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0 Introduction

In this paper, we classify strongly regular
graphs with smallest eigenvalue —3 and determine
the optimistic ones among them.

Strongly regular graphs were introduced by

Bose! . Neumaier'® showed that for a fixed integer
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a=2, all but finitely many coconnected strongly
regular graphs with smallest eigenvalue — a fall
into two infinite families.

Theorem 0. 1>

Then there exists a constant C (a) such that any

Let @« =2 be a fixed integer.

coconnected strongly regular graph I'" with smallest

eigenvalue —a having more than C(a) vertices has
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one of the following parameters;

O+ (ya—1 +a)asvasy —1+
(a—1)%,a”), where ¥ is a positive integer;

@ W+ yasy =1+ (a—2)(a— 1),
a(a—1)), where ¥ is a positive integer.

B] raised the question of

Graham and Lovasz
whether optimistic graphs exist (although they did
not use the term). This question was answered
positively by Azarija in Ref.[ 4], where the term
optimistic was introduced. In Ref.[4], it is shown
that conference graphs of order at least 13 are
optimistic and also that the strongly regular graphs
with parameters (¢*,3(t—1); ¢, 6) are optimistic
for t =5.

We classify all strongly regular graphs with
smallest eigenvalue — 3 in Theorem 2.1. And in
Theorem 3.1, all optimistic strongly regular
eigenvalue —3 are

graphs with  smallest

determined.

1 Definitions

All the graphs considered in this paper are
finite undirected and simple (for unexplained
see Ref. [5]).
Suppose that I' is a connected graph with vertex
set V(I") and edge set E(I'), where E(I") consists

of unordered pairs of two adjacency vertices. The

terminology and more details,

distance d (x ,y) between any two vertices x and y
of I is the length of a shortest path connecting x
and y. We denote v as the number of vertices of I
and define the diameter D of I' as the maximum
distance in I'. For a vertex x € V(I"), define I'; ()
to be the set of vertices at distance precisely i from
x(0<<{ < D). In addition define I' |, (x) =
I'pi(x) :=0. We write I' () instead of I'; ()
and define the local graph A(x) at a vertex x € V(I")
as the subgraph induced on I' (x). Let A be a
graph. If the local graph A (x) is isomorphic to A
for any vertex & in V (I'), then we say I' is
locally A.

The complement Iof a graph I' is the graph
with the same vertex as I's and two vertices in I’

are adjacent if and only if they are non-adjacent in

I'. We use sK, to denote s copies of the complete

graph K,. A graph 1is coconnected if its
complement is connected.

A regular graph I' with v vertices and valency
k is called strongly regular if there exist integers
a sc, such that every two adjacent vertices have a
common neighbors and every two non-adjacent
vertices have ¢ common neighbors. And we say I"
is a (v.kja,c)-strongly regular graph.

Suppose that I" is a regular graph with valency
k=2 and diameter D=2, and let A; (0</<<D) be
the matrix of I' such that the rows and columns of
A, are indexed by the vertices of I and the (x,y)-
entry is 1 whenever x and y are at distance i and 0
otherwise. We denote the adjacency matrix of I" as

A instead of A,. The eigenvalues of the graph I

are the eigenvalues of A. The distance matrix of
D

the graph I' is 9= Ei A, whose (x,y)-entry is
i=1

d(x,y), and eigenvalues of 9 are called distance

eigenvalues of the graph I'. A graph is optimistic if

it has more distance

positive than negative

eigenvalues.

2 Strongly regular graphs with smallest
eigenvalue —3

Lemma 2.1 Let I" be a (v,kj3a.c)-strongly
regular graph. Then I' is not coconnected if and
only if c =k.

Proof AsI'isa (v,kj;a.c)-strongly regular
graph, we have that Tisa (vsksasc )-strongly
regular graph, with k=v—k—1,a=v—2—2k+
¢ and c=v—2k+a (sce Rel.[8, p.2187. Choose a
vertex x of I', by counting the edges between
I'(x) and I'; (x) in two ways, we can get
(v—k—1)c=(k —1—a)k. Note that ¢ =% is
equivalent to v =2k —a and c =v — 2k +a =0. It
follows that I is non-coconnected if and only if ¢ =
k by Ref.[ 8, Lemma 10. 1. 1].

Remark Besides Lemma 2.1, we have that a
non-coconnected strongly regular graph is the
complement of the graph sK, for some s,2=>2 (see

Ref.[ 8, Lemma 10.1.17]) and it has parameter
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(vsksasc)=Csty(s—Dt;(s—2)t,(s—1)t) and
eigenvalues (s—1)¢>0>—t with multiplicities 1,
s(t—1),5s—1 respectively. So we only need to care
about the coconnected case.

For a (v,k; a.c)-strongly regular graph, let
B=+/A, where A=(a—c)*+4(k—c).

Lemma 2.2 Let I' be a coconnected (v,k; a,c)-
strongly regular graph with eigenvalue & =64, >
0,>>0, and multiplicities m (8,) (0<{i << 2). Let
A= (a—)*+4(k—c). If 0, = — a for some
integer a==2, then the following holds:

@D B is an integer satisfying ==a +1;

@0, =B—a,a=c+B—2a, k=cta(B—a)

and;

1
®v=l+k+7k(k*1*a) and m (4,) =

1 1
7("0—1—5(2 k+(v—1)(a—c))j.

Proof Note that I' has eigenvalues k&,

1 e o
7(a*ciﬁ)*8’ 2201 °So §, —6@,=p, and hence 0, =

B—a. The fact 0, +0,=a —c implies that =0, +«
is an integer, and a =c +3—2a. Since /A =a —c,
we have that §,=>0 with equality if and only if 2=
¢, which results in I' not being coconnected by
Lemma 2. 1. So f=a+1.

Note that c—k=0,0, =—a(f—a), we sec k=
cta(B—a). Since (v—1—k)c=k(k—1—a), we

1
have v=1+k+7k(k*1*a). From Ref.[ 8, p.220]

we know m(el)_i(vl%Jr(v—l)(a—c)j
2 JA
First, we give some parameter restrictions for
strongly regular graphs. The next restrictions, due
to Ref. [12] are called Krein conditions.
Lemma 2.3"%"  Let I" be a coconnected (v .k ;
a sc)-strongly graph with eigenvalues £k =0,>0, >
0,. Then the following holds:
0,0, —20,°0, —0," — k0, + k0," + 2k0, =0,
0,70, — 20,0, —0," — kO, +k0,* + 20, = 0.
The following result is the absolute bound
shown in Ref.[14].

Lemma 2. 4" Let I be a coconnected (v, k;

a »c)-strongly graph with eignvalues £k =6,>6, >
0, and multiplicities m (8;). Then

vé%m(ﬁ,)(m(@;)JrB, i=1,2.

Remark The above lemma gives a
representation of all the parameters of I in some
functions of a,f,c.

The following is a collection of parameter
restrictions due to Ref.[ 2] for strongly regular graphs
with smallest integeral eigenvalue —a.

Lemma 2.5  Let I' be a coconnected (v, k;
a sc)-strongly graph with eignvalues £k >f—a>—a
for some positive integers §—1=a =2, Then ¢ <
a®(2a—3) and one of the following holds

D c=a(a—1) and

B<%(a*l)(0{3*a2+a+2);

1
@ c=a’ and ‘8<?(a*1)(a3+a+2);
® c#ala—1),.a” and
g< %a<a—1><c+1>+a—1;

@ (wsksaa)=(y+D(y(a—1)+a)/a,ya;
y—1+—1)*,a*), where 7 is a positive integer;

® (vsksasc)=y+1), va357v — 1+
(a—2)(a@—1),a (a — 1)), where 7 is a positive
integer.

Theorem 2.1 Let I be a coconnected (v,k;
a sc)-strongly graph with eigenvalues & > —a >
—a. If =3, then one of the following holds:

® (v,ksa,c) isin Tab. 1 or 2;

@ (viksa,)=((y+Dya—D+a)/a,ya;
y—1+(—1)*,a?), where ¥ is a positive integer;

@ (wsksa.a)=y+1D " va;7—1+@—2) »
(a—1),a(a—1)), where ¥ is a positive integer.

Proof By lLemma 2.2, we see that the
parameters (v, k;a,c) and the multiplicities of
eigenvalues of I can all be represented by the triple
(a,B.c). By Lemma 2. 5, we have c<<a®(2a —3) =

81. Then we see that either I' is in those two
families in @ and @, or

‘8<max{%(a*1)(o{3*a2+a +2),
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%(oz*l)(oz3 +a+2),

%a(a—l)(a3(2a—3)+1)+a—l} — 248,

Then we check all triples (a,f,c) with « =3,
4<{p<248 and 1 <X ¢ < 81, all the parameters
(v,ksa,c) satisfying:
(v—k—1)
® % and m (0,) are integers;

@ I' does not come from the two families in
@ and Q@3

@ the restrictions in Lemmas 2. 3, 2.4 and 2. 5;
are in Tabs. 1, 2 or 3. Those graphs in Tab. 3 do

not exist.

Remark There are infinitely graphs in those
two families in Theorem 2.1 @ and @ (see Ref.
[13, Lemma 4.1, Lemma 4.2]).

The detailed informations (the uniqueness
(Tab. 1), whether there exist known examples
(Tab.2) and non-existence (Tab.3)) of those
graphs comes from Ref.[4]. For those graphs in
Tab. 3, we give the references for non-existence.
For readers’ convenience, we give a proof for

('Uyk sa 96):(209916;391) or (8419200;87935).

Tab.1 Parameters feasible to Theorem 2. 1 and known to exist

(v,ksa.c) 00,060,700 [0, 02

extra information

(15,651,3)

6.[11°.[ =37

(16,5;0,2) 5.[1]%,[—3]°
(26,10;3,4) 10,[2]%,[—3]1
(36,21:12,12) 21,037, [—3]%
(40,27;18,18) 27,[3]%,[—3]*
(45,12;3,3) 12,[3]%0,[—3]*
(50,7;0,1) 7,[27%,[—3]#
(50,42;35,36) 42,[27%,[—3]%

(56,45;36,36)

45 ’[3]20 ,[73]35

(64,45332,30) 45,[5]'%,[—3]%
(77,60347,45) 60,[5]%",[—3]%
(81,60345,42) 60.[6]%.[—3]%°
(100,77;60,56) 77,7122 . [—3]"

(105,72551.45)
(112,81;60,54)
(120,77552,44)
(125,72;45,36)
(126,25;8,4)
(126,60333,24)
(126,75;48.39)
(162,105;72,60)
(175,102;65,51)
(176,85;48,34)

72,0917, [—3]%
81.[97*.[—3]"
77,[11]%°,[—3]%
72,[12]% ,[—3]to¢
25,0717, [—38]"
60,[12]%,[ —3]to
75,[12]%,[—3]!%
105,[15]2,[—3 ]
102,172 ,[—3]1s
85,[17]22,[ —3]15

(176,105;68,54) 105,172, [ —3]1
(231,30;9,3) 30,[97% ,[ —3]'75
(243,132;81,60) 132,[247%2,[—3]%0
(253,140;87,65) 140.[257%2,[ —3]%%

(275,162;105,81)
(276,135;78,54)

162,[27122,[ —3]%*
135,[27]%,[—3]2%

I (uniqueness)

!

10(complete enumeration)

180
28
78
!

!

!

167
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Ta.2 Parameters feasible to Theorem 2. 1,

but unknown whether they exist or not

(vskiasc) 0o, [0, ] [0, ]m 02>

(69,20;7,5) 20,572, [—3]"
(75,42;25,21) 42,[7]%,[—3]°¢
(76,35;18,14) 35,[7]Y,[—3]°%

(85,1453,2) 14,0434, [—3]%
(95,54;33,27) 54,[9]9,[—3]™
(96,45;24,18) 45,[9]%,[—3]"

(99,42;21,15)

42’[9]21 7[73]77

(105,52529,22)
(154,81;48,36)
(162,69;36,24)
(189,60;27,15)
(196,81;42.27)
(225,96351.33)
(232,77536,20)
(261,84539,21)
(288,105;52,30)
(300,117;60,36)
(351,140373,44)
(375,102;45,21)

52,[10]%,[—3]%
81,[15]2,[ —3]132
69,1572 ,[ —3]18
60,[157% ,[—3]10
81,[18]21 ’[731171
96,[217%,[ 3]
77.[197% [ —3]2
84.[21]% [ —3]%!
105,[257%7 [ —3]2
117.[277%,[—3]%"
140,[327%,[—3]%%
102,[277%,[—3]%

(405,132;63,33) 132,[33730,[ —3]37
(441,88535,13) 88.,[25]4 [ —37]396
(476,133;60,28) 133,[35]%,[—3]#!

(540,147;66,30)
(550,162;75,36)
(575,112;45,16)
(703,182;81,35)
(1 344,221;88,26)
(1911,270;105,27)

147,[39]% ,[—3]
162.,[427% [ —37716
112,[32]% [ —3]%%
182,[497%7 ,[— 3755
221.[657%,[—3]1 27
270,[817% ,[—3]1 86

Tab.3 Parameters feasible to Theorem 2. 1. but do not exist

(v ksasc) 00 .[01 ] [0, ]2
(49,32;21,20) 32,[4]1,[—3]% Ref.[6]
(57,42;31,30) 42,0478 ,[—3]% Rel.[15]
(76.,45;28,24) 45,0778 ,[—3]% Ref.[9]
(76,54;39,36) 54,0611 ,[—3]% Ref.[10]
(96,57:36,30) 57,0971 ,[—3]7 Ref.[7]
(209,16;3,1) 16,0577 ,[—3]1% Prop. 2.1

(841,200;87,35) 200,[55]4 [ —37800 Prop. 2.1

Proposition 2.1  The (v, k; a, ¢ )-strongly
regular graphs with parameter (209, 16;3,1) or
(841,200;87,35) do not exist.

Proof In the case (v,k;a,c)=1(209,16;3,1).
We choose a vertex x € V. Since ¢ =1, we have
that if two vertices y.,z in I'(x) have a common
neighbor w in I'(x), then y and 2z are adjacent. It
implies that the local graph is a disjoint union of
(a+1)-cliques. We count the number of pairs (x,C)

with x € C, where C is a (a+2)-clique in I'. Then

we see (a +2)n= v , where n is the number

k
at1
of (a+2)-cliques in I'. But (a +1)Ca+2) [ vk,
which implies the (209, 16; 3, 1)-strongly regular
graph does not exist.

Let I be a (841,200;87,35)-strongly regular
graph with eigenvalues 6, > 6, > 0, and
multiplicities m (8;) (0<{i<{2). We have that

m(0,) 03 0, +1)°

an v(l T T -1

with , =55 and m (0,) =40, which implies

J ~ L1t p10]

841 =v < %(m(@l)(m(@l)Jrl)) =

11, Tt 2.6
820[ reorem ] s

a contradiction.
3 Optimistic strongly regular graphs

In this section, we classify optimistic strongly
regular graphs with smallest eigenvalue —3.

Let I be a coconnected (v, k;a,c)-strongly
regular graph with & 0, > 0, > 0, and
multiplicities m (0;) (0<<i < 2). Note that the
distance matrix of I' is 2J — 2I — A, whose
eigenvalues are 2v —2 —k > —2—0,>—2—40,,

with multiplicities 1, m (0,), m(0,) respectively.

Thus, if the graph I' is optimistic, then 0,<—2.

And the distance matrix of I'is ] —I +A, whose
eigenvalues are v—1+4(>—1+60,>—1-+0,, with
multiplicities 1, m (8,), m (8,) respectively. Thus
if the graph Iis optimistic, then 6,>>1.

Lemma 3.1 Let I' be a coconnected (v, k3
a sc)-strongly regular graph with ¢ =0,>60,>0,=
—2 with multiplicities m (8,) (0<Li<<2). Then
neither I" nor I is optimistic.

Proof Note that I'" is coconnected, by Ref.
[5, Theorem 3.12.47]. We see that I' is a
triangular graph T (n) (n=5), a lattice graph
L,(n) (n=3), one of the graphs of Petersen,
Clebsch, Schlafli, Shrikhande or Chang.

Since 0, =—2, if m(0,)>m(0,)=2, then I'

has only one positive distance eigenvalue and

m (0,) =2 negative distance eigenvalues, and I" has
at most v—m (0,) positive eigenvalues and exactly
m(0;) negative distance eigenvalues. Since m (4,) >

m(0,) and m (0,)+m(0,)=v—1, we see m (0,)=
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v—m (0,). It follows that if m (8,) >m (0,) =2,

then neither I" or I is optimistic.
We see that T (n ) has

parameters
1 .
(?(n—l)n ,2(7’1—2);71—2,4) and eigenvalues

2n—2),t, =n —4,t, = — 2 with multiplicities

1
m(rl):rzfl,m(rg):?n(n*S). As n=5, we

see m(ty,)>m(r;)=2. The graph L,(n) has
parameters (n”,2n —2,n —2,2) and eigenvalues
2n—2)st1 =n —
m(z)=2n—1),m(z,)=(n—1)*. When n=>4,
we see that m (z,) >m (r,)=2. It follows that if I’
is T(n) (n=5) or L,(n) (n=4), neither I" nor I"

is optimistic. If I is L, (3) or the Petersen graph,
then 0, =1 and 0,=—2

2,7, = — 2 with multiplicities

, we see that neither I" nor

I' is optimistic. If I' is one of the graphs of
Clebsch, Schlafli, Shrikhande or Chang, from Ref.
[13], we have m (0,) >m (0,) =2, and hence
neither I' nor I is optimistic.

Lemma 3.2 Let I' be a coconnected (v, k;
a,c)-strongly regular graph with eigenvalues & =

0,>0,>0, and multiplicities m (6,) (0<i<<2). If

neither I" nor I is optimistic, then I'" is one of the
following:

(D the pentagon;

@ a triangular graph T (n) (n==5), a lattice
graph L,(n) (n=3), one of the graphs of
Petersen, Clebsch, Schlafli, Shrikhande or Chang;

® the complement of one graph in O and @.

Proof

m(@,)=m(0,), I' is a conference graph, v =

If 4, and 0, are not integers, then

1 1
1 mod 4, 0125(—1+«/;) and 0225(—1—«/;)

by Ref.[8, Lemma 10. 3. 2]. Then if v=>13, then
—2—0,>0,—1+60, >0,

and both I" and I" are optimistic. When v<C13, we

see I' is either the pentagon or the lattice graph

L,(3) by Ref.[4]. In both cases, neither I nor r
1s optimistic.

If the eigenvalues #,, 0, are integers, we can
show that 0§, = — 2 or 6, << 1. Suppose to the
contrary that ,<< —2 or §,>1. Then —2—0,>0
and —1+0,<70. As the distance eigenvalue of I' —
2 — 0, has multiplicity m (0,); as the distance

eigenvalue of I's —1+0, has multiplicity m (0,).
Note that m (8,) +m (0,) =v—1. Thus at least one

of the graphs I' and Iis optimistic, contradicting

the hypothesis that neither I" nor I" is optimistic.

1
If HIZE(QL*C)JF (a—c) +4(k—¢))=0,

then ¢ =*% and hence that I" is not coconnected by
Lemma 2. 1. It is impossible!
As I' contains a path of length 2, by Ref.[8,

Theorem 9. 1. 17, it results that 8, << —+/2. Thus
§,=—2 or 8, =1. Furthermore, if §, =1, then the

smallest eigenvalue of I'is —1—0,=—2. And we

see that either I' or I has smallest eigenvalue —2.

The result follows from Lemma 3. 1.

Remark In the case where both I' and I are
optimistic, then I' must be a conference graph with
v=>13.

The following lemma gives the parameter
restrictions for a strongly regular graph to be
optimistic.

Lemma 3.3 Let I' be a coconnected (v, k;
a,c)-strongly regular graph with eigenvalues & >

0,>>0, and multiplicities m (0;,) (0<<i<<2). The

. . . 2
graph I' is optimistic if and only if a =¢ — 1 and
—

a<%(c+/€*4).

Proof The graph I' is optimistic if and only if
m(0,)=m (0,) and 0,<—2. Note that m (8,) —

1
77’1((91):\/_Z(2k+(7}*1)(a*€)). Hence m (4,) =

2k
v—1°

If v=*%—1, then from (v — %k — 1) ¢ =
k(k—a—1), it follows that a=k —1=wv—2. Then

I must be a complete graph. It is impossible, since

m (0,) is equivalent to a =>c¢ —

the complete graph has exactly two distinct

eigenvalues. Now we have v —1>%, and hence

1
a —c=—1. Note that 6223((a—c)—ﬂ). And

1
a—c=—1 and 0,<C—2 implies that a<?(c+k*4).

Lemma 3.4 lLet I' be a coconnected (v, k;
a,c)-strongly regular graph and let « =3 be an

integer. Then
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@ if I' has parameter ((y +1D)(y(a— D +a)/a,
Yas;y — 1+ (a—1)",a"), where ¥ is a positive
integer, then I' is optimistic if and only if ¥=2a —1;

@ if I has parameter ((y +1)*,7 a3y —1-+
(a—2)(@—1),a(a— 1)), where 7 is a positive
integer, then I' is optimistic if and only if ¥ =
2a—2.

Proof By LLemma 3.3, we only need to show

2k 2k
—1 v—1
we need a=>c —1.

D For the first case, we see 2a<c +k—4 is

equivalent to Yy =a —1 by a=3. When a =¢, we

a=c— <2,

1
and a<?(c‘+/e—4). As

have y=2a. When a=c¢—1, that is y=2a—1, we
have 2k _ Za =1 and a=c— Zk

v—1 2a—1 v
So we have y=2a—1 if and only if I" is optimistic.

@ For the second case, As a=3, y=a—2 is
equivalent to 2a<<c+k —4. And a=c¢ implies y=
2a—1. When a=c—1, that is y=2a—2, we have

2k

2k
——=1and a=c¢c —
v—1 v—

1 still holds.

1 still holds. It follows

that y==2a —2 if and only if I" is optimistic.

Corollary 3.1 Let =3 be an integer, then
the following holds:

(D There are only finitely many coconnected
non-optimistic strongly regular graphs with
smallest eigenvalue —a;

@ There are only finitely many coconnected
non-optimistic strongly regular graphs with second
largest eigenvalue —1-+a.

Proof By Theorem 0.1 and Lemma 3.4, we
obtain @. By considering their complements, we
have @.

Now we give a classification of non-
coconnected (hence we also have the coconnected
ones by Theorem 2.1) strongly regular graphs
with smallest eigenvalue —3.

Theorem 3. 1

asc )-strongly

Let I' be a coconnected (v, k;

regular graph with smallest
eigenvalue —3. If I' is not optimistic, then I" has
one of the following parameters:

@O (16,934.,6); @ (15,651,3);

@ (16,5;0,2); @ (26,1033,4);

® (50,7;0,1).

Proof Since I' is coconnected, we only need

to deal with the graphs in Theorem 2. 1. For those
two families in Theorem 2.1 @ and ®, we sece
that the only feasible one is {16, 9; 4, 6}, by

[Lemma 3. 4. The rest are tested by Lemma 3. 3.
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