JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

文章编号:0253-2778(2018)11-0885-05

On a class of locally dually flat (α, β) -metrics

HUA Yiping1, SONG Weidong2

- $(1.\ College\ of\ Mathematics\ and\ Computer\ Science\ ,\ Chizhou\ University\ ,\ Chizhou\ 247000\ ,\ China\ ;$
 - 2. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, China)

Abstract: Locally dually flat weak Landsberg (α, β) -metrics in the form of $F = \alpha \phi(\frac{\beta}{\alpha})$ were studied, where α is a Riemannian metric and β is a 1-form. And locally dually flat (α, β) -metrics $F = \alpha \phi(\frac{\beta}{\alpha})$ with relatively isotropic mean Landsberg curvature were characterized, where $\phi = \phi(s)$ is a polynomial in s.

Key words: locally dually flat; (α , β)-metrics; weak Landsberg; mean Landsberg curvature; Minkowskian

CLC number: O186. 1 **Document code:** A doi:10.3969/j.issn.0253-2778.2018.11.003 **2010 Mathematics Subject Classification:** Primary 53B40; Secondary 53C60

Citation: HUA Yiping, SONG Weidong. On a class of locally dually flat (α, β) -metrics [J]. Journal of University of Science and Technology of China, 2018,48(11):885-889.

华义平,宋卫东,一类局部对偶平坦的 (α,β) 度量[J],中国科学技术大学学报,2018,48(11);885-889.

一类局部对偶平坦的 (α, β) 度量

华义平1,宋卫东2

(1. 池州学院数学与计算机学院,安徽池州 247000; 2. 安徽师范大学数学与统计学院,安徽芜湖 241003)

摘要: 刻画了定义在 $n(n \geqslant 3)$ 维流形M上的局部对偶平坦的弱 Landsberg 的 (α,β) 度量 $F = \alpha \phi(\frac{\beta}{\alpha})$,其中 $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ 是一个黎曼度量, $\beta = b_i(x)y^i$ 是一个1 形式. 还刻画了定义在 $n(n \geqslant 3)$ 维流形上局部对偶平坦且具有相对迷向平均 Landsberg 曲率的 (α,β) 度量 $F = \alpha \phi(\frac{\beta}{\alpha})$,其中 $\phi(s)$ 是关于s 的多项式. 关键词: 局部对偶平坦; (α,β) 度量;弱 Landsberg;平均 Landsberg 曲率;闵可夫斯基

0 Introduction

Locally dually flat Finsler metrics are studied in Finsler information geometry and naturally arise from the investigation of the so-called flat information structure^[1]. A Finsler metric F = F(x,y) on a manifold M is called locally dually flat if at every point there is a coordinate system

Received: 2017-06-24; Revised: 2017-07-22

Foundation item: Supported by the NSF of Chizhou University (2014ZRZ011).

Biography: HUA Yiping (corresponding author), female, born in 1982, master/lecturer. Research field; Differential geometry. E-mail: huayiping@yeah, net

 (x^i) in which the geodesic spray coefficients are in the following form

$$G^{i} = -\frac{1}{2}g^{ij}H_{y^{j}} \tag{1}$$

where H = H(x,y) is a C^{∞} scalar function on $TM\setminus\{0\}$ satisfying $H(x,\lambda y) = \lambda^3 H(x,y)$ for all $\lambda > 0$. Such a coordinate system is called an adapted coordinate system.

The first example of non-Riemannian dually flat metrics is the Funk metric given as follows^[1]

$$F = \frac{\sqrt{|y|^{2} - (|x|^{2} |y|^{2} - \langle x, y \rangle^{2})}}{1 - |x|^{2}} \pm \frac{\langle x, y \rangle}{1 - |x|^{2}}.$$

This metric is defined on the unit ball $B^n \subset R^n$. Recently, there are many results on the locally dually flat Finsler metrics. Ref. [2] characterized locally dually flat and locally projectively flat Finsler metric and found some equations that characterized locally dually flat Randers metrics. Ref. [3] studied and gave a characterization of locally dually flat (α , β)-metrics on an n-dimensional manifold M ($n \geqslant 3$).

In Finsler geometry, there are several important non-Riemannian quantities, one of them being the distortion τ is a primary quantity. The vertical derivative of τ on tangent spaces gives rise to the mean Cartan torsion $I = \tau_{v^m} dx^m$, and the horizontal derivative of I along geodesics is called the mean Landsberg curvature $J = I_{ik} y^k$, thus J/Iis regarded as the relative growth rate of the mean Cartan torsion along geodesic. We call a Finsler metric F is of relatively isotropic mean Landsberg curvature if F satisfies J + cFI = 0, where c = c(x)is a scalar function on the Finsler manifold. In particular, when c = 0, Finsler metrics with J = 0are called weak Landsberg metrics. Refs. [4,8] studied and characterized (α , β)-metrics with relatively isotropic mean Landsberg curvature, and obtained some useful results.

In this paper, we first study and characterize locally dually flat weak Landsberg (α, β) -metrics which are not Riemannian, and obtain the

following theorem:

Theorem 0. 1 Let $F = \alpha \phi(\frac{\beta}{\alpha})$ be an (α, β) metric on an n-dimensional manifold M ($n \geqslant 3$).
Suppose F is not Riemannian and ϕ satisfies one of the following:

- ① $\phi(s)$ is a polynomial of s with $\phi'(0) = 0$;
- $(2) \phi(s)$ is an analytic function with $\phi'(0) = \phi''(0) = 0$;

③
$$\phi'(0) \neq 0$$
,
 $s(k_2 - k_3 s^2)(\phi \phi' - s \phi'^2 - s \phi \phi'') - (\phi'^2 + \phi \phi'') + k_1 \phi(\phi - s \phi') \neq 0$;

where k_1 , k_2 and k_3 are constants. Then, if F is a locally dually flat weak Landsberg metric, F must be locally Minkowskian.

The third condition in Theorem 0. 1 is to make locally dually flat (α, β) -metric satisfy Eqs. (15) \sim (17), and these are very important for the proof of Theorem 0. 1. In other words, if a locally dually flat (α, β) -metric can not satisfy any condition of ① \sim ③ (for example Randers metric [2]), then Eqs. (15) \sim (17) can not be held. Moreover, there are many functions $\phi(s)$ satisfying the third condition, for example $\phi(s) = e^s$, $\phi(s) = \frac{1}{1-s} + es$ ($\epsilon \neq -1$), ect.

Further, we study locally dually flat (α, β) metrics with relatively isotropic mean Landsberg
curvature. We have the following theorem.

Theorem 0. 2 Let $F = \alpha \phi(\frac{\beta}{\alpha})$ be an (α, β) metric on an n-dimensional manifold M ($n \geqslant 3$). $\phi(s) = \sum_{i=0}^{n} a_i s^i \text{ is a polynomial in } s \text{ satisfying } a_1 = 0$ or $a_i \neq 0 (0 \leqslant i \leqslant n)$, If F is locally dually flat with relatively isotropic mean Landsberg curvature, then it must be locally Minkowskian.

1 Preliminary

Let M be an n-dimensional smooth manifold. We denote by TM the tangent bundle of M and by $(x,y)=(x^i,y^i)$ the local coordinates on the tangent bundle TM. A Finsler manifold (M,F) is

a smooth manifold equipped with a function F: $TM\setminus\{0\} \rightarrow [0,\infty)$, which has the following properties:

①Regularity: F is smooth in $TM \setminus \{0\}$;

②Positively homogeneity: $F(x, \lambda y) = \lambda F(x, y)$, for $\lambda > 0$;

③ Strong convexity: the Hessian matrix of F^2 , $(g_{ij}(x,y) = \frac{1}{2} [F^2]_{y^i y^j})$ is positive definite on $TM \setminus \{0\}$. We call F and the tersor g_{ij} the Finsler metric and the fundamental tensor of M respectively.

In Finsler geometry, (α, β) -metric is a class of important Finsler metric. By definition, an (α, β) -metric is expressed as the following form,

$$F = \alpha \phi(s), \ s = \frac{\beta}{\alpha}$$
 (2)

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form, $\phi = \phi(s)$ is a C^{∞} positive function on an open interval $(-b_0, b_0)$ satisfying $\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0$, $|s| \le b < b_0$ (3)

where $b = \|\beta_x\|_{\alpha}$. It is known that $F = \alpha \phi(s)$ is a Finsler metric if and only if $\|\beta_x\|_{\alpha} < b_0$ for any $x \in M^{[5]}$. In particular, if $\phi(s) = 1 + s$, then (α, β) -metric is a Randers metric. Let $G^i(x, y)$ and $G^i_{\alpha}(x, y)$ denote the spray coefficients of F and α , respectively. To express formulate for the spray coefficients G^i of F in term of α and β , we need to introduce some notations. Let $b_{i|j}$ be a covariant derivative of b_i with respect to α . Denote

$$r_{ij} = \frac{1}{2}(b_{i|j} + b_{j|i}), \ s_{ij} = \frac{1}{2}(b_{i|j} - b_{j|i})$$
 (4)

$$s_i^i = a^{ih} s_{hi}, \ s_i = b^i s_{ii}, \ r_i = b^i r_{ii}$$
 (5)

$$r_0 = r_i y^j$$
, $s_0 = s_i y^j$, $r_{00} = r_{ii} y^i y^j$ (6)

In fact, we can express the spray coefficients G^i as follows $^{\llbracket 5 \rrbracket}$:

$$G^{i} = G_{\alpha}^{i} + \alpha Q s_{0}^{i} + \Theta(-2\alpha Q s_{0} + r_{00}) \frac{y^{i}}{\alpha} + \Psi(-2\alpha Q s_{0} + r_{00}) b^{i}$$
(7)

where

$$Q = \frac{\phi'}{\phi - s\phi'} \tag{8}$$

$$\Theta = \frac{\phi'(\phi - s\phi')}{2\phi[(\phi - s\phi') + (b^2 - s^2)\phi'']} - s\Psi \quad (9)$$

$$\Psi = \frac{\phi''}{2\left[\left(\phi - s\phi\right) + \left(b^2 - s^2\right)\phi''\right]} \tag{10}$$

here $b^i = a^{ij}b_j$ and $b^2 = b_i b^i$.

Let

$$\Delta = 1 + sQ + (b^{2} - s^{2})Q',$$

$$\Psi_{1} = \sqrt{b^{2} - s^{2}}\Delta^{\frac{1}{2}} \left[\frac{\sqrt{b^{2} - s^{2}}\phi}{\Delta^{\frac{3}{2}}}\right]'$$
(11)

$$\Phi = -(n\Delta + 1 + sQ)(Q - sQ') - (b^2 - s^2)(1 + sQ)Q'', h_i = b_i - \alpha^{-1}sy_i$$
 (12)

The mean Landsberg curvature of the (α,β) -metric

$$F = \alpha \phi(\frac{\beta}{\alpha})$$
 is given by [6]

$$J_{j} = \frac{-1}{2\alpha^{4}\Delta} \left\{ \frac{2\alpha^{2}}{b^{2} - s^{2}} \left[\frac{\Phi}{\Delta} + (n+1)(Q - sQ') \right] \cdot (r_{0} + s_{0})h_{j} + \frac{\alpha}{b^{2} - s^{2}} \left[\Psi_{1} + s \frac{\Phi}{\Delta} \right] (r_{00} - 2\alpha Qs_{0})h_{j} + \alpha \left[-\alpha Q's_{0}h_{j} + \alpha Q(\alpha^{2}s_{j} - y_{j}s_{0}) + \alpha^{2}\Delta s_{j0} + \alpha^{2}(r_{j0} - 2\alpha Qs_{j}) - (r_{00} - 2\alpha Qs_{0})y_{j} \right] \frac{\Phi}{\Delta} \right\}$$
(13)

2 Some lemmas

To prove Theorems 0. 1 and 0. 2, we need some lemmas.

Lemma 2. 1 If $b^2Q + s = 0$, then $\phi(s) = k\sqrt{b^2 - s^2}$, in this case F is Riemannian.

Lemma 2. 2^[7] If $\phi = \phi(s)$ satisfies $\Psi_1 = 0$, then F is Riemannian.

Let $J = J_i b^i$, by Eq. (13) we get

Lemma 2. $3^{[6]}$ For an (α, β) -metric $F = \alpha \phi(\frac{\beta}{\alpha})$, the quantity J is given by

$$J = -\frac{1}{2\alpha^2 \Delta} \{ \Psi_1(r_{00} - 2\alpha Q s_0) + \alpha \Psi_2(r_0 + s_0) \}$$
(14)

where $\Psi_2 = 2(n+1)(Q - sQ') + \frac{3\Phi}{\Lambda}$.

Lemma 2.4^[3] Let
$$F = \alpha \phi(\frac{\beta}{\alpha})$$
 be an (α, β) -

metric on an n-dimensional manifold ($n \ge 3$). Suppose F is not Riemannian and ϕ satisfies one of the following:

(H₁) $\phi(s)$ is a polynomial of s with $\phi'(0) = 0$,

 $(H_2) \phi(s)$ is an analytic function with $\phi'(0) = \phi''(0) = 0$,

$$(H_3) \phi'(0) \neq 0,$$

$$s(k_2 - k_3 s^2) (\phi \phi' - s \phi'^2 - s \phi \phi'') - (\phi'^2 + \phi \phi'') + k_1 \phi (\phi - s \phi') \neq 0;$$

where k_1 , k_2 , k_3 are constants. Then F is locally dually flat on M if and only if α and β satisfy

$$s_{l0} = \frac{1}{3} (\beta \theta_l - \theta b_l) \tag{15}$$

$$r_{00} = \frac{2}{3} \left[\theta \beta - (\theta_l \, b^l) \alpha^2 \right] \tag{16}$$

$$G_{\alpha}^{l} = \frac{1}{3} (2\theta \ y^{l} + \theta^{l} \alpha^{2}) \tag{17}$$

where $\theta = \theta_i(x)y^i$ is a 1-form on M and $\theta^l = a^{lk}\theta_k$.

In fact, there are many functions $\phi(s)$ which are solutions of assumption (H_3) , let $\phi(s) =$

are solutions of assumption (H_3) , let $\phi(s) = \sum_{i=0}^n a_i s^i$ with constants $a_i \neq 0 (0 \leqslant i \leqslant n)$. It is not difficult to verify these $\phi(s)$ satisfy condition $(H_3)^{[3]}$. Thus, the (α, β) -metrics defined by $\phi(s) = \sum_{i=0}^n a_i s^i$ with constants $a_i \neq 0 (0 \leqslant i \leqslant n)$ are locally dually flat if and only if α and β satisfy Eqs. (15) \sim (17).

We assume that $\phi(s) = \sum_{i=0}^{n} a_i s^i$ is a polynomial in s, where $a_1 = 0$ or $a_i \neq 0 (0 \leqslant i \leqslant n)$, if F is locally dually flat. By (H_1) and (H_3) , Eqs. (15) \sim (17) hold.

Lemma 2. 5^[8] Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be an (α, β) -metric with relatively isotropic mean Landsberg curvature on a manifold of dimension n $(n \geqslant 3)$. Suppose that the following conditions: ① $\phi(s)$ is a polynomial in s; ② F is not of Randers type. Then F is a Berwald metric.

3 Proof of theorems

Proof of Theorem 0.1 Assume that $F = \alpha \phi(\frac{\beta}{\alpha})$ is a (α, β) -metric satisfying the condition of Theorem 0.1, then Eqs. (15) \sim (17) hold. Thus

$$s_{ij} = \frac{1}{3} (b_{j}\theta_{i} - b_{i}\theta_{j}),$$

$$r_{ij} = \frac{1}{3} (\theta_{i} b_{j} + \theta_{j} b_{i} - 2\mu a_{ij})$$
(18)

where $\mu(x) = \theta_l b^l$.

Contracting (18) with b^i yields

$$s_j = \frac{1}{3}(\mu b_j - b^2 \theta_j), r_j = \frac{1}{3}(b^2 \theta_j - \mu b_j)$$
 (19)

That is

$$s_0 = \frac{1}{3}(\mu\beta - b^2\theta), r_0 = \frac{1}{3}(b^2\theta - \mu\beta)$$
 (20)

So

$$r_0 + s_0 = 0$$
 (21)

Assume that F is a weak Landsberg metric, then it satisfies J=0. Putting (21) into (14), we get $\Psi_1=0$ or $r_{00}-2\alpha Q$ $s_0=0$. If $\Psi_1=0$, by Lemma 2. 2, F is Riemannian, this is impossible. Thus

$$r_{00} - 2\alpha Q \, s_0 = 0 \tag{22}$$

In order to overcome the difficulty in computation, we take an orthonormal basis at any point x with respect to α such that

$$\alpha = \sqrt{\sum_{i=1}^{n} (y^i)^2}, \beta = by^1$$
 (23)

where $b = \|\beta_x\|_a$. Then we have the following coordinate transformation in $T_xM^{[8]}$, $\varphi:(s,u^A) \to (y^i)$

$$y^{1} = \frac{s}{\sqrt{b^{2} - s^{2}}} \bar{\alpha}, \ y^{A} = u^{A}, \ 2 \leqslant A \leqslant n$$
 (24)

where
$$\overline{\alpha} = \sqrt{\sum_{A=2}^{n} (u^A)^2}$$
, we have
$$\alpha = \frac{b}{\sqrt{b^2 - s^2}} \overline{\alpha}, \ \beta = \frac{bs}{\sqrt{b^2 - s^2}} \overline{\alpha}$$
(25)

In this coordinate system, we have the following expressions:

$$r_{00} = \frac{2}{3} \left[\frac{b\theta_{1} s^{2} - s^{2}}{b^{2} - s^{2}} \overline{\alpha}^{2} + \frac{b s \overline{\theta}_{0}}{\sqrt{b^{2} - s^{2}}} \overline{\alpha} - \frac{\mu b^{2}}{b^{2} - s^{2}} \overline{\alpha}^{2} \right],$$

$$s_{0} = \frac{1}{3} \left[\frac{\mu b s}{\sqrt{b^{2} - s^{2}}} \overline{\alpha} - \frac{b^{2} \theta_{1} s}{\sqrt{b^{2} - s^{2}}} \overline{\alpha} - b^{2} \overline{\theta}_{0} \right]$$
(26)

It follows from Eq. (22) that

$$\frac{2b}{3(b^{2}-s^{2})}(\theta_{1} s^{2}-\mu b-\mu bsQ+b^{2}\theta_{1} Qs)\overline{\alpha}^{2} + \frac{2b\overline{\theta}_{0}}{3\sqrt{b^{2}-s^{2}}}(s+b^{2}Q)\overline{\alpha}=0$$
(27)

Note $b \neq 0$ then

$$\begin{pmatrix}
\theta_1 \ s^2 - \mu b - \mu b s Q + b^2 \theta_1 \ Q s = 0, \\
(s + b^2 Q) \overline{\theta}_0 = 0
\end{pmatrix} (28)$$

Letting s = 0 and using $b \neq 0$ in the first equation of (28), we have $\mu = 0$. Then (28) is equivalent to

$$\theta_1(b^2Q+s) = 0, (s+b^2Q)\overline{\theta}_0 = 0$$
 (29)

Since F is non-Riemannian, by Lemma 2.1, $b^2Q + s \neq 0$, then (29) are reduced to

$$\theta_1 = 0, \ \theta_A = 0 \tag{29}$$

Plugging (30) into (17) \sim (18) yields

$$r_{ii} = 0, \ s_{ii} = 0, \ G_{\alpha}^{i} = 0$$
 (31)

We know that α is flat and β is parallel with respect to α , which implies that F is locally Minkowskian.

Proof of Theorem 0.2 We assume that F is a locally dually flat (α, β) -metric with relatively isotropic mean Landsberg curvature, $\phi(s) = \sum_{i=0}^{n} a_i s^i$ is a polynomial on s satisfying $a_1 = 0$ or $a_i \neq 0 \pmod{s} \pmod{n}$, and by Lemma 2. 4, $(15) \sim (17)$ hold. In addition, noting $\phi(s)$ is a polynomial of degree $n(n \geqslant 3)$, so F is not of Randers type, and by Lemma 2. 5, F is a Berwald metric, which implies that $r_{ij} = 0$, $s_{ij} = 0$. Then (15) and (16) are reduced to

$$\beta\theta_{L} - \theta b_{L} = 0, \ \theta\beta - \mu\alpha^{2} = 0 \tag{32}$$

Contracting the first equation of (32) with b^l yields $\theta = \frac{\mu}{b^2}\beta$. Plugging this into the second equation of (32), we get $\frac{\mu}{b^2}\beta^2 - \mu\alpha^2 = 0$, thus deriving $\mu = 0$, $\theta = 0$. Plugging this into (17), we get $G_a^i = 0$. Now α is flat and β is parallel with

respect to α , which implies F is locally Minkowskian.

Acknowledgements We would like to thank the anonymous reviewers for their kind comments and valuable suggestions.

References

- [1] SHEN Z. Riemann-Finsler geometry with application to information geometry[J]. Chin Ann Math, 2006, 27(1): 73-94.
- [2] CHENG X, SHEN Z, ZHOU Y. On locally dually flat Finsler metrics [J]. International Journal of Mathematics, 2010, 21(11): 1531-1543.
- [3] XIA Q. On locally dually flat (α, β)-metrics [J]. Differential Geometry and Its Application, 2011, 29 (2): 233-243.
- [4] ZOU Y, CHENG X. The generalized unicorn problem on (α,β)-metric[J]. J Math Anal Appl, 2014, 414: 574-589.
- [5] CHERN S S, SHEN Z. Riemannian-Finsler Geometry [M]. Singapore: World Scientific Publisher, 2005.
- [6] LIB, SHEN Z. On a class of weak Landsberg metrics [J]. Science in China Series A, 2007, 50: 75-85.
- [7] CHENG X, LI H, ZOU Y. On conformally flat (α, β)-metrics with relatively isotropic mean Landsberg curvature [J]. Publ Math Debrecen, 2014, 85: 131-144.
- [8] CHENG X, ZOU Y. The generalized unicorn problem in Finsler geometry[J]. Differ Geom Dyn syst, 2015, 17: 38-48.
- [9] CHENG X, SHEN Z. Randers metrics with special curvature properties [J]. Osaka J Math, 2003, 40: 87-101.