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Abstract: The relationship between the complementability of Sylow subgroups and the structure
of a group was considered, and some results about the construction of composition factors were
obtained. Further, one of Heliel’s results is the corollary of our results.
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then H/K is called a pd-composition factor (chief

0 Introduction factor) of G.

All the groups in this paper are finite. Most of
the notation are standard, as in Refs. [1-2]. Let «
be a set of prime numbers. |G| be the order of a
group G and 7 (G) denote the set of all prime
divisors of | G |. Further, assume that H/K is a
composition factor (chief factor) of G. If pEx(H/K),
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A subgroup H of a group G is said to be
complemented in G if there exists a subgroup K of
G such that G=HK and H(1 K =1. In 1937,
Hall"! showed that G is solvable if and only if all
Sylow subgroups of G are complemented in G. In
1982, Arad and Ward"” proved that G is solvable
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if and only if every Sylow 2-subgroup and every
Sylow 3-subgroup are complemented in G. In
1999, Ballester-Bolinches and Guo™™ proved that a
finite group G is supersolvable if it contains a
normal group N such that G/N 1is supersolvable
and all subgroups of N of prime order are
complemented in G. In 2015, Qian and Tang'®
of G
assumption that all subgroups of P with order p™

investigated the structure under the
are complemented in G, where m is a given integer
satisfying 1<im <<—1-log, | P| and P is a Sylow
subgroup of G.

Monakhov ~ and  Kniahina'”

established that if every subgroup of P of order p

Recently,

is complemented in G, then P is complemented in
G. But the converse is not true. For instance.
suppose that G =PSL(2,8), every Sylow 3-
subgroup of G is complemented in G, but every
subgroup of order 3 of G is not complemented in
G. Naturally, we shall consider the following
question which is a motivation of our research.

What is the structure of a group when we
consider the complementability of Sylow
subgroups of finite groups?

Further, we obtain the following results:

Theorem 0.1 Let G be a group, p €7 (G).
Suppose that every Sylow p-subgroup is
complemented in G. If G is not p-solvable, then
every nonabelian pd-composition factor of G is
isomorphic to one of the following groups:

D A,, p=5is a prime.

@ PSL(2,11) and p =11, M,; and p =23,
M, and p=11.

@ PSL(n,q), pe=(q"—1/(qg—1), nisa
prime,

Theorem 0.2 Let G be a group, r € 7 (G),
r=x (G)\ {r}.

subgroup of G is complemented in G for each

Suppose that every Sylow p-

prime p € w. Then every nonabelian composition
factor of G is isomorphic to PSL(2,7).

Theorem 0.3 Let G be a group, and let r,2 €
7(G), m=nx(G)\{r.t}. Suppose that every Sylow

p-subgroup is complemented in G for each prime

p E€x. Then every nonabelian composition factor
of G is isomorphic to one of the following groups:
@ PSL (2,5), @ PSL(2,7), ® PSL (2,8),
@ PSL(3,3).
Theorem 0. 4
€Ex(G), r=n(G)\{r,t,v}. Suppose that every

Let G be a group, r,t,v

Sylow p-subgroup is complemented in G for each
p € m. Then every nonabelian composition factor
of G is isomorphic to one of the following groups:
D Ars @My 3 @ PSL(3,9)s ¢=3,5,8,17; @
PSL(2.¢)+ q=5.7,8.11,16.31,127.

1 Preliminaries

For the sake of convenience, we first list here
some results which will be used in the sequel.
Lemma 1 1[8., Lemma 2. 1]

N be a normal subgroup of G. Then the following

Let G be a group and

statements hold:

@ If H is complemented in G, H<M<G,
then H is also complemented in M,

@ If N<XH and H is complemented in G,
then H/N is complemented in G/N.

@ Let 7 be a set of primes, N a normal '~
subgroup and H a m-subgroup of G. Then H is
complemented in G if and only if HN/N is
complemented in G/N.

[7, Lemma 3]

Lemma 1. 2 Suppose that a simple
group G is the product of a biprimary subgroup A
with a p-subgroup B for some prime p. Then G is
isomorphic to one of the following groups:

@ PSL(2,5)=A,Z;.

@ PSL(2,1)=S,Z,= (Z; X Z3)Ds.

@ SL2,8)=(E»s X Z)Z,.

@ PSL(3,3)=AZ;, |A|=2"+ 3%

9, Theorem 1] Ilet G be a nonabelian

Lemma 1. 3
finite simple group. If there exists a prime p, a
positive integer a and a subgroup H of G such that
|G + H|=p%, then one of the following holds:

D GXLA,, HLA, ,, where n=p".

@ GXLPSL (n,q)s |G+ H|=("—D/
(¢q—1)=p“, where n is a prime.

@ GLPSL(2,11), HLA;.

@ G¥M,;, and HLM,,.
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® G¥M,,, and HLM ,,.

©® GLPSU (4,2)XLPSp, (3), and HXL
2"+ A,

Lemma 1, 4010 Lemmas.8.2] Let A, B be
subgroups of a group G and K a normal subgroup
of G. I (|G + Al,]G : B[D=1, then

K=K NAN&K N B.

Lemma 1, 5t 12l T ot U, V and W be

subgroups of a group G. Then the following

statements are equivalent;
O UNVW=WUNWV)WUNW).
@ UVNUW=UVNW).
Lemma 1. 6 let p be a prime and U a
subnormal subgroup or a quotient group of G. If
every Sylow p-subgroup of G is complemented in
G, then
complemented in U,
Proof Assume that U, is a Sylow p-

subgroup of U and U, =P (U for some Sylow p-

every Sylow p-subgroup of U is

subgroup P of G. If U is a subnormal subgroup of
G, without loss of generality, then we may
assume that U is a normal subgroup of G.
Further, by the hypothesis, P is complemented in
G,ie »G=PBand P(1B=1. ThenU=U(1G=
UNPB=WUNP)WUNB)=U,(UNB) by Lemma
1.4, that is, U, is complemented in U and every
Sylow p-subgroup of U is complemented in U.

If U is a quotient group of G, then we may set
U=G. Since every Sylow p-subgroup of U is P for
some Sylow p-subgroup P of G, every Sylow p-
subgroup of U is complemented in U by Lemma
1. 5.

Lemma 1.7 Suppose that a nonabelian simple
group G which satisfies that 7 (G) = 4 and a
Sylow p-subgroup of G is complemented in G only
for one prime divisor p belongs to 7(G). Then G
is isomorphic to one of the following groups: @D
A:s @ Mys @ PSL (3,¢), ¢q=5,8,17; @
PSL(2,q), q=11,16,31,127.

Proof Firstly, by Refs. [11, Theorem 1 and
Theorem 2] and [9, Theorem 1], we can verify
that G is isomorphic to one of the following
groups: A;» M, , PSL (3,5), PSL (3, 8),

PSL(3,17), PSL (2,11), PSL (2,16), PSL (2,
31).

Next, by Ref. [9, Theorem 1], we consider
the group G PSL (2,2" —1), 2" —1=>19 is a
Mersenne prime. Further, n>>3 is a prime and n =
6kt1, k is a positive integer, GL2PSL (2, 2%+ —1)
and GLLPSL (2,127) by Ref. [11, Theorem 2.

Lemma 1. 8"

Sylow subgroups of G are complemented in G,

G is solvable if and only if all

2 Proof of theorems

Proof of Theorem 0.1 Let U be a nonabelian
pd-composition factor of G. Then U is a
nonabelian simple group with p €x(U). By
Lemma 1. 6, U also satisfies the hypothesis. Now
the required result follows by LLemma 1. 3.

Proof of Theorem 0, 2

Lemma 1. 8,

By Lemma 1. 6 and
we may assume that G is a
nonabelian simple group. By Burnside’ s p¢g’-
Theorem', [7#(G)|=3. Then G LPSL (2,7)
since PSL (2, 7) is the only simple group with
subgroups of two different prime power indices by
Guralnick.

Proof of Theorem 0. 3

Lemma 1. 8 and the proof of Theorem 0. 2, we

By Lemma 1. 6,

may assume that G is a nonabelian simple group.
If [#(G)|= 4, then G £ PSL (2, 7) by
Guralnick™ . If |7 (G) | =3, then the required
result follows by Lemma 1. 2.

Proof of Theorem 0. 4
Lemma 1. 8 and the proofs of Theorem 0. 2 and

By Lemma 1. 6,

Theorem 0. 3, we may assume that G is a
nonabelian simple group. If [7(G)| =5, then GL
PSL(2,7) by Guralnick®™'. If |#(G)|=4, then

every nonabelian composition factor of G is

isomorphic to one of O ~®@ in the theorem by

Lemma 1. 7.

3 Applications

Firstly, we introduced the concept of c-
supplemented subgroups which is related to our
corollaries.

Definition 3, 112l 1 - A syubgroup H of
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G 1is called c-supplemented in G, if there exists a
subgroup K of G such that G=HK and H (1K<
H where H¢ is the core of H in G.

Corollary 3.1 Let G be a group, p €Ex(G).
Suppose that every Sylow p-subgroup is c-
supplemented in G. If G is not p-solvable, then
of G are
isomorphic to one of the following groups:

D A,, p=5isa prime.

@ PSL(2,11) and p =11, M,; and p =23,
M, and p=11.

@ PSL(n,q), pe=(q"—1/(qg—1), nisa
prime,

Proof By Ref.[12. Lemma 2.1(2) ], O,(G)
= 1. Further, every c-supplemented Sylow p-

nonabelian  pd-composition factors

subgroup of G is complemented in G. Hence it is
proved by Theorem 0. 1.

In proofs of the following corollaries, we also
only consider the condition that every c-
supplemented Sylow  p-subgroup of G is
complemented in G the same as the proof of
Corollary 3. 1.

Corollary 3.2 Let G be a group, p €Ex(G).
Suppose that every Sylow p-subgroup is c-
supplemented in G. If G is not p-solvable, then
every nonabelian pd-chief factor of G is the direct
product of simple groups, each being isomorphic to
one of O~® in Corollary 3. 1.

Corollary 3.3 Let G be a group, r €n(G),
r=x (G)\ {r}.

subgroup is c-supplemented in G for each prime

Suppose that every Sylow p-

pE€r. Then every nonabelian composition factor
of G is isomorphic to PSL(2,7).

When r = 2, we generalized the following
result of Heliel:

Corollary 3, 4t!3: Theorem 1. 4]

Then G is solvable if and only if every Sylow

Let G be a group.

subgroup of odd order is c-supplemented in G.
Let G be a group, 3 # r
€x(G), r=rx(G)\{r}. Suppose that every Sylow

Corollary 3. §

p-subgroup is c-supplemented in G for each prime
pE€mr. Then G is solvable.
Corollary 3.6 Let G be a group, r €n(G),

=z (GO\{r}.

subgroup is c-supplemented in G for each prime

Suppose that every Sylow p-

pE€mn. Then every nonabelian chief factor of G is
the direct product of simple groups. each being
isomorphic to PSL (2,7).

Corollary 3.7 Let G be a group, r.tEx(G),
r=rx(G)\{r.t}.

subgroup is c-supplemented in G for each prime p

Suppose that every Sylow p-

€x. Then every nonabelian composition factor of
G is isomorphic to one of the following groups: D
PSL (2,5), @ PSL (2,7),® PSL (2, 8),
@ PSL(3,3).
Corollary 3. 8
r=x(G)\{r,t}.

subgroup is complemented in G for each prime p €

Let G be a group, r,t €x(G),
Suppose that every Sylow p-

7. Then every nonabelian chief factor of G is the
direct product of simple groups. each being

isomorphic to one of O~@ in Corollary 3. 7.
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