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0 Introduction

Linear complementary dual (LLCD) circulant
codes are linear codes that meet their duals
trivially. In 1992, Massey'" introduced LCD codes
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and showed the asymptotically good property of
LCD codes. Quasi-cyclic complementary dual
codes were studied in Ref. [2]. Recently, self-dual
double circulant (negacirculant) codes and self-

dual four negacirculant codes over finite fields, and
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double circulant self-dual and LCD codes over
Galois rings have been studied in Refs. [ 3-6 ], the
authors derived the modified Varshamov-Gilbert
bounds on the relative distance of the codes
considered, building on exact enumeration results
for givenn and q. But the case over non-chain rings
are not as well-studied yet.

Codes over the non-chain ring R =F,+u E,+
v E, +uvE s u’ =v* =0, uv=vu, were considered
by a lot of literatures, such as Refs. [7-8]. The
aim of this work is to study double circulant self-
dual codes and double circulant LCD codes over the
ring R. The main tool is the Chinese Remainder
Theorem (CRT) approach to quasi-cyclic codes as
introduced in Refl. [ 9], and generalized to quasi-
twisted codes in Ref. [10]. Based on the theory
developed in Ref. [11], we extend the method to
the ring R. By the Gray map in Ref. [7], we also
derive the modified Varshamov-Gilbert bounds on
the relative distance of the codes considered,
building on exact enumeration results for given n
and q.

The material is organised as follows. The
next section contains the preliminaries of the ring
R. We use the CRT to study algebraic structure of
double circulant codes and derive the main
enumeration results in Section 2. Section 3 is
dedicated to asymptotic bounds on the relative
distance of the double circulant codes. Section 4

concludes the paper.

1 Preliminaries

1.1 The ring E, +ul, +vE +uvE,

Consider the ring R =F,+ uF,+ vF,+ uvF, ,
where u* =v* =0, uv =wu. It is a non-chain ring
which has maximal ideal {u,v)>. Let R be the set
which consists of all units in R, that is to say,
R* = R\{u,v). The following result gives the
number of square roots of —1 in R.

Proposition 1.1 (i) Let ¢ be a power of 2.
Then the number of square roots of —1 in R is ¢°.
(ii) Let ¢ be a power of an odd prime with ¢=1

(mod 4). Then the number of square roots of —1

in R is 2.

Proof (i) Assume q is a power of 2, for r =
a+butcvtduv €ER, ifr*=a*=—1, thena=1
andb,c,d € E,. Thus the number of square roots
of —1inR is¢®.

(il) Assume q is a power of an odd prime with
q =1(mod 4) , for r =a +bu+cv+duv € R, then
r*=a*—42abu + 2acv 4 2(ad +bc)uv. Note that
r*=—11if and only ifa? =—1and b =c =d =0,
thus the number of square roots of —1inR is 2.
1.2 Norm function and trace function over

finite fields
Given a positive integer m, there exists an
Forx € F,», the trace Tr(x)
of x over E, is defined by

extension field F .

m—1

Tr(x) =2 +27 + -+ 2
For x € Fy» the norm N(x) of x over F, is
defined by
N () :I(qul)/(q*l) .

In fact, for the norm function, each nonzero
element in F', has a preimage of size (¢" —1)/(g—1)
in Fjn.
element in F'; has a preimage of size ¢” ' inF ju.

1.3 Codes
A linear code C of length n over R is an R-

For the trace function, each nonzero

submodule of R". For x = (x1,x3,"**sx,)s y =
(y1sy2s++sy,) € C, the Euclidean inner product

of x and y is defined as [x,y = iny,-. The dual

i=1

code of C denoted by C+, is defined by

Ct={y ER"|[x,y]=0, Yz € C}.

A linear code C of length n over R is called a
self-dual code if C=C". Moreover, a linear code C
of length n over R is called an LCD code (a linear
code with complementary dual) if C (| Ct= {0},
which is equivalent to C @ C+=R".

Let E, be the finite field of order ¢, where q is
a power of a prime p, i. e. ,» ¢ = p' with a positive
integer / . In particular, when ged(2,1) =2, for
2=z tuz, +vzs +uvz, € R withz,,25,25.24
€ E, , the conjugation of = over R is defined by;:

27 4wz, 4 vz 4 woz Y7, and the Hermitian
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inner product is defined by [xsy ]y = [x»v]s
wherex, v € R.

Here, we use a circulant matrix to describe a
double circulant code. A matrix A over R is said to
be circulant if its rows are obtained by successive
shifts from the first row. A code C is a double
circulant code over R if its generator matrix G will
be of the form G =(I,A), where I is the identity
matrix of order n and A is a circulant matrix of
order n.

1.4 Gray map
The Gray map ¢ from R to IF, is defined by

¢ (a +ub +vc +uvd) =

dsct+dsb+ds a+b+c+d)
in Ref. [7]. In fact, the Gray map ¢ is a bijection
from R to F}, and it is a distance-preserving map.,
which can be extended naturally into a map from
R"to Eras ¢ ()25 52,)) = ($(x1) ¢ (x2),
v, (x,)), wherex; € R for 1 <<i < n.

Theorem 1. 1
have the following properties.

() If C is a self-dual code of length n over R,
then ¢ (C) is a self-dual code of length 4n over E,.

(i) If C is an LCD code of length n over R,
then ¢(C) is also an LCD code of length 4n over
E,

q-

Let g be a power of 2, then we

Proof FOrI:(1'1’1?29"’9I,,)7 y :(ylay27
. y,) €C, wherex; =a; +bu-+tcvt+duv, y,=
a/i+b/,-u+c/,-‘v+d/iu‘v Witl’la;,bisC'/ydl‘ad/iab,is('/;a
d’ € E,, for 1 <<i <<n. I C is self-dual, then
[x.y]= 2 Ca;a’~+ abAav)u+ (a4 a'c)H)v+

i=1
(a;d' b’ cib'+da’Huv) =0.
It means that

Za;a/,: 2 (ajb/,—l—a/,b;) — 2 ((,l,(,‘/j_’_d/j(f,’) —
i=1

i=1 i=1
E (a,‘d/,'+ b,‘(f/,‘“‘ C,'b/,'+ d,-a /,' ) =0.
i=1
On the other hand, according to the definition of

Gray map ¢, we have

[(}S(I) 995(3/)] — 2 (a,va/,-—|— (dib/{+a/{bj) +
i=1
(di['/;+a/;t'[) + (al'd/[+bi6'/i+ c,-b/ﬁ—d[a/i)) =0.

It implies that $(C+) & ¢(C)*. Since the Gray
map ¢ is a bijection from R" to E", then ¢ (C1) =
$(C)+. T Cis an LCD code overR s thenC | C+=
{0}. It follows that ¢(C [ C-) & 4(C)
¢ (C). Since ¢ is a bijection from R" to F/", we
find that ¢(C) N ¢(C)r= ¢(C) N $(Ct) =
$(C N CH)=1{0}. Thus ¢$(C) is an LCD code of
length 4n over E,.

2 Algebraic structure of double circulant
codes
In this section, let n be an odd integer with
ged(n,g) =1. Let f(&) =a, 2" +a, 2" 4+
ax + a, with a, % 0. Then the reciprocal
polynomial f* (x) of f(x) is defined by f* (x) =
‘T”f‘(%) = Cl()l'” + alx”il + o0 + aAp—1X + Ay.

Furthermore, f(x)
f*(x)= f(x). Now, the ploynomial 2" — 1 &

R[x] can be represented in the form

is called self-reciprocal if

" —1=alx *1)Hgi(x)nhj(x)h;“' (x),

i=2 =1
over R with « € R”, Wherje g:(x) is a self-
reciprocal basic irreducible polynomial with degree
2e; for 2<Ci <{s, and h; (&) is the reciprocal basic
irreducible polynomial of ; (x) with degree d; for
1<{j <<t. By the CRT, we get

Rlx] » R[z] s ‘ _
oD " D PD@RIV (g (OND

@ (R[z1/Ch; () @R[x]/(h} () =

R @ @Fy +u B v B+ uv B ) @

(@ ((Fyt; + uF; 4+ vFe;, +uvFe; ) @
.(quj —+ qud_,- -+ ‘UF{IJ_/ + qu{z‘[./ ). =

R® @R.)® @Ry, DRy,
=2 ! = J J

Obviously, all of these are extention rings of

R. This decomposition naturally
( Rlx] )2 as
(" — 1 :

( R[x]
(" —1

extends to

)“:RZ@@(R%)Z)@

(@R, @ Ry
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. Rlx (i) if ¢ is f 2, the total ber of
A linear code C of length 2 over % can be Hratsa pov'ver © ¢ total number (_)

(" =1 self-dual double circulant codes over R is
decomposed in the form of C =~ C; @ (1@2 CH® ¢ 1 DL (¢ —D.
. i=2 i=1

(_@)1 (C B ")) s where C, is a linear code over R Proof (i) We prove it by counting their
=

of length 2, C; is a linear code over R,, for each
2<i < s, and for each1<<j <t, C’; and C’; are
both linear codes over Rdj of length 2, which are
called the constituents of C.

Theorem 2.1 Letn be a positive odd integer.
Assume that the factorization of x” — 1 into basic
irreducible polynomials over R is of the form

a" —1=alx —I)Hg,-(x)nhj(x)hf (x),
i=1

i=2
witha € R* v n =1+ D> 2, +2>)d;. Then
i=2 =1

(i) if ¢ is a power of an odd prime with g =1

(mod4) , the total number of self-dual double circulant

codes over R is 2Hq3”i (g% + 1)Hq3d! @4 — 13

i=2 j=1

ab® +ba’ =0,

ac?’ +ca? =0,

J1+aq““—o,

By the definition of the norm function from
Ez; to B¢ , there are g% -1 different choices fora.
Similarly, by the definition of the trace function
from F2; to Fyei » so there are ¢ different choices
forb, ¢ andd , respectively. Thus the choices of 3;
are equal to ¢*i (g% + 1).
a pair
(hj(x), hi(x)) both of degree d; leads to

counting dual pairs of codes (for the Euclidean

By what we have already known,

inner product) of length 2 over Ry . Our goal is
looking for the total number of (8;,37) such that
1+ B)f;= 0, where (1.8;) and (1.8]) are the

generators of C; and C/, respectively. We discuss

the choices of (8.f8) by its characterization of

/ , 1
unit. If §°;&€ R; » then ‘8']»:*[8#, there are
j

| Ri |=(q" — Dqg*" choices for (B';, f')). If

ad® +be? b +dat =0,

constituent codes. Using Proposition 1.1 (i),
there are 2 self-dual codes C, of length 2 over R,
whose generators are (1,9), (1, — n), where
7" =—1, 5 € E,. For constituent codes C; of C,
suppose that (1,4;) is the generator of C,, and let

B:i =a +ub+vc +uvd € R, , then
(1,818 T =14 BB =0,

Hence we get 14 (a + ub +ve +wod) (@ +ub?" +

e’ + wud’) = 0, and thus (1 +a9 T+

uCab® +ba’ ) + v (ac” +ca® ) 4 uv (ad? +

bet -cb? +da’ ) =0,

N(a)=—1,

Tr(ab?® ) =0,
Trlac’ ) =0,
1Tr<adv“' +be ) =0,

g, e Rd]\ Rj , then B € (usv), it is a
contradiction with 14 g",8;=0.

(ii) It follows from (i) by considering
Proposition 1. 1 (1.

Lemma 2. 1 Consider the constituents C,,
Ci» C’;and C” of C, then

(i) C; is an LCD code over R with the
generator (1,7) if and only if 1 +7%* € R".

(ii) C; is an LCD code over R, with the
generator (1,43;) if and only if 1+ 8.8, € R, .

(iii) C';@ C”; is an LCD code over Ry, with
C'/=(1.8;)) and C";= (1,8"))) if and only if
188 € Ri.

Proof
proofs of (ii) and (iii) are similar to that of (i).
Suppose that 1+ 7* € R\ R", then [uv(l.7),
(1,77)]20, which implies uv(1,7) € Cit. It

It suffices to prove (i), because the
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means that uv(1,9) € C+ N C, s which means that
LCD
Conversely, suppose that 1 + 3° € R", then
a(l+9*) # 0for a € R\{0}. Hence, a(1,7) &
C1. Because (1,7) is a generator of C, it follows
that C, N Ci ={0}. Therefore, C; is an LCD code

over R.

C, is not an code, a contradiction.

Theorem 2.2 Letn be a positive odd integer.
Assume that the factorization of x” — 1 into basic

irreducible polynomials over R is of the form 2" —1

i=2

=alx — I)Hgl-(x)]_[hj (k] (), witha €
i=1

R, n=1+ ZZe,- +22dj. Then we have
=2 =1
(1) if ¢ is a power of an odd prime withq¢ =1
(mod 4), the number of LCD double circulant

codes over R is ¢* (¢ — 2) || (g% —q™ —q%i) «

i=2
t
H (qsd] —qu +q651j )
=1
(ii) if ¢ is a power of 2, the number of LLCD
double circulant codes over R is

qﬁ(qil)]i[(q&/l 7q7r'l 7(16(/1 ) .

i=2
13
H (qu/ —q”/ +q6d1 ).
=1
Proof (i) We can also count the number of
LCD double circulant codes by counting constituent

codes of C. For the constituent code C, of C, let
(1,7) be the generator of C;. According to Lemma
2.1 (1), we know that C, is an LCD code if and
only if 1 +7* € R".

character of 5 as follows:

Next, we discuss the unit

If € R, we write p=9, +n,u+n;v+7uv,
where 715 725 755 70 € B and 9, 70, then1+9* =
(14 77%) + 2771772u + 2771773”0 + 2(771774 + 772773)UU-
Suppose that 1 +7* € R", then we must have 1 +
77 # 0. Therefore there are (¢ — 3)¢* choices for
7.

Ifp € R\R", thenl+7" € R". Itis easy to
see that there are ¢” choices for .

For the constituent codes C; of C, let (1,5;) be
the generators of C; with2<{: <{s. By Lemma 2. 1

(i), C; is an LCD code if and only if 1 + 85, €
R, . Put B =B +ufin +vBs + uvBi with B4 8:z s
Bis B € Fpei s then we get 1 +;&E‘ =1 +‘87fl 1+
w(Bafs + PuPhD) + vw(BaBh + Bupr) +
uv (ﬁil f{i +,8i2ﬁ?§i "‘51‘3;87;’ “—ﬁmﬁfﬁvi ).

If 1+ 8B € R, » then we obtain 1 + 81" #
0. Therefore, there are ¢*i — g% — 1 different
choices for B;. Thus there are ¢* — g™ — g%
different choices for 8; such that C; is an LCD code.

For the constituent codes C;@® Cof C, let (1,
B’) and (1.8") be the generators of C; and C’; with
1<<j <1, respectively. By Lemma 2.1 (iii), we
get C;@PC” is an LCD code if and only if 14887 €
Rji . Without loss of generality, we discuss the
unit character of B as follows:
1
B

Therefore, in this

If3;€ R » then f;€—

+R57 , we note

1 ,
that [— 2= + Ri, =1 Ri, |.

i
case, we have | Rj/ |2 =[(q% —Dqg > =¢% —
2™ + ¢ . So ‘there are ¢% — 2q™ + q%
different choices for (8';,8").

IR, € Ry \R » let f/=uf,+vfsTuvf s fi=
/3;'/1+MBJ/'/2+ "UBJI'/.aJF u’Uﬁj”ﬁt » where Bj/Z 9/3]'/3 9,8]'/4 9@'/1 9@”2 9,8]//3 ’
Bii€ Fyi . Then 1+ Bifi=1+ uBjf+ v +

wo(Blafis+ Bls Bt BLBH) » we must have 1+ B/ €
Ri . In this case, the number of (B/,8;) that
satisfies 1+ B8/ € R, is equal tog™.

Thus there are ¢* — ¢q™i + ¢ choices for

(8,87 such that C;@® C7 are LCD codes.
(i1) This follows from (i) and the result is

proven,

3 Distance bound

Let ¢ be a primitive root modulo n, where n is
an odd prime. SinceE is a subring of R and h (x) =
x" '+ 42 + 1 is irreducible over F,. Then we
have x" — 1 = (x — Dh(x) and h(x) is a basic
irreducible polynomial over R.

By the CRT, we have

R[x] " R[x]
(z"—1 (x—D

R[] "
(h(x))
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Elusv,x]

RS (v yuv —ouh ()
R ® (Fp1+ uF 1+ oFp1+ uvEp1).,
x|

Let % be the ring %, so R is a subring of 4.

~

Lemma 3.1 If a nonzero vector x = (e, f) €
C, and f is not generated by h(x), where C, is a
double circulant code over R, then there are at

1 generators (1,a) such that z € C,.

most g

Proof By the CRT, (e, f) = (e;,f 1) D (e,
f2). Since (e, f) € C,, then f=ea, f|=e,a, and
fs=esa,, wheree;, f1,»a, €ERandeys f1, a; €
AR Leta, =ay ‘+uay, +vays +uvay s a, =as +
uay +vay; +uvay » wherea s apsaizsan € F,
ass ansaspsaxy € F 1. Now, writing R’ =R,
R’,= %, consider two constituents of C,, we
discuss the unit character of e; for 1 << i << 2 as
follows:

@D Ife;, =0, f1 =e1a;, thena, is an arbitrary
element in R, thus there are ¢* different choices for
a.

@ Ife; € R for1<<i <2, there exists only

/i

one solution fora; =—.

e

@ Ife;, € ((usv)\{0} for1 <<i << 2, lete; =
ue;» +vei; +uvey, with (esys e;3¢;,) 7 (0,0,0) and
fi=ufw+ofistuvfiyfor1<<i<2, wheree,,
€139 €14 f129f137f14 GEv €229€235 €249 fzz’ fzsv
fau € Ep1. Since f;, =e;a;» we have

ufis +ofis tuvfu =

:Ov

n—l n—l

n—1 n—1 n—1 n—1

It means that there are 1 +q¢ 2, g2z, gz, q?

choices for as , assasssas s respectively. Using

the proof of Lemma 3. 1, there are qS”;3

choices for

as.

+azza(§32 + a23a§z2 +ag4a‘§12

n—1

(ue;, +ve;s +uve,)(an +uay, +vas +uvay) =
ueppan +vesan Fuvieas +epan euai).
Through a comparison of coefficients, we have
fiz = €21 ffs = €i3dils f'm =epa;; T esan +
e a;. In the case of e, =0, ¢13=0 , ey, 7 0, then

f14
an="—sapsas ay €F. Therefore, there are at
€14

most ¢° choices for a,. Similarly, there are at most
q** choices for a, when ey, =es; =0,e, 7 0.
In summary, there are at most ¢' different

3n—3

choices for a, and at most g different choices for
a,. Then the result follows.

Lemma 3.2 If a nonzero vector z = (e, f) &
C, and f is not generated by A (x), where C, is a
self-dual double circulant code over R. Then

(1) if g is a power of an odd prime withq =1

3n—3
(mod 4), there are at most 2¢q 2 generators (1,a)

such thatz € C,.

343

(iD) if q is a power of 2, there are at mostq 2
generators (1,a) such that z € C,.

Proof Using the same notations as Lemma
3. 1.

(i) Based on the proof of Lemma 3. 1. In the
first constituent of C,» [ (1sa1),(1say) |=14+at=
0. By Proposition 1. 1 (ii), then there are 2 choices
for a;.

In the second constituent of C,, ,

[(17&2)(1,(12)][—1 :1_‘_6126172:0,

then
N(azl):_ls
n—1
Tr(az]aZf ):Oa
@/ n—l
Tr(a21a‘£32 ):Oa
n—l n—l
=0, \Trasna¥® +axpals® ) =0,

(ii) This follows from (i) and Proposition 1. 1
(1), the result follows.
Lemma 3.3 If a nonzero vector x = (e, f) €

C, and f is not generated by 2 (x), where C, is an
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LCD double circulant code over R. Then

(1) if ¢ is a power of an odd prime with =1
(mod 4), there are at most (¢ — 2)g™
(1,a) such thatz € C,.

(i1) if g is a power of 2, there are at most

generators

(¢ —1)¢” generators (1,a) such thatz € C,.

Proof Using the same notations as Lemma
3. 1.

(i) Based on the proof of Lemma 3. 1, for the
first constituent of C,, it is an LCD code if and
onlyif 1+af €R". If 1+a? € R", then14+a% #
0y apzsass ay € F,. Thus there are (¢ — 2)¢°
choices fora;.

For the second constituent of C, , it is an LCD
code if and only if 1+asa, € 2. if 1+asa, € 2",
then we get 1+a21‘1%+] F 0y dogs Qzgs ag € Fp1,

n—l1
It means that there areq" ' —q 2z —1, ¢" ', ¢" ',
q" ' choices for as s assassass respectively.

Using the proof of Lemma 3.1, there are ¢**
choices for as.

(ii ) This
Proposition 1.1 (1).

follows from (1) and

If C(n) is a family of codes with parameters

[n.k,.d,]overE. We say that a family of codes is

k” .
good if p6 > 0, where p =limsup o is rate, and

e
. da . .

0 =Iliminf — is relative distance.
n—>co n
In number theory, Artin’ s conjecture on

121 states that a given integer g

primitive roots
which is neither a perfect square nor — 1 is a

primitive root modulo infinitely many primes.

This was proved conditionally under the
generalized Riemann hypothesis (GRH),
Recall the g-ary entropy function defined for

—1
0t << QT by Ref. [14, Chapter 2. 10. 3]

H, () — tlog, (¢ — 1) —tlog, (1) —
qg—1

(A —0log,(1—21), if 0<Tt¢ <T

This quantity is instrumental in the estimation
of the volume of high-dimensional Hamming balls
when the base field isE. The result we are using is
that the volume of the Hamming ball of radius tn is
asymptotically equivalent, up to subexponential

nH, (0)

terms, toq » when 0 <t <1, and n goes to
infinity.
Now we are ready to present the main results.
Theorem 3.1 Letn be an odd prime withn >
q» and g be a primitive root modulo n. The family
of Gray images of self-dual (resp. LCD) double
circulant codes over R of length 2n, of relative

1
distance &, and rate 1/2, satisfies H,(8) = 16

1
8
of codes are good.

Proof

size of the family codes. The numberical value of

(resp. H,(8) = — ). In particular, both families

Let p; be an odd prime, and 2, be the

A, is equal to the results of Lemmas 3. 2 and 3. 3,
respectively. Forn —oo, Using Theorems 2. 1 and

2. 3, we obtain Tab. 1 as follows.

Tab.1 Enumeration results of self-dual and LCD double circulant codes

self-dual LCD

0, A Q, A
¢=p' 2¢" " + 2613“273 2(13”273 (g—2)(g" ! — thil — g™ (g —2)g™
9=7 @t a7 (=D —q'T —q") (g— g™

Assume that we can prove that 2, >21,B(d,)
is n large enough, where B (r) denotes the number

of vectors in R* with Hamming weight of their F,

image < r. This would imply, by Lemmas 3. 2 and
3.3, that there are codes of length 212 in the family with

minimum Hamming distance of their E, image =d,,.
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Denote by ¢ the relative distance of this family
of g-ary codes. If we take d, the largest number
satisfying 2, > A,B(d,), and suppose that a
growth of the form d, ~ 85, n, then, using an
8nH,, (3 [14. Lemma 2. 10, 3]

entropic estimate for B(d,) ~ ¢
yields, with the said values of 2, and A, the

estimate H,(5,) for self-dual codes and

_ 1
16
H, 6 :% for LCD codes. The result follows by

observing that, by definition of 6, we haved =6,.

4 Conclusion

In this paper, we mainly studied self-dual and
LCD double circulant codes of length 2n over the
ring E,+ uE,+ v+ uvE,. The exact enumerations
of self-dual and LLCD double circulant codes have
been given. This paper have clearly proved that
image codes are

these two families of

asymptotically good over F,. Moreover, the
complicated proofs and calculations of this ring
might be worthy studying other rings or defining

by many variables.
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