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0 Introduction

Due to their practical importance, the

researches for dividend strategies under all kinds of

risk models have been remarkable

(1]

receiving
attention. De Finetti" suggested that an insurance
company would seek to maximize the expectation
of the discounted dividends before possible ruin
and showed that under the assumption of a discrete
process the optimal dividend strategy is a barrier
strategy. By the similar idea, Asmussen and
Taksar*' modified the problem with a bounded
dividend rate and showed that in the Brownian
motion model the optimal dividend strategy is a
threshold strategy. Using the integro-differential
equation argument, Gerber and Shiu™’ considered
the Cramér-Lundberg risk model and studied the
expected accumulated discounted dividends. More
results on this topic can be found in Refs. [3-10].
Recently, the loss-carry forward tax system
(the amount of tax payments should not lead to
bunkruptsy) has been investigated extensively.

Albrecher (1]

payments affect the behavior of a compound

and Hipp discussed how tax

Poisson surplus process, and established a
remarkably simple relationship between the ruin
probabilities of the surplus process with and
Albrecher et al. 2V

considered a general spectrally negative Lévy risk

without tax payments.

process with tax payments of a loss-carry-forward
of the

discounted total amount of tax payments. Wang et

type and studied arbitrary moments
al. " considered a compound Poisson risk model

with taxes paid according to a loss-carry-forward

system and dividends paid under a threshold
strategy, and provided the analytical expression of
the expected accumulated discounted dividends
paid between two consecutive taxation periods.
Recently, Wang and Liu“*” also considered the
compound Poisson risk model in which taxes were
paid according to loss-carry-forward tax payments
and dividends were paid by a threshold dividend
strategy, and discussed the integro-differential
equation of the expected discounted penalty
function. For more recent results on loss-carry
forward tax payments, the reader may consult
Refs. [12-18].

In this paper, we follow our research work in
20161 and continue to consider the classical
Cramér-Lundberg risk model by including a
threshold dividend strategy and loss-carry forward
tax payments, The basic assumptions of our model
are as follows.

(1) The initial surplus of the insurance
portfolio is u = 0.

(II) The loss-carry forward taxes are paid at
a fixed rate ¥ € [0,1) of the insurer’s income,
whenever the insurance portfolio is in a profitable
situation (or, the surplus is at a running
maximum) : R,..., (1) =max{R,.,. ,(s):s <<t}.

() When the surplus reaches a barrier of
constant level b , dividends are distributed at a
constant rate a < ¢(1 — ¥) , where ¢ > 0 is the
premium rate in the classical Cramér-Lundberg
risk model.

Hence, the dynamics of the surplus process

{R,...,(t),t =0} thus are determined by

dRy,a,/, )= —a— (")’1\'13%%,)(,)ifnaxR%M(v)S )14[(7_&./)(,);/,) dr +
N@)
(C — Cyl{Ry.a,l)(t):”n]?ley.a.b(.&)> )LRy.a.l;(’)‘:: b dt — d( 2 X,, ) ’ (D
n=1
Ry_a_ b (O) —Uu

where ¢ > 0 the gross premium rate, a the

threshold dividend rate, 1, the indicator function

of aset A, {N(t),t =0} a Poisson process with

intensity A => 0 denoting the number of claims up to
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time ¢, and {(X,,n = 1},

amounts of claims and being independent of

representing the

{N(t),t = 0}, a sequence of independent and

identically  distributed  nonnegative  random

variables with a common distribution function

F (x) which has a positive mean p :JX‘F(I)C{I <
0

oo, Here, F(x) =1—F(x) is the tail function of
F(x).

We denote the time of ruin by T',,,, » that is

Tyes =inf{z:R,.., () <0} (2)

and T,,, = if R,.,(t) = 0 for all 1t = 0.

Clearly, R,...,(Ty., = and | R,...,(T,.,) | are

the surplus immediately prior to ruin and the

deficit at ruin.

Let
My (u) =E, U

be the expected discounted total sum of dividend

T}’.a.l;

& dD(s)} (3)

0

payments until the time of ruin T,,., under the
condition that the initial surplus is u » where D (z)
denotes the aggregate dividends paid between
time 0 and time ¢ . § == 0 can be viewed as the force
of interest for the calculation of the present value
of the dividends.

For convenience, we write (m,,.;);(u) for
0 u < b and (my,,)(w) for u = b.
Throughout the paper we drop the subscripts ¥ and
a whenever ¥ and a are zero, respectively, and drop
the subscript & whenever 6 tends to infinity. In
addition, we shall assume that the safety loading

a—A

. c— o
factor defined by § =——
e

The rest of the paper is organized as follows.

is always positive.

In Section 1, using some useful preliminaries and
careful calculations, the closed-form expressions
for the expected accumulated discounted dividends

Cmyen ) (u) and

(my.e.5)2(u) ) are derived and the explicit solution

until ultimate ruin

when the individual claim amount follows an
exponential distribution is presented. In Section 2.,
numerical illustrations of the expected accumulated

discounted dividends until ruin and the optimal

threshold are given,

1 Closed-form expressions for (mn,.,;); (W)
and (my.q.;),(u)

In this section, we derive the closed-form
expressions for (m ..., )1 (u) and (m,,.,, )2 (u) over
the lifetime of the surplus process {R,...,(t),t =
0} . Before deriving Theorem 1. 1, we restate the
following results that were obtained in Ref. [19].

Firstly, let

B (uyuy) s =E[ e e @] €Y
denote the Laplace-Stieltjes transform of the upper
exit time 7., (u.u,) which is the time until the
surplus process {R,.,(¢t),t = 0} (with premium
rate ¢ » dividend rate @ and threshold & ) starting
with initial surplus u < u, reaching u, == b6 without
leading to ruin before that event. Clearly, if we let
S v 0in B (usu,) » it reduces to the probability
that the surplus process {R,.,(t),t = 0} starting
from initial surplus u < u, reaching u, = 6 before
ruin, which is denoted by (B**)o(u,u,). We
write B** (u,uo) = B¢ (usuy) » (B (uuy) =
(BS")o(usuy) for 0 < w << b and B*" (uuy) =
B (uwsuy) » (B*")o(usuo) = (BY")o(usuy) for
u=>b.

Now we provide integro-differential equations
for the function B*’(u,u,) in the following
Proposition 1. 1, which will help us to derive the
closed-form expressions for (m,..,)1(u) and
(myep)oCu) .

The function B** (usu,)

following

Proposition 1, 1"
satisfies  the integro-differential
equations. When 0 <Cu <b ,

o A+0
— B4 (usuy) :iB”{"’(u,uo) —
ou c

A [u
7J BT’[I(ui‘Tau())dF(I) (5)
0
and whenu =06 ,
o A+6
7B%'b<l/l 7'M()) :iB%'/’(u 91/{()) -
ou c—a

A <Jth‘§'/’ (u —x u)dF(x) +

cC—a 0

J B4 (u — zsu)dF (1)) (6)

u—b
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Secondly, let that is
B, (usuo): =E[e % @] (7 0 (hGo T
denote the Laplace-Stieltjes transform of the upper By Cuyuo) = (B uyuo)) i = (h Cu, )) (8

exit time 7, (u,u,) which is the time until the
surplus process {R, (¢) .t =0} (with premium rate
¢ and tax rate ¥ ) starting with initial surplus u <<
u, reaching u, without leading to ruin before that
event.

Before presenting the main theorem, we now
introduce the analytical expression of B, (u,u,) in
the following Proposition 1. 2, which plays an
instrumental role in analyzing the expected
accumulated discounted dividends until ultimate
ruin, and its proof is refereed to Ref. [20].

Proposition 1, 2 The resulting Laplace-
Stieltjes transform of the upper exit time z, Cu »u,)

is a power of that of the upper exit time 7 (u»u,) »

oy )= — ) —
C —Qa C

a—y

where M (z) is given by

M) :c(lf)’) —a

where h(u) is the solution to the integro-

differential equation
b/ (2) — A +Dh(x) Hj‘;ﬁu — WAF(y) =0
(9

Using the propositions given above, we now
derive the closed-form expressions for (m, ..., ) (u)
and (m,...,)2(u) over the lifetime of the surplus
process {R,..,(t),t = 0} in the following
Theorem 1. 1.

Theorem 1.1 When 0 < u <b ,

My )1 () =By (u0) Gy )2 (b)) (10)

and whenu =6 ,

mexp{J.:M(t)dt} | M@ nepatrep(—| Mra ds

(1D

2 +a—a(ﬁ;{’ By’ (¢ —x.)dF (2) +J4)Bq’b<z —a.DdF @) | a2

L
t

Proof When O <Cu <Ub , no dividends will be paid unless the process {R,.,.,(¢),z == 0} reaches the

level 5 , and the trajectories of the process {R,..,(t).,t = 0} are identical to those of the process

{R,(t),t =0} before they arrive at b , and implementing these considerations leads to Eq. (10).

Whenu =06 , by considering whether or not there is a claim during the infinitesimal time interval from

0 to d¢ and using the similar conditioning idea of Ref. [15], we have

My () =adt + A —Ad) e (my) s (w + (1 —7y) —a)de) Jrzldifef‘sd’{J
0

utCc(1=y)—a)di—b

(B3’ (u +

(cl—y)—a)dt —xu+ (A —Y)—a)d)my, ) (u—+ (c(1—Y) —addt) +

(mop)oeCu+ (1 —Y) —a)dt —x) —

P (u+(c(1—y) —a)dt —x,

ut (cd—7)—a)dt)m,,):(u+ (1 —y) —a)d))dF (z) +

ut(c(1=y)—a)dt
J ’ B (u+ (=) —a)dt —xsu+(cA—=7)—a)dt) Gn, ) (u+ (1 —y) —a)dt) +

ut-(c(1=y)—a)dt—b

mey)1(u+Q—y)—a)dt —x) — B¢ (u+(c(1—y) —a)dt —x,

u+Q—y)—a)dt)mng,)s(u+ (c(1—p) *a)dz‘,))dF(I)} “+o(dt).

Taylor expansion and collection of terms of order d¢ yields

A+0
(c(1—Y)—a

My (u) =

0

) <(77’ly,,1,/, )2 (u) -

a )_ A .
A+0 (cQ—y)—a)

u—b
{J (B (u— 20100 Gmyons)o ) A+ Grg)o Cu— ) — B3 — 2 vu) (), () ) dF (20)
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Ji{ B (u—asu)nygy)e(u) + Gng)(w —x) — By (w—xu) () (w)) dF(l‘)}.

From the integro-differential equation for (m,,),(u) in Refl. [3], that is,
O=a+ (c—a)lmy,)sw) — QA +8) Gng,)s(u) +

M netu—dF @+ Gna - P @)

u—b

then we obtain

My ) =M ) (my ) (w) — M) Gny )y (u) + (moy)s(u) (13)

(1 ) a

The general solution to this ordinary differential equation of first order is given by
C _— a ’ v . o S u

mmnm(s)) exp| J{}M(t)dz}ds)exp{JbM(z‘)dz}

QEY)

(M) ) = (C —J, (M) ()0 () —

Noting that M(z) > a0 —a 6;/) ; (> 0) and the boundary condition at threshold 4 , one can verify that
a
C a

m(ma./;)é (.s‘))exp {— J;M(z‘,)dt} ds

C :J/ (M) Gmo)a (o) —

Therefore, we have
c—a

m(ma./,)é(s)> exp{—J;M(t)dt} ds

)2 () :exp{J: (Mde| f (M) G (s) —

In addition, noting that
c— c—a
c(l—}’) R G s
__cT7a
c(1—7) —a
we arrive at Eq. (11). The proof of Theorem 1. 1 is completed.

exp{J:M(t)dt} J‘Z;‘Mu)(ma,,,)Z<s>exp{—J;M(z>dz} ds —

exp{J:M(z)dt} f:(ma,p;(.s>exp{—f;M<z>dz} ds (15

Example 1.1 Assume that the individual claim amount is exponentially distributed with parameter
B> 0. We are to calculate the closed-form expressions for (my..., )1 (u) and (my..;, )2 Cu).

It follows from (6. 15) of Ref. [3] that
a R, (ﬁ+p)ep/7—<,8+7’2)er2b Ry )

s u =
B (p—R)e" —(r, —Rye u=>0 (16

(7na,/1)2(u) :%(1 —eRZ(“ /))) o

From Eq. (11) we get
aR, (B+pe’—(B+re
,86 (p*Rz)G‘nb*(Fg*Rg)erzb

cy (eRll;e(R R)u+q1(b)>(l e eRZ(rb)<aR2+aR22 B+pe’ —B+re >.

eRZM,{*/)) +

(Mya )2 () :%(1 Ry

cl—7)—a S 5o (piR2>ep(17(r27R2)er2b
c—a c—a
(g, (b)) F(_¢—a c(l—y)— Rl R cd—7)—a R RZ+1._ e’ Ry Ry
c—a R R ol C(l*)’)*a R, —R; ' R, —R.; ’ q:(b)
cQ=y)—a =

an
where ., (p,q;l;2) is the Gauss hypergeometric series, that is,

ra
I'igp) I'U —¢)
When 0 << u <b , by Proposition 1. 2 and Eq. (10) we have

1
i (pagiliz) = J T (1 —s) " (1 —s2) *ds.
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1

B+p)e™ — (ﬁ+r2)e"z“> ] y[iaRZ B e’ —(B+r)et
(Bt+pre® —(B+re? o (o—Ry)e"" — (r; —Ry)e™’

(my,a,/, )1 (Lt) :<

cy b Ty (aR:  aR,” (B+pe’ —(B+re’
(.(1iy)ia<€— +Q1(b)) ( S =+ 3o (p—Rg)eﬂ)—(T‘z_Rz)erZh>
c—a c—a
(ql(])))i-u(:ya)w F.( c—a C(l*}’)*aRl_RZ.L'(1*7)*GR1_R2+1.7 ezt )}
c—a e =) —a’ R, —R, ’ R, —R, o (b))
Rl 7R2

c(1—7)—a
(18)

2 Numerical illustrations and the optimal threshold

In this section, we give numerical illustrations of the expected accumulated discounted dividends until
ruin and the optimal threshold. We consider the case of an exponential claim size distribution with
parameter 8 =2 and choose c =2, A =1, 0 =0. 04, a =1. Let furthermore y =0. 5. Hence we have p =0.
—a

0386, r, =—0. 5186, R, =0. 1277, R, =—0. 2610, and A —a ¢ » =2. We then obtain from Egs. (17)
c(1—y)—a
and (18) that

My )1 () =20(1 — g -50@Dy L5 22p(h) + 1. 9365Ce * 57”2710 4-q  (H))* »

_ —0.2610b

@ 0BG (5 99 41,3624 (5)) (g1 (D)) ? ,F1 (2,1, 328532, 3285;;(7[?)) (19)
1
and
1' 0386 0. 0386u 70' 4814 —0. 5186u ,
)2 ) = (5 038620-0386” — 48142 — L5 L [5225(b) + 1. 9365(e B g (5P
. e*(). 2610b
(—5.2241. 3624 p (1)))(Q1 (b))% ,F,(2,1.3285;2. 3285;(1(7[)))] (20)
1
where
O. 3887 1 0386 —0. 2224b 70 4814 —0. 7796b 1 0386 0. 0386b 70 4814 —0. 5186H
g1 (b) = —e OB | ( - e 00 Ly = e .
O. 065860' 03860 ___ O 47766 0. 51860 O 299660.00861; +O 25766 0. 5186H
We are interested in the optimal threshold level 6 * 16
that maximizes the expectation of the discounted § 14{
=5
dividends (until possible ruin). When the initial surplus g 12} !
u is given, one can take (my.,;)1(u) and (my,4; )2 (u) 2 10}
for functions of 6. Noting that (Gn,,,);(x) and QE; 3
<
(my.q.0)2(u) are both continuous functions of & , and —; 61u=1
since the function m,.,.,, (u) tends to 0 when & tends to é a4l
infinity, then the trivial bounds 0 <C my,.., (u) << © )

J e %adt guarantee the existence of the optimal 00 20 20 %0 20 T00 120
0

the barrier b
threshold levelb* . Whenu=0,1,4,5,6 and 8, the data ¢ barner

. Fig. 1 The expected accumulated discounted
for my,,.)1 () and Gmy.)2(u) C as functions of b )

] ] ) . dividend payments as a function of b
are given in Tab. 1. Fig. 1 depicts the expected

accumulated discounted dividend payments as a function of the threshold level b .
It is interesting to note that when u <C 4.8, the optimal threshold #* remains at the level 4. 8.

Meanwhile, when u > 4. 8 the optimal threshold 4" increases as the initial surplus u increases.
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Tab.1 The data for m, .., (u) (as functions of b) for six different initial surplus level: ©«=0,1,4,5.6 and 8

b u=0 u=1 wu=4 u=5 wu=6 u=8§ b u=0 u=1 wu=4 wu=5 wu=6 u=8
0.0  2.3059 5.1696 12.4842 14. 1313 15.4383 17.2658| 5.2  4.8272 7.9898 13.6165 14. 8519 16. 0424 17. 6807
0.6  2.8791 5.2518 12.5489 14,1840 15.4803 17.2917|| 5.8  4.7773 7.9074 13.4760 14. 6986 15. 8297 17. 5711
1.2 3.4225 5.6649 12,7184 14.3228 15.5915 17.3605| 6.4  4.6984 7.7767 13.2534 14.4557 15. 5503 17. 3977
1.8  3.8944 6.4459 12.9465 14. 5114 15,7434 17. 4551 7.0  4.5997 7.6133 12.9749 14. 1520 15. 2235 17. 1524
2.4 4.2702 7.0680 13.1827 14. 7097 15. 9047 17.5565| 7.6 4. 488 17.4286 12. 6601 13. 8087 14. 8543 16. 8253
3.0 4,5430 7.5195 13.3793 14. 8802 16. 0459 17.6469| 8.2  4.3688 7.2311 12.3234 13.4414 14. 4592 16. 4037
3.6 4.7190 7.8107 13.4948 14.9908 16. 1424 17.7117|| 8.8  4.2452 7.0266 11.9749 13. 0613 14. 0503 15. 9398
4.0  4.7892 7.9269 13.5093 15.0181 16. 1719 17.7349|| 9.2  4.1618 6.8886 11.7397 12. 8048 13. 7743 15. 6267
4.4 4.8273 7.9901 13.6170 15.0006 16,1678 17.7390| 10.0 3.9950 6.6124 11.2691 12. 2915 13. 2221 15. 0002
4.8  4.8385 8.0085 13.6484 14.9321 16.1260 17.7216| 80.0 0.0846 0.140 10.2388 0.2604 0.2802 0.3178
5.0  4.8353 8.0033 13.6396 14. 8770 16. 0896 17. 7042 &b~ 4.8 4.8 4.8 4.0 4.2 4.3

Tab.2 The data for m,.,., (u) (as function of u) for three different threshold level: b=10,15, 20

u=0 u=1 u=2 u=3 u=14 u=>5 u=>~06 u=7 u=3, u=9 u=10

b=10  3.9950 6.6124 8.5782 10.0728 11.2691 12.2915 13.2221 14.1139 15.0002 15.9029 16.8361
b=15 3.0486 5.0460 6.5461 7.6866 8.5995 9.3797 10.0899 10.7704 11.4468 12.1356 12.8478
b=20  2.3148 3.8313 4.9704 5.8363 6.5295 7.1218 7.6611 8.1778 8.6913 9.2144 9.7551

u=11 u=12 u=13 u=14 u=15 u=16 u=17 u=18 u=19 u=20 u=21

b=10 17.6023 18.1738 18.6043 18.9306 19.1793 19.3694 19.5151 19.6269 19.7128 19.7789 19.8298
b=15 13.5908 14,3701 15.1901 16.0545 16.9667 17.7023 18.2505 18.6632 18,9759 19.2141 19.3962

b=20 10.3192 10.9110 11.5336 12.1899 12.8825 13.6137 14.3860 15.2019 16.0639 16.9748 17.7085

u=22 u=23 u=24 u=25 u=26 u=27 u=28 u=29 u=30 u=31 u=32
b=10 19.8689 19.8990 19.9222 19.9401 19.9539 19.9645 19.9726 19.9789 19.9838 19.9875 19.9904
b=15 19.5357 19.6428 19.7251 19.7883 19.8370 19.8745 19.9033 19.9256 19.9427 19.9558 19.9660
b=20 18.2553 18.6668 18.9787 19.2163 19.3979 19.5370 19.6438 19.7258 19.7889 19.8375 19.8748

u=33 u=34 u=35 u=36 u=37 u=38 u=39 u=40 u=41 u=42 u=43
b=10 19.9926 19.9943 19.9956 19.9966 19.9974 19.9980 19.9984 19.9988 19.9991 19.9993 19.9995
b=15 19.9738 19.9798 19.9845 19.9880 19.9908 19.9929 19.9945 19.9958 19.9968 19.9975 19.9981
b=20 19.9036 19.9258 19.9428 19.9560 19.9661 19.9739 19.9799 19.9845 19.9881 19.9908 19.9929

u=44 u=45 u=46 u=47 u=48 u=49 u=50 u=>51 u=>52 u=53 u=54
b=10 19.9996 19.9997 19.9998 19.9998 19.9999 19.9999 19.9999 19.9999 19.9999 20.0000 20.0000
b=15 19.9985 19.9989 19.9991 19.9993 19.9995 19.9996 19.9997 19.9998 19.9998 19.9999 19.9999
b=20 19.9945 19.9958 19.9968 19.9975 19.9981 19.9985 19.9989 19.9991 19.9993 19.9995 19.9996

In Tab. 2, for the given threshold level b = to arrive at the threshold level and receive dividends.
10, 15, 20, we give numerical illustrations of Hence, larger u leads to larger value of m,..., (1) .
My (u) (as the function of the initial surplus ). The trends are also shown in Fig. 2, which depicts
It’ s easy to see that my,,,(«) is an increasing that the expected accumulated discounted dividend
function (for fixed &) of u, this is because if the payments are increasing as a function of u and the

initial surplus « increases, the insurer seems easier trivial bound 0 < m,.,., (u) << 20 holds.
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