul: 20V ol
Using this inequality in (13), for (r ,s. ) it
follows that

d ‘



732 TEAFERARAXFFIR

%47

0l g+

2CC,, S, s |
s, 4G —D “

Cllwlis.
By Gronwall’s inequality, we have
I VulH 15 < I Vuo I3 +C I erns +

2CC,. s, I
s, 4(s. — 1)

ﬁ | u (o)
0

Set k ()= | u
k(t)EL"(0,T) and

[0 || Vu(o) || #7%do (15)

‘o for t €10, T]. Then

(ﬁ k" (6)do =

(1 —oj'”aw{f € [0.T]ik () > oldo <

0

oo 1
T +c1—0 |« IJ ——do =
1 O
TH+A—=0O el .. (16)

Let

() = | Vu, |
2CC,, s,

[4(5( —D
then we can conclude || Vu (o) || $<<¢(2).

% _'_C 4 H L2(0.T;H3) +

1=sc
} J ) || Vulo) || 1%ds

S, 0

From (15), it follows that

, ZC((:,,L S, b . 2
gb(z‘)z 5—[4(SS_D:| Kl((l‘/) H YVult) H é(‘“g
20C. [ s ]
5 [4( ' 1)} KDY ().
;. 5, —

Thus, by (16)
G0 — ¢ () <
4.CC, s e
¢ : {4( ' 1)] j k' (6)do <
s, — 0
1CC, 5.
4(s, — 1)
4(1—0o) CC, s, e
4(s, — 1) Il
Let 6>>0 such that

e e e
s, 4(s, — 1D e )

Choosing ¢ > 0 sufficiently small that ¢~ (0) >

S,

1—s¢
| e

S

S,

S

— D

4.CC,
1 *69 d -
o {4(5‘(

s,

1—s¢
| r<s.

We have ¢ ()<< ", Yt €[0,T]. Due to
| Vu(o) [[7<<¢ (1), we have || Vu (1) [|§ <<
5V, t&€ [0, T]. Namely, || Vu () [} is
bounded on [0, T]. Similarly as in the proof of
Theorem 0.1, we can conclude that || n (¢) |,
@ Iy | ¢ Il e is bounded on [0, T].

The proof is completed.
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