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Abstract: For a positive integer &, the total {%}-dominating function (T {k} DF) of a graph G
without isolated vertices is a function f from the vertex set V(G) to the set {0,1,2,:+,k} such
that for each vertex v &€V (G), the sum of the values of all its neighbors assigned by f is at least

d
k. Aset{fi,fs,,f s} of pairwise different T {£} DF's of G with the property that Zf,v (v) <

i=1

k for each v €V (G), is called a total {k}-dominating family (T {k}D family) of G. The total

{k}-domatic number of a graph G. denoted by d}*' (G), is the maximum number of functions in

T{k}D family. In 2013, Aram et al. proposed a problem that whether or not d,*' (C,.[JC,) =3

when 4 { nmk, and d'*' (C,,[JC,) =4 when 4 |nmk. It was shown that d!*' (C, [JC,)=3 if 4 {

nmk and k=2 or 4|nmk and 2 { nk , which partially answered the above problem. In addition, the

total {k}-domatic number of the direct product of a cycle and a path, two paths, and two cycles

was studied, respectively.
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0 Introduction

For terminology and notation on graph theory
not given here, we refer the reader to Ref.[1].
Throughout this paper, the graphs we talk about
are simple graphs with no isolated vertex. Let G=
(V,E) be a graph with vertex set V=V (G) and
edge set E=FE (G). For a vertex v € V(G), the
open neighborhood N (v) is the set Ng; (v) =
{(u€EV(G) | uv € EXG)} and the degree of v,
denoted by d; (v), is the cardinality of Ng (v).
For a set D ©V (G), the open neighborhood
N¢s (D) is defined to be U,ep Ng (u) and the
closed neighborhood is N[ D ]=N;(D)UD. The
minimum and maximum degree of a graph G are
denoted by ¢ and A, respectively. Write P, and C,
for a path and a cycle on n vertices, respectively.
For a real number z, write | x | for the greatest
integer not greater than x, and [ = | for the
smallest integer not less than x.

For graphs G and H, the Cartesian product
GLJH is a graph with vertex set V(G [1H) =
V(G)XV(H) and two vertices (u,v) and (u',0")
are adjacent if and only if «=u" and vo' € E(H)
orv=1v" and uu’ € E(G). The Cartesian product
of a cycle C,, and a path P, is called a cylinder and
the Cartesian product of two cycles is called a
torus. The direct product G X H 1is the graph
defined by V(G X H) =V (G) XV(H) and two
vertices (u,v) and (u’,v") are adjacent if and only
if uu’ € E(G) and vo’ € E (H). Throughout this
paper, we assume that V(G)={0,1,2,*,n—1}
for any graph G of order n. Then V(G[]IH) =
VIGXH)={(i,j)|i€V(G),j € V(H)}. For
convenience, we assume that V (G [JH) =
VIGXH)={z,,; i €V(G),j €EV(H)}, where
xi;=0sj).

A subset S of vertices of G without isolated

HowmAET LR Lk—F, HET HAE . H%

vertices is a total dominating set if N;(S) =V,
The total 7. (G) is the

minimum cardinality of a total dominating set of

domination number

G. A total domatic partition is a partition of V into
total dominating sets, and the total domatic
number d, (G) is the largest number of sets in a
total domatic partition. The total domatic number
was introduced in Ref.[2].

Let £ be a positive integer, a total {k }-
dominating function (T {%#} DF) of a graph G
without isolated vertices is a function f from the

vertex set V(G) to the set {0,1,2,+*+,k} such that

> fCu) = k. The

wu€ NG (v)

weight of a T {k} DF f is the value w(f) =
2 f(v) . The total {k }-domination number of

vEeEVIG)
G, denoted by ¥* (G), is the minimum weight of

a T{k}DF of G. Note that 7* (G) is the classical

total domination number ¥, (G) when £ =1. The

for any vertex v € V(G),

total {k }-domination number was introduced in
Ref.[37]. A set { fi1, fo, *=
different T {k# } DFs of G with the property that

» fu ) of pairwise

d

Efl(fv) < k for each v€V(G), is called a total

i=1

{k }-dominating family (T {£}D family) of G. The
total {% }-domatic number of a graph G, denoted
by d!*' (G), is the maximum number of functions
ina T{k}D family. The total {%£}-domatic number
is well-defined and d/*' (G) =1 for all graphs G
without isolated vertices, since the set consisting
of the function f:V(G)—{0,1,2,--+,k} defined by
f(v)=*F for each v €V (G), forms a T{k}D
family on G. The total {% }-domatic number was
introduced in Ref.[ 4] and has also been studied in
Ref.[5]. Aram et al.”” presented bounds for the
total £-domatic number, and studied the total k-
domatic number of C, [JP, and C, [IC,. In
addition, they proposed the following problem on
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d" C,[IC). folxi ;)=

Problem 0.1
C, [JC, be a torus of order nm. if 4 { nmk then
d¥ (G)=3, and d/*' (G) =4 otherwise.
The main result of this paper is as follows.
Theorem 0.1
=3, if 4 {nmk and b = 2;
4 C. 00 =3, if 4 | nmk but 2{ nk;
=4, if4 | m and 4 | n;

< 4, otherwise.

Prove or disprove: Let G =

It can be seen that Theorem 0.1 partially
answered Problem 0.1. In addition, we also study
the total {k}-domatic number of the direct product
of a cycle and a path, two paths, and two cycles,

respectively.
1 The proof of Theorem 0.1

The following lemmas will be used in our
proofs.

Lemma 1.1°"  Let G be a graph without
isolated vertices and 6 =& (G). If 8 | £, then
d¥(G)=0—1, and if 6 { k. then d/* (G)=

RYpal!

Lemma 1.2  For every graph G without

isolated vertices,

d,"' (G) < 8(G).
Moreover, if d,* (G) =8 (G), then for each
function of any T{k}D family {f,,f,,**» f4} and

DV Fiu) =k

u€ NG (v)

for all vertices v of degree §(G),

d
and Zf,-(u) =+t for every u € N, (v).

i1

Lemma 1.3'" if G=C, [IC, such that 4 {
nmk s then d*' (G)<<3.

Proposition 1.1 Let m =1 and n=1. if G=
C,,dC,,, then d* (G)=4.

Proof
d M (G)<<8(G)<4. Define f,: V(G)—{0,1,-,
k., s=1,2,3,4 as follows:

filx,,;) =
k,ifi =0,1 (mod4) and j =0 (mod 4);
k,ili=2,3 (mod4) and j =2 (mod 4);

0, otherwise;

According to Lemma 1.2, we have

ky,ifi=0,1 (mod4) and j = 2 (mod 4);

k,ifi=2,3 (mod4) and j =0 (mod 4);

0, otherwise;

fi(x, ;)=

k,ifi=0,1 (mod4) and j =1 (mod 4);

k,ifi =2,3 (mod 4) and j = 3 (mod 4);

0, otherwise;

filz, ;)=

k,ifi=0,1 (mod 4) and j = 3 (mod 4);

k,ifi =2,3 (mod4) and j =1 (mod 4);

0, otherwise.

It is easy to check that {f1.fss fs,/f.) is a

T{k}D family on G. Hence, d!"' (G) =4, and

thus d!*' (G)=4. This completes the proof.
Proposition 1.2 if /= 2, 4 { nmk and G =

C,C,, then d*' (G)=3.

Proof It suffices to show d/* (G) =3 by

Lemma 1.3. In view of 4 { nmk, we have 4 { k£,

which is equivalent to 8 (G){ k. By Lemma 1.1, we

k
() — .
conclude that d| ((J)/Lk/’ra((})—'J. Let k=451
where 1={/<{3 since 4 { k. Therefore,
d;k*(G)>L<4s+z>/(4“jtuz
t o AsHr 4—1
| (4s 4+1) /(s +fz—|)J—Ls_~_l j—4+LS+1j.

If s==2, in view of 1<{¢r<{3, thens+1=>4—1¢,
and thus d.* (G) =3 by the above inequality. It
implies that d/*' (G)==3 for k=9 and 4 { nmk.

If s<<2, in view of 4 { &, then k=2,3,5,6,7.

k
Gy 173

when £=3,6,7. In order to complete the proof, it is

It is routine to check that d}*' (G)=| k/]

necessary to show that d|*' (G)=3 when £ =2,5.
When £ = 2, then 2 { m and 2 { n. Define

functions f,g and h from V(G) to {0,1,++,k} as
follows:

1, i=0 (mod 2) and 0 <{; <<n — 1;
f(x;.,-): .

{O, otherwise;
g(x;;) =
{1, i=1(mod2),i=m—1and 0<{j < n—1;

0, otherwise;
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1,0<<:i<<m—2and 0<{; <<n—1;
hix; )= )

! {O, otherwise.

Clearly, {f.g.h} is a T {k} D family on G.
Hence, d*' (G)=3.

When £=5, then 4 { mn.

If 2| mn, assume that 2 |m. Define functions
f,g and h from V(G) to {0,1,++,k} as follows:

3, 7=0(mod 2) and 0 << j < n —1;

f(I;.,-): .
{O, otherwise;

g(x;;) =

3, i=1(mod2), i=m—1land 0 <{; < n—1;
{O, otherwise;

hix; ;) =2,0<i<<m—1and 0<{j <<n—1.
Clearly, {f.g-h} is a T {k} D family on G.
Hence, d*' (G)=3.

If 2 { mn, define functions f,g and h from
V(G) to {0,1,++,k} as follows:
2,1=0(mod 2) and 0 << j < n—1;
1, otherwise;
1,i=0(mod 2) and 0 <{j; <<n — 1;

2, otherwise;

) = {

g(I,]):{

hix;;)=2,0<i<<m—1and 0<"j <<n—1.
Clearly, {f.g.h} is a T {k} D family on G.
Hence, d,* (G)=3. This completes the proof.
If G=C, [JC, such that 4|
nmk and 2 { nk, then d*' (G)=3.

Proof By Lemma 1.2, d/*' (G)<{4. Suppose
to the contrary that d,*' (G) =4. Let 7 be a total

Proposition 1.3

{k }-dominating family and f € %. By Lemma 1.2,
D f(x) =k . It follows that

rENG (xij)

mnk = 2 Z S (u) =4 Z f(u) =4 ().
2EVIGu€ NG (v) wueVG)
n—1

Let > f(x,,) =k,. Thus k, | +2k, +k, =

=0
nk for each i=1,2,++,m—1, namely, bk, +k;+
k;+k;.i=nk. Without loss of generality, assume

k k
ko +k1 2(%1’ kl +k3 <L%J'

Note that 4| nmk and 2 1 nk implies that 4 |m.

So we have

1k 1k
btk =10 T ke ko<,
k k
Foe + ks =[5 1 by 0 <L),

m—1

which implies thatw (f) = >k, >%(%1>
i=0

mnk
4 b

a contradiction. So d*' (G)<{3.
Now define functions f,g and A from V(G)
to {0,1,++,k} as follows:
[z, ;)=
k,if i =0,1 (mod 4) and j =0 (mod 4);
k,ifi=2,3 (mod4) and j =2 (mod 4);
0, otherwise;
g(x; ;)=
k,ifi=2,3 (mod4) and j =0 (mod 4);
k,ifi=0,1 (mod4) and j =2 (mod 4);
0, otherwise;
hiz, ;)=
Ey 0<K{i<<{m —1landj =1 (mod 2);
0, otherwise.
Now {f.g.h}) is a T {k} D family on G.
Therefore d!*' (G)=3. The result follows.
Remark 1.1

from Propositions 1.1~1.3.

Theorem 0.1 follows directly

2 Total { k }-domatic numbers of
P,XP,,C,XP,andC, XC,

d* (P, XP,)=1.
Proof Let G=P, XP,. Note that 6 (G)=1
and d*' (G) =1 for all graphs G without isolated

vertices. The result follows directly from Lemma
1.2.

Proposition 2.1

Proposition 2.2 if 2 Ik and 4 { m, then
dM(C,, XP,)=1.

Proof Let G =C, X P,.
d"' (G)=2(=8(G)). Then >,

vENG (xi,j)

any f € 7, where % is a T {k} D family on G.

Hence,

Suppose that
f(v) =k for

DV f) =f (o) + f(xo) =k,

vE NG (x1.0)

E fCo)=f(x11) + f(x3.) =k,
vENG (22.0)

DV f) =)+ fa) =k,
vENG(x3.0)

E f(‘U):f(lfm—z.l)+f(l”o.1):k’

vENG (xm—1.0)
D) f) =f )+ fa) =k
v€ NG (20,0)

Summing up the above m equations, we have
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20f(xo )+ f(xy, )+ o+ f(x,-1.,))=mk. Since
21k and 4 {m, we have 2|m and m =2 (mod 4).
The above equations also imply that f (x,,) =
flxyn) = f Cxgy) = = = f (xp—9a).
S () T f (o) =k,

contradiction.

Since
we have 2 | b, a
Proposition 2.3 If 2 { £ and 4 | m, then
dt (C,XP,)=2.

Proof Let G=C, XP,.
d!"' (G)=2 by Lemma 1.2. Define functions f and
g from V(G) to {0,1,-
f(x, ;)=

1
%, iti=0,1 (mod4) and j =1,n — 2;

E—1 .
— otherwise,

It suffices to show

sk} as follows:

and
g(x,-,j) —

%, ifi=2,3(mod4) and j =1,n — 2;

———, otherwise.

2
Since {f, g} is a T {k} D family on G,
d* (G)=2. This completes the proof.

Proposition 2.4 If 2[% then d!* (G)=2.
Proof Let G=C, XP,.
d* (G)=2 by Lemma 1.2. Define functions f and
g from V(G) to {0,1,-
k
2

It suffices to show

sk} as follows:

,fo<i<<m—1landj =1,n—2;
f(x,;,]):

k—2 .
— otherwise;

and
g(x,-,]-):%, 0<:<m—1land 0<{; <n—1.

Note that {f.g} isa T{k}D family on G, we
have d*' (G)=2. This completes the proof.

From Propositions 2.2~2.4, we can get the
following theorem immediately.

Theorem 2.1

4P (C. X P — L, if ka'and 4{m;

2, otherwise.
Proposition 2.5
=4, 14| mand4 | n;
d"(C,, XC)Ds=4,if 2] kand4d | mord| n;

< 3, otherwise.

Proof Let G=C, XC(C,.By Lemma 1.2,
d," (G)<8(G)=4. We proceed by considering the
following three possible cases.

Case 1 4|m and 4]|n.

Define f,: V(G)—{0,1,*,k}, s=1,2,3,4,

as follows:

fl (Ii.]‘) -

L%J, iti=0,1 (mod4) and j = 0,1 (mod 4);

f%} ,ifi=2,3 (mod4) and j = 0,1 (mod 4);

0, otherwise;

folxi) =

fél ifi=0,1 (mod4) and j = 0,1 (mod 4);
2

L%J, ifi=2,3 (mod4) and j = 0,1 (mod 4);

0, otherwise;
folx, ) =

<

L%j, ifi=0,1 (mod4) and j = 2,3 (mod 4);

r%w, ifi=2.3 (mod 4) and j = 2.3 (mod 4);

0, otherwise;

f’q(I;.,’) -
(%T, if i=0,1 (mod 4) and j = 0,3 (mod 4) ;

L%j, if i =2,3 (mod 4) and j = 0,3 (mod 4);

0, otherwise.

Clearly, {fi1+fssfs>f4) is a T{k}D family
on G. Hence, d* (G) =4, which follows that
d"(G)=4.

Case 2 2|k and 4|m or 4|n. Without loss of
generality assume 4 |n.

Define fv‘\-: V(G)’—’{Oal9"'

ke s=1,2,3.4,
as follows
filx,;) =
?,d] =0,1 (mod 4) and 0 < < m — 1;
0, otherwise;
fo(xi;) =
koo .
?,11[]51,2 (mod 4) and 0 <7 < m — 1;

0, otherwise;
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f‘%(l‘” ) = f(IOvJ*I) +f(-7-”0.]-1) :f(fl,,—l) +f(11,”1) =
%, if;=2,3 (mod 4) and 0 < i < m — 1; a0+ flapm) ==
k
0, otherwise; S -0 + (@00 T
filx: ;) = This implies that 2|% and hence we must have 4 { n

%,iijS,O (mod 4) and 0 < <<m — 1;

0, otherwise.

Clearly, {f1sf2sf35+f1} isa T{k}D family
on G. Hence, d* (G) =4, which follows that
dM(G)=A4.

Case 3 The others.

By Case 1, 4 {m or 4 { n. Without loss of
generality, assume 4 { m. By Case 2, the remaining
case is 4 { n or 4|n but 21 k.

Suppose to the contrary that d,*' (G) =4. Let
F={f1sfss fs» f1) be a total {k }-dominating
family., We will prove that, for any [ € %,
f(xric=) = f (xip1,,21) and f (> j0) =

S (xii1.;-1)» then we obtain f (x; ;) :% for 0

i<<m — 1 and 0<{j <Xn — 1, which implies that
|71 =1, a contradiction with d* (G)=4. Since G

is vertex transitive, it is sufficient to show f(x,,)=
k
f(Ig,2)9 f(l‘o,z):f(lg,o) and f(IQ,o):Z.

2 f(x)=Fk. Hence

ZENG (xi.j)
f(xiq0) + (g0 +
f(l”iﬂ.j—l ) _’_f(fzfl.,ﬁrl) =k,
where the sums in the subscripts are modular m

) m_1309

By Lemma 1.2,

and n, respectively, For : =1, 2, -
we have

SCro o)+ flrojm) + fQxojm) + fxojm) =k,
Sy - + flry o) + fQay o) + fQay ) =k,
SCro o)+ f(xojm) + f(aym) + f(ayjm) =k,

[ (@) + [(Zpi) T (o) + (0,00 = ks
St o)+ [ + (o) + () = k.
Hence we have
SfCxo =) + f(xo ) = f(x,-) +
f i) ===y, 0+ f(x0)s
where s can be any nonnegative integer. Since 4 {

m, 4s (mod m) can be any positive integer from
{1,2,+y m—1}. Therefore,

4 | n and 2 { k., a
contradiction). By symmetry of m and n, we have
S+ (o) =)+ [(ra) =
[(xiq2) + f(xig,) ==

(otherwise, we have

(i, + (i) =

o | &

Consider i =1 and j =1, we have f (x,,) =
f(xo.) and f(x0.0) = f(x,.,). By symmetry, we
can obtain f (x,—,;,—1) = f (x,41,;4+1 ) and
frio00)=f(x,;41,;,-1), for 0<Xi<<m — 1 and
0<<j<<{n —1. Therefore

S (xo.0) =f(x20) =f(x4.0) =f(x4..) =

f(xg0) == f(x4.0) = (Z12.2).

Again by 4 1 m, we have that 45 (mod m) can
be any positive integer in {1, 2, ==, m — 1},
and hence

f(fo_o) :f‘(.Tl_()) :f‘(l'z,o) — e :f‘(l',,,fl_o).

k
Since f (x¢.0) + f (x50) = orowe have

k
f(xm)zz. This completes the proof.

Proposition 2.6 If /=2, and 41 m or 4 {n,
then d*' (C,, XC,)=>=3 .

Proof Let G =C, X C,. Without loss of
generality, assume 4 {m. if 4|k, that is 6(G) |k,
then ;" (G)=6(G)—1=3 by Lemma 1.1.

Assume 4 { k. By Lemma 1.1, d/* (G) =

k
Lk/fz—| |. Let k=454t where 1<{¢t<{3. Moreover,

4s+1t 4—1
: —U:ZH—LS?.
If s==2, then s+1=>4—1¢, and thus d "' (G)=
3 for k==9. Hence assume s<_2. Since 4 { £, we
have #=2,3,5,6,7. It is obvious that d*' (G) =

k
L5
order to complete the proof, it suffices to show
that d,*' (G)>=3 when £ =2,5.

When m=1 (mod 4) , define functions f,g

d" (GH = Us+) /]

1 >=3 when #=3,6,7 by Lemma 1.1. In
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and h from V(G) to {0,1,++,k} as follows:
S (x,;) =
L%J, if i =0,1 (mod 4) and 0 << j <<n — 13

k
L? ]—1, otherwise;

g(.T;_j) -
L?J, if i =2.,3 (mod 4)
i=m—1 and()éj <n—1;
L%J* 1, otherwise;

and

h (.r,',

)=
k o .
—|—1,ifi=m—1land 0<{j; <n—1;
|_2 1, if land 0 << j << 1
k .
L? |, otherwise.

Note that { f,g,h} is a T {k} D family on G,
hence d*' (G)=3.

When m =2 (mod 4), define functions f, g
and h form V(G) to {0,1,--,k} as follows:
f(x;;) =

L%J, ifi=0,1 (mod4) and 0 << j < n —1;

L%J—l, otherwise;
g(l‘,‘_j):

koo

L?J, if:=2,3 (mod 4) ,

i=m—2,m —land 0 <{j <n—1;

L% |—1, otherwise;
and
h(l‘,‘_j) —

k .
\_?Jfl, fi=m—2m—1and 0<{j <n—1;

k
L? |, otherwise.

Since {f,gsh} isa T{k}D family on G, d*' (G)
=3.

When m=3 (mod 4) , define functions f,g
and h from V(G) to {0,1,--,k} as follows:
f(x;) =

L%J, ifi=0,1 (mod4) and 0 << j <n —1;

k
L? |—1, otherwise;
g(l’,-,j):
k e
L;J, if i =2,3 (mod 4),
i=0and 0 <{j; <<n—1;
k
L?J_la otherwise;
and
k . .
L?J*1,1fz=OandO<] <n—1;
h(l'{,j):

k .
L? |, otherwise.

Because { f.g,h} is a T {k} D family on G,
d" (G)=3.
This completes the proof.
From Propositions 2.5 and 2.6, we can get the
following theorem immediately.
Theorem 2.2 Let k=2. We have
dr(C, xXC,)=
4,1 4 | m and 4 | n (equality also holds for £ = 1);
4,12 | kand 4| mord | n;

3, otherwise.
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