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Abstract: It was found that the problem of searching for normal coordinates W of quadratic
Hamiltonian H can be ascribed to solving the newly established secular equation with two
consecutive Poisson bracket operations. Solving W would simultaneously lead to the normal

frequency. Some examples about quadratic Hamiltonian were presented to demonstrate the

effectiveness of the presented method.
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0 Introduction

In classical analytical mechanics the Poisson
bracket is used to express Hamilton equation and
Poisson theorem in a concise way''?. In this paper

we present a new application of Poisson bracket,
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e.g., we shall search for normal coordinates of
quadratic Hamiltonian by establishing a secular
equation with two consecutive Poisson bracket
(PB) operations. Normal coordinates are such that
separable form of

make a Hamiltonian in

independent oscillators.
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Generally, there are two methods for finding
normal coordinates, one is by changing the

coordinate scales and diagonalizing the new kinetic

[3-4]

energy matrix*"', the other is by changing the

coordinate scales and using arbitrary row of adjoint

6] They are

matrix of the frequency eigen matrix
quite different from our new method to be
presented in this paper. Our new idea is to

establish  the

coordinates with two consecutive Poisson bracket

secular equation for normal
(PB) operations. Then solving this equation will
also lead to normal frequencies. Some complicated
examples of coupled oscillators are presented to
show our new method’s merit. This is a new

approach to obtaining normal coordinates of
classical dynamic systems, and therefore enriches

the classical LLagranian-Hamiltonian theory.

1  The secular equation for normal
coordinates

The secular equation we propose involves two
Poisson bracket operations in uninterrupted succession
{H.,{H,W}} =AW D
where H is a quadratic Hamiltonian, W is a
classical dynamic variable we are searching for, it
is not explicitly time dependent, and looks as if it
is an “eigenvalue” of the two consecutive Poisson
bracket operations.

We want to manifest that once W is found, it
denotes normal coordinate which is capable of
diagonalizing the Hamiltonian H .

According to time evolution of W
and using the Hamilton canonical equation

Q=5 hi=—5" (3)
as well as the definition of Poisson bracket
{f"g}ZZ[aa%?ffﬁiaafJ “
we can reform (2) as a Poisson bracket

aw Z oW oH oW oH
oq: Opi 31); 9q;

Differennatmg this equation with time again

j:{W,H} (5

% 48 %A
we obtain
, .
T4V _ (Vo oW o)
de? de dt aq, 8p op,; 9q;
and still using (5) we see
d*W oH o oH o
CX 3 T wH) - S S WL H) =
de? ; aptaqi{ } 9q; api{ }
{{W,H},H} ={H,{H,W}} P

which involves two consecutive Poisson bracket

operations. If we can find some W satisfying

where A is positive. Eq. (1) becomes
2
AW _w ()
de®

where W is qualified to be normal coordinates for
H . To explain this, let us write down the

Lagrangian for a quadratic physical system

[ [
Z%[Em,if*ZKUx,f,] (10
i=1

=1
in terms of normal coordinates Q; it just exhibits

the form of /-independent oscillators'”

l !
—J[Xer-Yere’]  ab
i=1 i=1

By using the Lagrangian equation

dos_os_ oo
we know that Q; obeys the Newton equation
d*Q;
dt% =w,’Q,; (13)

Comparing Eq.(9) with Eq.(13),o0ne can see
that W really represents normal coordinates for H ,
“in Eq.(13).

Therefore, solving the secular equation (1) can

and A in Eq. (9) just corresponds tow;

lead to normal coordinates. This is a new approach

to obtaining normal coordinates of classical

dynamic systems.

2 Poisson bracket method for obtaining
normal coordinates of three coupled
oscillators

The Hamiltonian of three

[8-9]

coupled

oscillators is

@+—+—+

2m 2m
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1

s 1 2
?/3(1'2—1‘1)“+?/€(12—1‘3)‘ 14

where £ is the spring constant. The mass in the
middle is M , the other two masses are m . The

fundamental Poisson brackets are

oH P
ter s H = op ml’
ap} ) L, a9
— _rz s
{Isz}—apz—M {J%aH} m
And
oH
{PHH}:_axil:k(Iz—Il) (16)
oH
{szH}:—a‘ =—k(x;—x1) Thk(x; —x2)
X 2
an
oH
{ps . H} =— =k(x, —x3) (18)
ox

Assuming the normal coordinate W for this H
takes the form
W=z, + fx, +gx; a9
where f,g are to be determined. According to
Eqgs.(12) and (13), substituting (14) into the
secular equations (1) and (8),we have

23 P o
G ] el =
1
E/Q(Ig*fl'l) +
SI—k(x:—a1) T (xs—a2)] Tg=

m M m m

[%—A%ng] (20)

Comparing (20) with (19), we conclude that

S S R A

their  corresponding  coefficients  must  be

proportional to each other, so

1: f:g=

1 f —1 2/ g , '
(2‘1@}(7*%—;]‘(5—%)(2“
or equivalently
L:fig=
(M= fm): (—M+2fm—gMy: (gM— fm)
(22)

from which we have two independent equations

M — fm 1
M — fm Z (23)
Mgﬂzf’;n é’M:g (24)
From Eq.(23) we see
g=1,or f=0 25
—M —gM

When f =0, Eq.(24) reduces to ——————— =
M

0, so g =—1; On the other hand, when g =1, Eq.

(24) becomes to

—2M+2fm=f(M— fm) (26)
in this case
M
f=—2,0r f =— 27
m
In sum, we have three groups of solutions
f=0,g=—1 (28)
M
m
f=—2,g=1 (30)

Substituting them into Eq. (19) respectively

gives the normal coordinates

W:.Tl — X3 (31)
M
W=x,+—x, +x; (32)
m
W=x,—2x, + x4 (33)

On the other hand, respectively substituting

the three solutions into (20) yields

AW:*g(l‘lfxg) (34

AW =0 (35

AW = — (lﬁ—zj (x1 — 2z, +x3) (36)
m M

which indicates that the normal frequencies are

w] — / 76()'7—070);: /k(1+ j (37)

One may check our new method’s correctness
by other known methods.
3 Poisson bracket method for obtaining
normal coordinates of linear bi-atomic
chain with unequal masses

Now we search for normal coordinates of a
linear chain composed of N-bi-atoms, each bi-atom

containing two irons with unequal masses m and
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% 48 %k

m’, whose Hamiltonian 15“(”

oy B
H= “2 [ 2m 2m ' ( Ta)
B

7(1.“ —

2

4 2 B 4 z
1'7;71) +?(1‘7,_1'”H) ] (38)
Supposing the normal coordinates take
the form

N
W= (fobn +fip)) (39)

n=1

where [, » /. are to be determined, W should obey
the secular equation (4). Using Eq.(38) we see

{p. H} = {p”,g( =)’ +ﬁ(1,,—1;,1)2}:

Bz, + ' —2x,) (40)

(piHy=B(x, +x, 1 —2z)) (41)

{Izz ’H} :{I,, 9p;l }:&,{I; 9H} :pz (42)
2m m

Using these we calculate

N

S Fubn + £opl)

n=1

BZ[fn (xh + /= 22,) p,+

n=1

{WvH}: vH}:

fh (I,, + 2, — 22 ) ] —

[(f”+fnl 2/‘7,) x, +

n=1
(fn+fn+l _foz)rjz] (43)

Further, we evaluate

({W.H}. H}:*BZ[*(J‘“—H‘H 2f,) pu+

n=1

1 . g
F(fﬂ_’_fu‘Flizfn)pn (44)

Comparing the coefficients of (44) with those

in (39) and using (8) we have

. 1. v .
/\f,,Z*Bg(f,,+f,,flf2f,,) 45)

;{f:zzi,gl(f +fn+17 fn) (46)
It then follows
N R
mf‘” n n—1 Jn
—i(f + fon —210) U
m/j-:1 n n+1 n

which is

1 (f A+ _1 _ L (fa T .
m 2f. m’ 27" ’

n=1,2,-,N
(48
and leads us to
[ =pcos2nb, s fr =veos2n + 10, (49

where

6’:ﬁ 5152, ,2N (50)

Substituting Eq.(49) into Eq.(47) leads to
A:%(l—icosﬁ,] Zﬁ(l—ﬁcosﬁ ] D
m 7 m v
and
v 2Bcos0, 2B — mA

;:2‘8—”1/){ - 2fcos0, D

thus
m'A* —2B8Gm +m') A 4 4p%sin’0, =0 (53)

whose solution gives the normal frequency

o1 1 1 1 274sin29 o,
Aiﬁ(m er/ji_ﬁ[(m +m/) mm’ }7(”

54)

and the normal coordinates for bi-atomic linear

chain is

N
W = Z [pp.cos2nl, +vpl,cos(2n + 16, ]

n=1

4 Poisson bracket method for obtaining
normal coordinates of an impeller
model

In this section we employ the Poisson bracket
method to find normal coordinates of an impeller
model. A practical impeller is a rotating component
of a centrifugal pump which transfers energy from
the motor that drives the pump to the fluid being
pumped by accelerating the fluid outwards from
the center of rotation. Here we write down the
Hamiltonian of an impeller with two types of vanes

H”—E[p” pa7,.l+%(x%

—Ll2m, 2m,

_X271+1)2+

A A R T
?(inq — Xt ) 24+ ?771 X3, + ?772 XEUH]

(56)

where N is impeller vane number, A is the spring
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coupling constant between two neighbouring
vanes, 7; (i = 1,2) is the coupling constant
between two types of vanes with the rotating
center, respectively. Using (56) we calculate the
following Poisson brackets:
(P, H"y =i{AX s, +2X0,1 — X2, (24 + 90}
(57
(P, H"Y = (AX,, +2X0,00 — Xo (24 + 920}
(58)
/ 1 1
(X, ,H/}zsz,, AX ot ’H}:EPZ”“
59
Supposing the invariant eigenvector for H” is

N
F= 2 (fomPow + fomir Popin) (60)

m=1

then using Eqs.(57)~(59) we evaluate
{FsH”} ==

N

DX 0 [ oA+ fonad — f2, QA+ 2900+

=1
X0 LS 2nd + foniod = o CA+ ) 1)
(61)
It follows
{{F.H"},H"} =
2 { Po [ fon @40 =2 opii + fon )] L

m

m=1

szu[fzmm(Z/l +77) _/\(fzm JFfzm»z)]} _

m;

N
(.()2 2 (~f2"7P2711 +f-21/1+lP21n+1) (62)

m=1

Comparing the two sides of Eq. (62) we have
Son QA+ — Ao+ fon 1) =
f2m7n1w2f2m+l (22 + 772) —ASom + fome) =
fomimw® (63)
The condition that the solution of w® exists is

A (f2/11+1 + f21/171 ) } _

f‘Zm
e

1
m—]{mﬁyl)—

{<2A+7,2>— (64)

1

m;
Let
fom =Ecos2m0 s fopr =& cos(2m +1)0 (65)

and substitute Eq.(65) into Eq.(63) we have

1 22&" cos

{(2A—0—7]1)W}w2,

n, 5

) PAEcosd (66)
cosl ,

Therefore
& @tg) —me’ 2A cosl
& 2A cost QA +79.) —myw’

67
It then follows
mim,w' — w® (2X + i )m, + (22 +772)m1] +
A + 5022 +75,) —4A%cos’0 =0 (68)

with the solution

-2 m, m,
2 2 . 2 2 :2 %
[(A—O—m A—ij Jr16/1 cos@j| }(69)
m m, mim,

which is the normal coordinates of the impeller

model.

5 Conclusion

In summary, in the context of classical
mechanics we have proposed a new approach to
finding  normal coordinates  of  quadratic
Hamiltonian by establishing the secular equation
with two consecutive Poisson bracket operations.
This new method develops the role of Poisson
bracket in material mechanics and mechanical
engineering, since it paves an effective route
leading to normal frequency of dynamical systems.
Moreover, we may combine this method with the
technique of integration within ordered product of

operatorst'!

as well as the invariant eigenvector
method in quantum theory"* to find diagonalizing
unitary operators and quantum eigenstates. The
analogy between classical Poisson brackets and
quantum mechanical commutators has been

demonstrated through this paper.
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