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Abstract: A bivariate rational bicubic interpolating spline (BRIS) with biquadratic denominator
and six shape parameters was constructed using both function values and partial derivatives of the
function as the interpolation data in a rectangular domain. The C' continuous condition of BRIS
was discussed. Some properties of BRIS such as symmetry were given. BRIS was proved to be
bounded and its error was estimated. In the end, a numerical example was given to illustrate the
effect of the shape parameters on the shape of BRIS surface.

Key words: bivariate rational interpolating spline; shape parameter; bounded property; error
estimate; symmetry

CLC number:0241.5; O231.1  Document code: A  do0i:10.3969/j.issn.0253-2778.2017.03.002
2010 Mathematics Subject Classification: 65D05

Citation: WANG Dongyin. TAO Youtian. A C! bivariate rational cubic interpolating spline[[J]. Journal of
University of Science and Technology of China, 2017,47(3) :204-213.
AR B HE. —Fh C' LW Zon A B S S E A &L P EBIERE R R %M, 2017,47(3)
204-213.

—f C' EEHN _ BB =M HEEES
E%%ﬁlﬁg@ﬁmlﬂd

(L. B2 e B B~ B LR 2380005 2.7 [ BL A2 ORI BURRR 728 BE B L 2300265 3. Z RURT IR MM , 22 BUA A 238076)

FE. A ALK BRAAFRAEABEARE HET —HF 6 ABREAK 2T AR KH =T
HEZREBHE TR TEC EL L4, LR T H oA — W F, EWTEARRAETIEES
M. RIGHET —ANHAEH T30 T Bk A Aot T o @ A ik 69 A 201,
KB A = RAGEAH 5 R AR AT 3R 2463 AR

Received: 2015-04-04 ; Revised: 2015-09-30
Foundation item: Supported by the Nation Natural Science Foundation of China (11472063), the Provincial Natural Science Research
Program of Higher Education Institutions of Anhui Province(KJ2013A194, KJ2013Z230), Anhui Province Colleges and
Universities Outstanding Youth Talent Support Program(gxyqZD2016285).
Biography: WANG Dongyin, female, born in 1978, master/associate Prof. Research field: Applied mathematics.
E-mail: chaohuwdy@163.com.
Corresponding author: TAO Youtian, PhD/Prof. E-mail: taoyt18@ustc.edu.cn.



% 34

A C! bivariate rational cubic interpolating spline 205

0 Introduction

The construction method of curves and

surfaces and their mathematical description is a key
issue in CAGD. There are many ways to deal with

U131, such as the polynomial spline

and NURBS
method. These methods are applied widely in the

this problem

method, Bézier spline method
shape design of industrial products. Some spline
methods are interpolating cases, where local shape
can not be modified for the interpolating surfaces
while interpolating data is unchanged. Some spline
methods such as NURBS and Bézier methods are
no-interpolating cases, that is to say, the
constructed curve and surface do not fit the given
data and the given points are the control points.
Therefore, when we construct the interpolating
functions required for CAGD. we should consider
not only the expressions of interpolating functions
are simple and explicit, but also the parameters of
constructed curves and surfaces can be modified
without changing the given data.

Recently, there has been many worksH*?!
about univariate rational spline interpolation with
parameters. Some univariate rational spline
interpolations are generalized to bivariate cases,
whose expressions with parameters are simple and
explicit. Some interesting results are presented. In
Refs. [ 22-28 ], the authors constructed several
bivariate spline interpolations over rectangular
mesh, and derived some properties such as the
sufficient conditions of down-constraint and up-
constraint for the shape control, the matrix
expression, bounded property, stability, convexity
control, the preserving positivity.

In this paper, motivated by Ref.[25], we will
construct a kind of bivariate rational bicubic
interpolating spline with biquadratic denominator
(BRIS) and six shape parameters in a rectangle
domain. The definition of BRIS presented and the
effect of the parameter choice on the curve shape
discussed in Section 1. The sufficient condition that
BRIS is C'

continuous in Section 2. Some

properties of BRIS such as the symmetry is
discussed in Section 3. The bounded property is
proved and the error of BRIS is analysed in Section
4. A numerical example is given to illustrate the
effect of the shape parameters on the shape of
BRIS surface, and comparison of our error with

that from Ref.[25] is given in Section 5.

1 Rational interpolating spline

Let D be the rectangular domain [a sb;¢,d |,
{(fl',"yi’f-ij’f‘?j9f‘?;)’l':1v27'"57l+1;].:192,
««,m+1} be a given set of data points, where a =

<, <l <x, :b;i':y1<yz<"‘<ym+1 -

d. Set
L :f(l'ivyj)’f’ij:a— ’
x (1‘,,y‘)
Y ay (xisy)) ’
hi =xi — x50, =y;11 — y;.

Denote D;; =[x;»x;+13y,+3;+1 J. For any point
(x.y)ED, let
0= —x)/h;,sp=( —y,)/L;.
For each y;, j=1.2,--.m+1, we construct
the x-direction interpolation curve as follows
by ()

P (x) ="

i =1,2, =, (D
qi; (x) ' "

where

pia)=a) f,A—0°"+V:0(1—0*"+

Wi0°(1—0)+ fi,750°

g;(x)=a; A= +p;00 —0) +7;0°

and
Vi =Cay + i) 5 +hiag i
Wi =5 T Yi)fims —hiYy fia,

with a; 8 »7;; positive. One can prove that

P (x)=Ff,; P, (x)=Ff5r=i.i+1

The interpolation Eq.(1) is called the rational
cubic interpolating spline based on function values
and derivatives. It is clear that the interpolation is
local in the interval [x;,x:y, ] and depends on the
shape parameters aj; ,8; 7 .

It is interesting to note that the interpolating
spline Eq. (1) becomes a standard cubic Hermite

spline with the values of the shape parameters
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a;=1,8; =2, 7v; = 1. We now illustrate the
mathematical and graphical effect of the shape

parameters a,, » 8;; » ¥; on the shape of a curve.

The three {free can be exploited

properly to modify the shape of curve according to

parameters

the designer’s choice. We rewrite Eq.(1) as follows:

01;;‘ (1*0)2<f;/ +ff] hie)_"ﬂi;ﬂ(l*@)(f,](l*@) +f,+1.j‘9)+7,;02(fi+1,1 *hi(lfa)f}lfl.j)

P, (2) =

By the computation for Eq.(2) we have the

following formulas:

lim P, (2) = f, +h,f50 (3)

ai —>oo

lim P (a) =f,(L—=0)+ fr0,0 (D

Bij
711rnP] () =fi,;, —h: fin,A—0) (5)

\K;e can see from Egs. (3) ~ (5) that the
increase in the shape parameter «, , 3;; or 7;
reduces the rational interpolation spline Eq.(2) to
three different straight lines. According to data
points in Tab. 1, by choosing different shape
parameters, we can observe the corresponding
shape changes of the interpolating curves in Fig.1.
The curve in Fig. 1 (a) is a cubic Hermite
interpolating spline. FEach piecewise curve in
Figs.1(b) and 1(c) incline to a line segment. Each
piecewise curve in Fig.1(d) tilts heavily to the left-

hand side.
Tab.1 Data points

i xz; fi fi

1 0 2 5.6
2 0.25 0.6 —2
3 0.5 0.1 0.06
4 1 0.13 1.74
5 1.5 1 —1
6 2 0.5 1.2
7 2.5 1.1 —1.7
8 3 0.25 —0.05
9 4 0.2 0

We now use the x-direction interpolation
P[j(l')’izlvzv"' ,erl to
construct the BRIS in D. Denote D, =[a;,2,4;

yn—1lsm=1,2,

Visyi1]s i=1,2,,n,j=1,2,*+,m and

a, (1—0) +p;0(1—0)+7,0°

(2)

1
L) =00,y o ) i ss =041 (6)
r=0

where
000y ;1) =
(1 *9)2(0(,%,1'#\ + B0
al i (1= +B,.000—0) +7.,,.0°
01 o, ',*.j+.\-) -
i B0 — 0))0°
@ (1= + B0 —0) + 7,07
It is clear that
Fires (i) = oo flirs (2 =007 05 =0.1.
For each pair (i,j),i=1,2,,n;5=1,2,-,

m, we define a bivariate interpolating spline
P, (xsy) in Dj; as follows
P,‘,‘(Jz?,y)=7pij(x’y) 7
q;(xsy)
where
pi(xsy)=a; P () —n°" +Vp(1—np?*+
Wiy (L= + 757" Pl ().

g (xsy) =a,; (1 —° +Bup(1—9) +7,7°

and
Vi, =Ca; +B)P;(x)+lia; f;(x),

W, =B +7i )P n(x)—L; vy fim(x)
with a;; »f3;; » 7, positive. P;; (x,y) is called a BRIS
with a bi-quadratic denominator. We can easily
prove that

aP;i(.Tvy,>
o

Meanwhile, it is clear that P, (x,y) satisfies the

=fi(x)s=j,5+1 (8)

interpolating conditions
P,(x,,y)=f(x,,y,),
oP ;i (x,,y,) .
Y =1
8P,J (1‘, ’y,\)

= r=isi+1les=j.j + 1.
y
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The piecewise function Eq.(7) on D,; is unique.
We remark that if we choose a;; =a=1,p, =
B=2,v; =v=1, P; (x,y) becomes a bicubic

Hermite spline.

2  Smoothing conditions

For each y;.j =1,2, -, m + 1, from the
definition of P, (x,y), we can see that it is C'
continuous along the x-direction. Similarly,we can
see from Eq.(8) that P,; (x,y) have a continuous
first-order partial derivative oP;; (x,y)/0 in D. So
it is sufficient for P; (x, y) € C' in D if
OP,(x;+., y)/ox=0P,—,,; (x;, —, y)/Ox holds.
We then have the following theorem.

Theorem 2.1 BRIS P, (x,y) is C' in the

whole interpolating region D if the parameters

a; 1., =a;sBi1.;=PisYi1;=7;loreachj,j=1,
2, ,mandall i=1, 2, == , n.
Proof Based on above discussion, we only

need to prove that

oP; (x; +,3) 78P,‘71,] (x; =)

ox ox 2

A N
]

L N

0.0 V
-0.5
0

1 2 3 4
(d) a=1, Bi=2, 7=100

The rational interpolating spline(1)

We first compute that

ox _q,'j (y)[ « 7}) i dx
dv; dw .
_ 2 i 2 _ i
71— 0 +7° (1= 0 +
dP;;
7' By 71#1(1)] (10)
dx
Since
P (x, ) =fi.s=j.5+1 1D
hence
V/ij |1, :(Q’ij +ﬁ,] )ff] ’
(12)

W/l] |J',‘ :(Bij + Vi) fim
Substituting Egs.(11) and (12) into (10), we
obtain that

oP; (x; +.,y)
ox

1
a; (=" + (L —p + 757
71— Cay +B) [ +
A= By + 7)) flom 0" vy fla 13
Similarly, since

Pr (i =) =Ffis=j.g+1,
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we can also compute that

aP,;l_-(.Z‘, 753/) 1 .
/ = . LA = ar,; f5
ox a,fl.,j<1—77>2+ﬁ,-71.ny<1—n>+y,-4.,-v2[ P St
77(1 - 77)2 (01171.,' ﬁL,Bl—l.,‘ )ff, + 7]2 (1— 7])((51‘71,; + Yi1. )ff._;Al + 7737171.,;][‘;’.},41]' (14)
By comparing Eq.(13) with Eq.(14), we can 6. ) Yo (1—0)0°
) sty ) T T TS ; * * N2
vield a, 1, =ay +fi1; =Py +Yi1, =7, Therefore : a; (1= + ;01 —0) +7;0°

Eq.(9) holds.

3 Some properties of BRIS

We rewrite P,; () as follows:

1
Pj(x)= > [w, @ ;) fii, +

w, (0 ;O fi,;] (s
where
X (1—0(a; + B0
ool ) S a0 18,00 —0) 7,0
(16)
(s + B (1— 06"
wn (s 25 T o, A=+ B0 —0) + 7,0
(17
a; (1—0)%0
w00 A £ 80— 0) + 70
(18)

19
where w,, (0, ¢ ;),r,s=0,1, are called the basis
functions of P;; (x). We see that w, (0, * ;)=
0,05+ ;),r=0,11in Eq.(6). It is easy to compute that

wo (0 +;) Fwn (0, «;)=1 20D
Similarly, we rewrite P, (x,y) as follows:

1
P,(x,y)= 2 [woj(ﬁ, )P () +

s=0

(1)1\(7]9 ',])l_,f,*._,._\(l”):l (21)
Using Eq.(15), Eq.(21) has the following form:
Pi./ (I’y) -
1 1
2 Z[w()_\(ﬁy ®ij )CU(),-(&! '1'*.1},\)](‘1“.1},\ +

s=0 r=0

wo.\»<779 i )wlr‘(e’ ‘i.j+1)hif"f+r.,]7x +
'::j+\.)ljfv‘;+’__j+\.:| (22)
Haj=a/ ;185 =B 1175 =7ij+1s Eq.(22)

has the following matrix form

[OF R (779 ®ij )w(),(ﬁa

4 i w0 (ms o )
P,j(I9y):|:CU0(>(09 ',j) w (0, . )]|: d Jian :||:w° Ui j|+

fi+l-j fi+l.,j+l wm(??a * z_/)

f’ll ;1 o()( s * ) )
hilwnw(@s =) @@, -;)J{. o Mw e }+
fl fj+1.j+1 w01(7], L )

i+1.j
?]j zy] ( s )
LLwn (@, +0) w0, -,;»]{ Fhim H“’ 7 } (23)
f",\!rl.,' f]‘v+1.j~1 w1 (779 ® )

From Eq. (23),

property.
Theorem 3.1 (symmetry)

we have the following

If o) =a/;11-8, =
Bliv1sY5 =7 +1s BRIS P; (x,y) are the same
whatever direction it begins with first.
Denote

a, (G =wo, (0 /5 Dwe (s o)

b (0:m) =w, 0y ;)wo, (s *) s

(@) =wo, (0, *7 ;1 )wi, (5 ¢
where a,, (8,9):0,,(0,79),c, (0,7) are called the

basis of BRIS. Then Eq. (22) can be rewrite as

follows:

1
P, (x,y) = Z E[am(ﬁ,ri)f#h].ﬁ -+

s=0 r=0
b Osh, [, oy T Ol [l 0] (24)
From Eq. (200, a, (0, 9p), r,s = 0,1
satisfy that

1

1
D Dan 0. =1 (25)

r=0 s=0

which leads to the following unit property.
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P,;(x,y) is its BRIS in D, , no mater what

Property 3.1

positive number the parameters o . f3; ., 7.; are,

the unit property holds, namely

“.D P, (x,y)dxdy =h;.
From Egs.(16)~(19), for any positive a;; »
B. +7i; » we can compute that
0<<wyp(l, «;) <1,
0<<wn(l, «;) <1,
0<<w(l, ;) <0,
0—1<<w;(@,+;)<<O0
Define

"1
w,, :J w, (0, +5)d0, a, =”~am(9n]),
0 D

(26)

bn :ngm(ﬁvﬂ)a C :JJBCH(g,r])’

where D=1[0,1;0,11. a, .b. ,c, are called the
integral weights coefficients of BRIS. From Eq.
(26), we obtain that
0<wgp <1,0<wy <1,
%9*%<wf1 < 0.

Thus it is easy to get the following property:

Property 3.2 For the BRIS P;; (x,y) defined
by Eq. (7) on the rectangle net D, the weight

O<w1Ko <

coefficients satisfy

0<<a, <l,r.s=0,1,

1 1
0<<bg < TRy < by, <0,5s=0,1,
1 1
O<(r0 < 77 _?<C,»1 <O’7’:0,1.

We notice that when o«;; =1,8; =2.7; =1,
a;=1,B8;=2,7,; =1, BRIS becomes the bivariate
Hermite interpolating spline ( BHIS) on the
rectangular net D. In this case, we can derive that

1 1
D206, =000 —0)(1—20),

r=0 s=0

1 1
D0 =1 —pd—2m.

r=0 s=0

By the definition of b, and c¢,., it can be
shown that

1 1
DI =0,
r=0 s=0

1 1
§ § c, =0.
r:O s=0

Therefore the following property holds.
Property 3.3 For BHIS P, (x.y) on D, the
integral coefficients

weight satisfy the

following equation

1 1
22 Gas bk e =1

4 Bounded property and error analysis

BRIS is a local interpolation in each sub-
rectangle, which depends on the function values
and the partial derivative values of the function
being interpolated at four vertexes of the sub-
rectangle. There are nine parametersa,,;«,»f/+. s
Yijts+s=0,1,a,;,0; and 7, in each interpolating
region, and when the parameters vary, the
interpolating surface changes accordingly. The first
theorem in this section shows that the values of the
interpolating function in each interpolating region
must be in an interval related to the interpolating
data. In the next theorem we analyze the error of

BRIS.

Similarly to Eq. (25), the following

inequations hold.
0<<wep(ys ;) <<1l, 0<Twu(y, ;) <1,
0wy, ;) <<y, p—1<awnly, ;) <0.

Combined with the definition of 4,, (0,%) and
¢ (0,7), it implies that

0<<by(@,p) <O<1,5=0,1,

0<[by | @) <1—0<1,5s=0,1, o

0<<c,@p) <p<1l,r=0.1,

0 <| ca (s \<1*77< 1, r=0,1

Denote

Q: :maX{\ fm»'m | s e S :0’1},

Q. =max{| fi,  [+r.s =01},

Qs =max{| f v |sres =0.1}
and M=Q, +4(h,Q,+1,Q;).

Theorem 4.1 For the given interpolating data
{f,ﬂ»,,ﬂ 9f}r+,».,~ af}y+r._,+.\ srss =051}, P,, (I»y)
is BRIS defined by Eq.(7), then

| Pi(x.y) | < M.(x,y) € D,.
Proof From Egs.(24),(25) and (27), we
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yield that

1 1
DI an @y o] frsn |+

s=0 r=0

‘ P,‘j (x ’y) ‘<
Lo @ | hi | fivvges [ @ T4 ] fr g0 1<

DD anb.p | Q +

s=0 r=0
(@) | Q=

h, ‘b,\(evﬂ) ‘ QZ +ZJ ‘
1 1
Q2 >0 lan@.p |+

s=0 r=0

1 1 1 1
QD)D) b, O [H1,Q, 20 D0 | en @ |<

=0 =0 o —
Q +4(h,Q. +1,Q5).

The proof is completed.

According the bounded property Theorem 4.1,
we can deduce the following error estimation.

Theorem 4. 2 S (xs y) has a
continuous first-order partial derivative, then the
following error formula of BRIS P, (x,y) holds

Suppose

\f(x,y)*P,j(x,y)\<5[h,- Z‘—O—l g”}’
where
of af
oz | weby ‘ ‘ <1~.r;>anDij oy
Proof The Taylor formula of f(x,y) at

point (xi+,rsyj+s)s7,s=0,1, is that
f(I ,y) :f(1i+r 9yj+() +

[(1*1,%)*4—(3) Vits ) — j'f(/lr?us)(x’y)eDIJV

where p, is between x and x;+,, vs is between y

and yj+. It follows that
| flx,y)— f(xitr ,y]‘+s-) | <<
af+l] ,rss =0,1.
From Eqgs.(24) and (25), we have
f(xsy)—Pij(x,y) =
1 1
DD an G (f(ay) — fitrijis) —
s=0r=0

1 1
2 2[1);’5 ((9777)hif‘"}l+r.j+s +crs (0777)[]'][%)4’7’-]"#\‘]?

s=0r=0
then

| f(x,y) —Pij(x.y) | <

1 1
DD an @) | Faay) — Fitrijms |+

s=0r=0

1 1
SIS i b o] fHrrjrs | +

s=0r=0

l] |Crs(€977) "‘ f‘y+rs]+8 ‘]<

of _
a—I‘JrZJ

of
oy |

1 1
DI hi b @ | Qe+ 1 | en (0 | Qs <

s=0r=0

of
ox

+1; %‘+4( hiQz +1;Q3) <

af |, |of
o[ [Ez o 551

The proof is completed.

S Numerical example

In this section, we utilize a numerical example
to illustrate the effect of the shape parameters on
the shape of BRIS surface. Because our method is
generated form Ref. [ 25], we also compare our
error with the error in Ref.[ 25]. The result shows
that our method is better than the technique in
Ref.[24].

Assume that

flx,y)=+v/1—U0—2)2 =0 —y)2,
(x,y) € D=[0.5,1.5;0,5,1.5].

BRIS P;; defined by Eq.(7) of f(x,y) can be
constructed in D for the given shape parameters
ais sB5 57 saij »Bij and 7i;. The graphs of BRIS

and corresponding error surfaces are shown in

Figs.2~6. We can observe that P;; ’s approximate
f(x,y) well and that the approximation effect is
when  the

Fig.5(a)
interpolating spline of f (x, y).

different shape parameters vary.

Especially, is the figure of Hermite
After slightly
changing the value of 87 and B;; in Fig.5, we can
see from Fig.6 that the error is reduced by nearly a
half. Comparing the error in Fig.6(b) with that in
Ref.[25]. we can see that the error in Fig.7 is twice

as much as our error in Fig.6(b).
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Fig.7 Error surface in Ref. [25] when a5 =a;; =1.1.8;; =pij =0.99
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