文章编号:0253-2778(2018)08-0605-07

On total $\{k\}$ -domatic number of Cartesian and direct product of graphs

LIANG Yong¹, PEI Lidan², HU Futao², HOU Xinmin¹

School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China;
 School of Mathematical Sciences, Annui University, Hefei 230601, China)

Abstract: For a positive integer k, the total $\{k\}$ -dominating function $(T\{k\}|DF)$ of a graph G

without isolated vertices is a function f from the vertex set V(G) to the set $\{0,1,2,\cdots,k\}$ such that for each vertex $v \in V(G)$, the sum of the values of all its neighbors assigned by f is at least k. A set $\{f_1,f_2,\cdots,f_d\}$ of pairwise different $T\{k\}DF$ s of G with the property that $\sum_{i=1}^d f_i(v) \leqslant k$ for each $v \in V(G)$, is called a total $\{k\}$ -dominating family $(T\{k\}D)$ family) of G. The total $\{k\}$ -domatic number of a graph G, denoted by $d_i^{\{k\}}(G)$, is the maximum number of functions in $T\{k\}D$ family. In 2013, Aram et al. proposed a problem that whether or not $d_i^{\{k\}}(C_m \square C_n) = 3$ when $4 \nmid nmk$, and $d_i^{\{k\}}(C_m \square C_n) = 4$ when $4 \mid nmk$. It was shown that $d_i^{\{k\}}(C_m \square C_n) = 3$ if $4 \nmid nmk$ and $k \geqslant 2$ or $4 \mid nmk$ and $2 \nmid nk$, which partially answered the above problem. In addition, the total $\{k\}$ -domatic number of the direct product of a cycle and a path, two paths, and two cycles

Key words: total $\{k\}$ -domatic number; Cartesian product; direct product

CLC number: O157.5 **Document code:** A doi:10.3969/j.issn.0253-2778.2018.08.001

2010 Mathematics Subject Classification: 05C69

was studied, respectively.

Citation: LIANG Yong, PEI Lidan, HU Futao, et al. On total { k}-domatic number of Cartesian and direct product of graphs[J]. Journal of University of Science and Technology of China, 2018,48(8):605-611. 梁勇,裴利丹,胡夫涛,等. 笛卡尔乘积和直积图的全{ k} 控制划分数[J]. 中国科学技术大学学报, 2018,48(8):605-611.

笛卡尔乘积和直积图的全 $\{k\}$ 控制划分数

梁 勇1,裴利丹2,胡夫涛2,侯新民1

(1.中国科学技术大学数学科学学院,安徽合肥 230026;2.安徽大学数学科学学院,安徽合肥 230601)

摘要:给定正整数 k,不含孤立点的图 G 的全 $\{k\}$ 控制函数 $(T\{k\}DF)$ 是从顶点集 V(G) 到 $\{0,1,2,\cdots,k\}$ 的 映射 f 使得对任意的 $v \in V(G)$,与 v 相邻的点在 f 下的赋值之和至少为 k.若元素两两不同的全 $\{k\}$ 控制函数集合 $\{f_1,f_2,\cdots,f_d\}$ 满足 $\sum_{i=1}^d f_i(v) \leqslant k$ 对任意 $v \in V(G)$,则称该集合为 G 的全 $\{k\}$ 控制族($T\{k\}D$ 族).含有函数最多的 G 的全 $\{k\}$ 控制族的函数数量成为全 $\{k\}$ 控制划分数,记为 $d_i^{\{k\}}(G)$.2013 年,Aram 等提出

 $\textbf{Received:}\ 2017\text{-}07\text{-}07\textbf{;}\ \textbf{Revised:}\ 2017\text{-}12\text{-}01$

Foundation item: Supported by NNSF of China (11671376, 11401004), Anhui Provincial Natural Science Foundation (1708085MA18). Biography: LIANG Yong, male, born in 1981, master. Research field: Graph theory. E-mail: Liangy@ mail.ustc.edu.cn
Corresponding author: HU Futao, PhD/associate Prof. E-mail: hufu@mail.ustc.edu.cn

了以下问题:是否当 $4 \nmid nmk$ 时 $d_t^{\{k\}}(C_m \square C_n) = 3$,当 $4 \nmid nmk$ 时 $d_t^{\{k\}}(C_m \square C_n) = 4$.这里证明了当 $4 \nmid nmk$ 且 $k \geq 2$ 或 $4 \mid nmk$ 且 $2 \nmid nk$ 时 $d_t^{\{k\}}(C_m \square C_n) = 3$.该结论部分回答了上述问题. 更进一步,确定了路和圈、路和路、圈和圈的全 $\{k\}$ 控制划分数.

关键词: $\mathfrak{L}\{k\}$ 控制划分数; 笛卡尔乘积; 直积

0 Introduction

For terminology and notation on graph theory not given here, we refer the reader to Ref. [1]. Throughout this paper, the graphs we talk about are simple graphs with no isolated vertex. Let G =(V,E) be a graph with vertex set V=V(G) and edge set E = E(G). For a vertex $v \in V(G)$, the open neighborhood $N_G(v)$ is the set $N_G(v) =$ $\{u \in V(G) \mid uv \in E(G)\}$ and the degree of v, denoted by $d_G(v)$, is the cardinality of $N_G(v)$. For a set $D \subseteq V(G)$, the open neighborhood $N_G(D)$ is defined to be $\bigcup_{u\in D} N_G(u)$ and the closed neighborhood is $N_G[D] = N_G(D) \cup D$. The minimum and maximum degree of a graph G are denoted by δ and Δ , respectively. Write P_n and C_n for a path and a cycle on n vertices, respectively. For a real number x, write |x| for the greatest integer not greater than x, and [x] for the smallest integer not less than x.

For graphs G and H, the Cartesian product $G \square H$ is a graph with vertex set $V(G \square H) =$ $V(G) \times V(H)$ and two vertices (u,v) and (u',v')are adjacent if and only if u = u' and $vv' \in E(H)$ or v = v' and $uu' \in E(G)$. The Cartesian product of a cycle C_m and a path P_n is called a cylinder and the Cartesian product of two cycles is called a torus. The direct product $G \times H$ is the graph defined by $V(G \times H) = V(G) \times V(H)$ and two vertices (u,v) and (u',v') are adjacent if and only if $uu' \in E(G)$ and $vv' \in E(H)$. Throughout this paper, we assume that $V(G) = \{0, 1, 2, \dots, n-1\}$ for any graph G of order n. Then $V(G \square H) =$ $V(G \times H) = \{(i, j) \mid i \in V(G), j \in V(H)\}.$ For convenience, we assume that $V(G \square H) =$ $V(G \times H) = \{x_{i,j} \mid i \in V(G), j \in V(H)\}, \text{ where}$ $x_{i,j} = (i, j).$

A subset S of vertices of G without isolated

vertices is a total dominating set if $N_G(S) = V$. The total domination number $\gamma_t(G)$ is the minimum cardinality of a total dominating set of G. A total domatic partition is a partition of V into total dominating sets, and the total domatic number $d_t(G)$ is the largest number of sets in a total domatic partition. The total domatic number was introduced in Ref.[2].

Let k be a positive integer, a total $\{k\}$ dominating function ($T \{k\} DF$) of a graph Gwithout isolated vertices is a function f from the vertex set V(G) to the set $\{0,1,2,\dots,k\}$ such that for any vertex $v \in V(G)$, $\sum_{v \in NG(G)} f(u) \geqslant k$. The weight of a $T \{k\} DF$ f is the value $\omega(f) =$ $\sum_{v \in V(C)} f(v)$. The total $\{k\}$ -domination number of G, denoted by $\gamma_t^{(k)}(G)$, is the minimum weight of a $T\{k\}DF$ of G. Note that $\gamma_t^{\{k\}}(G)$ is the classical total domination number $\gamma_{t}(G)$ when k=1. The total $\{k\}$ -domination number was introduced in Ref. [3]. A set $\{f_1, f_2, \dots, f_d\}$ of pairwise different T(k)DFs of G with the property that $\sum_{i=1}^{n} f_i(v) \leqslant k \text{ for each } v \in V(G), \text{ is called a total}$ $\{k\}$ -dominating family $(T\{k\}D \text{ family})$ of G. The total $\{k\}$ -domatic number of a graph G, denoted by $d_t^{\{k\}}(G)$, is the maximum number of functions in a $T\{k\}D$ family. The total $\{k\}$ -domatic number is well-defined and $d_t^{\{k\}}(G) \ge 1$ for all graphs G without isolated vertices, since the set consisting of the function $f:V(G)\mapsto\{0,1,2,\cdots,k\}$ defined by f(v) = k for each $v \in V(G)$, forms a T(k)Dfamily on G. The total $\{k\}$ -domatic number was introduced in Ref.[4] and has also been studied in Ref. [5]. Aram et al. [6] presented bounds for the total k-domatic number, and studied the total kdomatic number of $C_m \square P_n$ and $C_m \square C_n$. In addition, they proposed the following problem on

$$d_t^{\{k\}}(C_m \square C_n)$$
.

Problem 0.1^[6] Prove or disprove: Let $G = C_m \square C_n$ be a torus of order nm. if $4 \nmid nmk$ then $d_t^{\langle k \rangle}(G) = 3$, and $d_t^{\langle k \rangle}(G) = 4$ otherwise.

The main result of this paper is as follows.

Theorem 0.1

$$d_{t}^{\langle k \rangle}(C_{m} \square C_{n}) \begin{cases} =3, & \text{if } 4 \nmid nmk \text{ and } k \geqslant 2; \\ =3, & \text{if } 4 \mid nmk \text{ but } 2 \nmid nk; \\ =4, & \text{if } 4 \mid m \text{ and } 4 \mid n; \\ \leqslant 4, & \text{otherwise.} \end{cases}$$

It can be seen that Theorem 0.1 partially answered Problem 0.1. In addition, we also study the total $\{k\}$ -domatic number of the direct product of a cycle and a path, two paths, and two cycles, respectively.

1 The proof of Theorem 0.1

The following lemmas will be used in our proofs.

Lemma 1. 1^[5] Let G be a graph without isolated vertices and $\delta = \delta(G)$. If $\delta \mid k$, then $d_{\iota}^{\langle k \rangle}(G) \geqslant \delta - 1$, and if $\delta \nmid k$, then $d_{\iota}^{\langle k \rangle}(G) \geqslant \lfloor k / \lceil \frac{k}{s} \rceil \rfloor$.

Lemma 1.2^[4] For every graph G without isolated vertices,

$$d_t^{\{k\}}(G) \leqslant \delta(G)$$
.

Moreover, if $d_i^{\langle k \rangle}(G) = \delta(G)$, then for each function of any $T\{k\}D$ family $\{f_1, f_2, \cdots, f_d\}$ and for all vertices v of degree $\delta(G)$, $\sum_{u \in N_G(v)} f_i(u) = k$

and
$$\sum_{i=1}^{d} f_i(u) = k$$
 for every $u \in N_G(v)$.

Lemma 1.3^[4] if $G = C_m \square C_n$ such that $4 \nmid nmk$, then $d^{\{k\}}(G) \leq 3$.

Proposition 1.1 Let $m \ge 1$ and $n \ge 1$, if $G = C_{4m} \square C_{4n}$, then $d_t^{(k)}(G) = 4$.

Proof According to Lemma 1.2, we have $d_t^{(k)}(G) \leq \delta(G) \leq 4$. Define $f_s: V(G) \mapsto \{0,1,\cdots,k\}$, s=1,2,3,4 as follows:

$$f_1(x_{i,j}) =$$

$$\begin{cases} k, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 0 \pmod{4}; \\ k, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 2 \pmod{4}; \\ 0, & \text{otherwise}; \end{cases}$$

$$f_{2}(x_{i,j}) = \begin{cases} k, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 2 \pmod{4}; \\ k, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 0 \pmod{4}; \\ 0, & \text{otherwise}; \end{cases}$$

$$f_{3}(x_{i,j}) = \begin{cases} k, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 1 \pmod{4}; \\ k, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 3 \pmod{4}; \\ 0, & \text{otherwise}; \end{cases}$$

$$f_{4}(x_{i,j}) = \begin{cases} k, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 3 \pmod{4}; \\ k, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 3 \pmod{4}; \\ k, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 1 \pmod{4}; \\ 0, & \text{otherwise}. \end{cases}$$

It is easy to check that $\{f_1, f_2, f_3, f_4\}$ is a $T\{k\}D$ family on G. Hence, $d_t^{(k)}(G) \ge 4$, and thus $d_t^{(k)}(G) = 4$. This completes the proof.

Proposition 1.2 if $k \ge 2$, $4 \nmid nmk$ and $G = C_m \square C_n$, then $d_t^{(k)}(G) = 3$.

Proof It suffices to show $d_t^{\langle k \rangle}(G) \geqslant 3$ by Lemma 1.3. In view of $4 \nmid nmk$, we have $4 \nmid k$, which is equivalent to $\delta(G) \nmid k$. By Lemma 1.1, we conclude that $d_t^{\langle k \rangle}(G) \geqslant \lfloor k / \lceil \frac{k}{\delta(G)} \rceil \rfloor$. Let k = 4s + t where $1 \leqslant t \leqslant 3$ since $4 \nmid k$. Therefore,

$$d_{t}^{(k)}(G) \geqslant \lfloor (4s+t)/\lceil \frac{4s+t}{4} \rceil \rfloor =$$

$$\lfloor (4s+t)/(s+\lceil \frac{t}{4} \rceil) \rfloor = \lfloor \frac{4s+t}{s+1} \rfloor = 4 + \lfloor \frac{4-t}{s+1} \rfloor.$$

If $s \ge 2$, in view of $1 \le t \le 3$, then $s+1 \ge 4-t$, and thus $d_t^{(k)}(G) \ge 3$ by the above inequality. It implies that $d_t^{(k)}(G) \ge 3$ for $k \ge 9$ and $4 \nmid nmk$.

If s < 2, in view of $4 \nmid k$, then k = 2, 3, 5, 6, 7. It is routine to check that $d_t^{\langle k \rangle}(G) > \lfloor k / \lceil \frac{k}{\delta(G)} \rceil \rfloor = 3$ when k = 3, 6, 7. In order to complete the proof, it is necessary to show that $d_t^{\langle k \rangle}(G) > 3$ when k = 2, 5.

When k=2, then $2 \nmid m$ and $2 \nmid n$. Define functions f,g and h from V(G) to $\{0,1,\cdots,k\}$ as follows:

$$f(x_{i,j}) = \begin{cases} 1, & i \equiv 0 \pmod{2} \text{ and } 0 \leqslant j \leqslant n-1; \\ 0, & \text{otherwise;} \end{cases}$$

$$g\left(x_{i,j}\right)=\begin{cases} 1,\ i\equiv 1\ (\text{mod }2),\ i=m-1\ \text{and}\ 0\leqslant j\leqslant n-1;\\ 0,\ \text{otherwise;} \end{cases}$$

$$h\left(x_{i,j}\right) = \begin{cases} 1, \ 0 \leqslant i \leqslant m-2 \ \text{and} \ 0 \leqslant j \leqslant n-1; \\ 0, \ \text{otherwise}. \end{cases}$$

Clearly, $\{f, g, h\}$ is a $T\{k\}D$ family on G. Hence, $d_t^{\{k\}}(G) \geqslant 3$.

When k = 5, then $4 \nmid mn$.

If $2 \mid mn$, assume that $2 \mid m$. Define functions f,g and h from V(G) to $\{0,1,\dots,k\}$ as follows:

$$f(x_{i,j}) = \begin{cases} 3, & i \equiv 0 \pmod{2} \text{ and } 0 \leqslant j \leqslant n-1; \\ 0, & \text{otherwise}; \end{cases}$$

$$g(x_{i,j}) =$$

 $(3, i \equiv 1 \pmod{2}, i = m-1 \text{ and } 0 \leqslant j \leqslant n-1;$ 10, otherwise;

 $h(x_{i,j}) = 2, \ 0 \leqslant i \leqslant m-1 \text{ and } 0 \leqslant j \leqslant n-1.$ Clearly, $\{f, g, h\}$ is a $T\{k\}D$ family on G. Hence, $d_t^{\{k\}}(G) \geqslant 3$.

If $2 \nmid mn$, define functions f, g and h from V(G) to $\{0,1,\dots,k\}$ as follows:

$$f(x_{i,j}) = \begin{cases} 2, & i \equiv 0 \pmod{2} \text{ and } 0 \leqslant j \leqslant n-1; \\ 1, & \text{otherwise}; \end{cases}$$

$$g(x_{i,j}) = \begin{cases} 1, & i \equiv 0 \pmod{2} \text{ and } 0 \leqslant j \leqslant n-1; \\ 2, & \text{otherwise}; \end{cases}$$

$$g(x_{i,j}) = \begin{cases} 1, & i \equiv 0 \pmod{2} \text{ and } 0 \leqslant j \leqslant n-1; \\ 2, & \text{otherwise;} \end{cases}$$

$$h(x_{i,j}) = 2$$
, $0 \le i \le m-1$ and $0 \le j \le n-1$.
Clearly, $\{f, g, h\}$ is a $T\{k\}D$ family on G .
Hence, $d_t^{(k)}(G) \ge 3$. This completes the proof.

Proposition 1.3 If $G = C_m \square C_n$ such that $4 \mid$ nmk and $2 \nmid nk$, then $d_t^{\{k\}}(G) = 3$.

Proof By Lemma 1.2, $d_t^{(k)}(G) \leq 4$. Suppose to the contrary that $d_t^{(k)}(G) = 4$. Let \mathcal{F} be a total $\{k\}$ -dominating family and $f \in \mathcal{F}$. By Lemma 1.2,

$$\sum_{x \in N_G(x_{i,j})} f(x) = k \text{ . It follows that}$$

$$mnk = \sum_{v \in V(G)} \sum_{u \in N_G(v)} f(u) = 4 \sum_{u \in V(G)} f(u) = 4\omega(f).$$

Let
$$\sum_{j=0}^{n-1} f(x_{i,j}) = k_i$$
. Thus $k_{i-1} + 2k_i + k_{i+1} =$
for each $i = 1, 2, \dots, m-1$, namely, $k_{i-1} + k_i +$

nk for each $i=1,2,\cdots,m-1$, namely, $k_{i-1}+k_i+$ $k_i + k_{i+1} = nk$. Without loss of generality, assume

$$k_0 + k_1 \geqslant \lceil \frac{nk}{2} \rceil, k_1 + k_2 \leqslant \lfloor \frac{nk}{2} \rfloor.$$

Note that $4 \mid nmk$ and $2 \nmid nk$ implies that $4 \mid m$. So we have

$$k_2 + k_3 \geqslant \lceil \frac{nk}{2} \rceil, k_3 + k_4 \leqslant \lfloor \frac{nk}{2} \rfloor,$$

$$k_{m-2}+k_{m-1}\geqslant \lceil \frac{nk}{2}\rceil,\ k_{m-1}+k_0\leqslant \lfloor \frac{nk}{2}\rfloor,$$

which implies that $\omega(f) = \sum_{i=1}^{m-1} k_i \geqslant \frac{m}{2} \lceil \frac{nk}{2} \rceil > \frac{mnk}{4}$, a contradiction. So $d_t^{\{k\}}(G) \leq 3$.

Now define functions f, g and h from V(G)to $\{0,1,\dots,k\}$ as follows:

$$f(x_{i,j}) =$$

$$\{k \text{ , if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 0 \pmod{4}; \\ \{k \text{ , if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 2 \pmod{4}; \\ \{0 \text{ , otherwise;} \}$$

$$g(x_{i,j}) =$$

$$\begin{cases} k \text{, if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 0 \pmod{4}; \\ k \text{, if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 2 \pmod{4}; \\ 0 \text{, otherwise:} \end{cases}$$

$$h(x_{i,i}) =$$

$$\begin{cases} k, \ 0 \leqslant i \leqslant m-1 \text{ and } j \equiv 1 \pmod{2}; \\ 0, \text{ otherwise.} \end{cases}$$

Now $\{f, g, h\}$ is a $T\{k\}D$ family on G. Therefore $d_t^{(k)}(G) \geqslant 3$. The result follows.

Remark 1.1 Theorem 0.1 follows directly from Propositions $1.1 \sim 1.3$.

Total $\{k\}$ -domatic numbers of $P_m \times P_n$, $C_m \times P_n$ and $C_m \times C_n$

Proposition 2.1 $d_t^{\{k\}}(P_m \times P_n) = 1$.

Proof Let $G = P_m \times P_n$. Note that $\delta(G) = 1$ and $d_t^{(k)}(G) \geqslant 1$ for all graphs G without isolated vertices. The result follows directly from Lemma 1.2.

if $2 \nmid k$ and $4 \nmid m$, then Proposition 2.2 $d_t^{\{k\}}(C_m \times P_n) = 1$.

Let $G = C_m \times P_n$. Suppose that $d_{t}^{(k)}(G) = 2(=\delta(G))$. Then $\sum_{v \in N_{G}(x_{i,j})} f(v) = k$ for any $f \in \mathcal{F}$, where \mathcal{F} is a $T\{k\}D$ family on G. Hence,

$$\begin{split} \sum_{v \in NG(x_{1,0})} f(v) &= f(x_{0,1}) + f(x_{2,1}) = k \,, \\ \sum_{v \in NG(x_{2,0})} f(v) &= f(x_{1,1}) + f(x_{3,1}) = k \,, \\ \sum_{v \in NG(x_{3,0})} f(v) &= f(x_{2,1}) + f(x_{4,1}) = k \,, \end{split}$$

$$\sum_{v \in N_G(x_{m-1,0})} f(v) = f(x_{m-2,1}) + f(x_{0,1}) = k,$$

$$\sum_{v \in N_G(x_{0,0})} f(v) = f(x_{m-1,1}) + f(x_{1,1}) = k.$$

Summing up the above m equations, we have

 $2(f(x_{0,1})+f(x_{1,1})+\cdots+f(x_{m-1,1}))=mk$. Since $2 \nmid k$ and $4 \nmid m$, we have $2 \mid m$ and $m=2 \pmod 4$. The above equations also imply that $f(x_{0,1})=f(x_{4,1})=f(x_{8,1})=\cdots=f(x_{m-2,1})$. Since $f(x_{m-2,1})+f(x_{0,1})=k$, we have $2 \mid k$, a contradiction.

Proposition 2.3 If $2 \nmid k$ and $4 \mid m$, then $d_{t}^{(k)}(C_{m} \times P_{n}) = 2$.

Proof Let $G = C_m \times P_n$. It suffices to show $d_t^{(k)}(G) \geqslant 2$ by Lemma 1.2. Define functions f and g from V(G) to $\{0,1,\cdots,k\}$ as follows:

$$f(x_{i,j}) = \begin{cases} \frac{k+1}{2}, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j = 1, n-2; \\ \frac{k-1}{2}, & \text{otherwise,} \end{cases}$$

and

$$g\left(x_{i,j}\right) = \begin{cases} \frac{k+1}{2}, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j = 1, n-2; \\ \frac{k-1}{2}, & \text{otherwise.} \end{cases}$$

Since $\{f,g\}$ is a $T\{k\}D$ family on G, $d_t^{\{k\}}(G){\geqslant}2$. This completes the proof.

Proposition 2.4 If $2 \mid k$ then $d_t^{\{k\}}(G) = 2$.

Proof Let $G = C_m \times P_n$. It suffices to show $d_i^{(k)}(G) \ge 2$ by Lemma 1.2. Define functions f and g from V(G) to $\{0,1,\cdots,k\}$ as follows:

$$f(x_{i,j}) = \begin{cases} \frac{k}{2}, & \text{if } 0 \leqslant i \leqslant m-1 \text{ and } j = 1, n-2; \\ \frac{k-2}{2}, & \text{otherwise;} \end{cases}$$

and

$$g(x_{i,j}) = \frac{k}{2}$$
, $0 \leqslant i \leqslant m-1$ and $0 \leqslant j \leqslant n-1$.

Note that $\{f,g\}$ is a $T\{k\}D$ family on G, we have $d_t^{\{k\}}(G) \geqslant 2$. This completes the proof.

From Propositions 2.2 \sim 2.4, we can get the following theorem immediately.

Theorem 2.1

$$d_{\iota}^{\langle k \rangle}(C_{\scriptscriptstyle m} \times P_{\scriptscriptstyle n}) = \begin{cases} 1, & \text{if } 2 \nmid k \text{ and } 4 \nmid m; \\ 2, & \text{otherwise.} \end{cases}$$

Proposition 2.5

$$d_{t}^{\langle k \rangle}(C_{m} \times C_{n}) \begin{cases} =4, \text{ if } 4 \mid m \text{ and } 4 \mid n; \\ =4, \text{ if } 2 \mid k \text{ and } 4 \mid m \text{ or } 4 \mid n; \\ \leqslant 3, \text{ otherwise.} \end{cases}$$

Proof Let $G = C_m \times C_n$. By Lemma 1.2, $d_t^{\langle k \rangle}(G) \leq \delta(G) = 4$. We proceed by considering the following three possible cases.

Case 1 $4 \mid m$ and $4 \mid n$.

Define $f_s: V(G) \mapsto \{0,1,\dots,k\}, s=1,2,3,4,$ as follows:

$$f_1(x_{i,j}) =$$

$$\begin{cases} \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 0,1 \pmod{4}; \\ \left\lceil \frac{k}{2} \right\rceil, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 0,1 \pmod{4}; \\ 0, & \text{otherwise:} \end{cases}$$

$$f_2(x_{i,i}) =$$

$$\begin{cases} \lceil \frac{k}{2} \rceil, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 0,1 \pmod{4}; \\ \lfloor \frac{k}{2} \rfloor, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 0,1 \pmod{4}; \end{cases}$$

$$f_3(x_{i,j}) =$$

$$\begin{cases} \lfloor \frac{k}{2} \rfloor, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 2,3 \pmod{4}; \\ \lceil \frac{k}{2} \rceil, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 2,3 \pmod{4}; \\ 0, & \text{otherwise;} \end{cases}$$

$$f_4(x_{i,i}) =$$

$$\begin{cases} \left\lceil \frac{k}{2} \right\rceil, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } j \equiv 0,3 \pmod{4}; \\ \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } i \equiv 2,3 \pmod{4} \text{ and } j \equiv 0,3 \pmod{4}; \\ 0, & \text{otherwise.} \end{cases}$$

Clearly, $\{f_1, f_2, f_3, f_4\}$ is a $T\{k\}D$ family on G. Hence, $d_t^{\langle k \rangle}(G) \ge 4$, which follows that $d_t^{\langle k \rangle}(G) = 4$.

Case 2 $2 \mid k$ and $4 \mid m$ or $4 \mid n$. Without loss of generality assume $4 \mid n$.

Define $f_s: V(G) \mapsto \{0,1,\dots,k\}, s=1,2,3,4,$ as follows

$$f_1(x_{i,j}) =$$

$$\begin{cases} \frac{k}{2}, & \text{if } j \equiv 0,1 \pmod{4} \text{ and } 0 \leqslant i \leqslant m-1; \\ 0, & \text{otherwise;} \end{cases}$$

$$f_2(x_{i,j}) =$$

$$\begin{cases} \frac{k}{2}, & \text{if } j \equiv 1,2 \pmod{4} \text{ and } 0 \leqslant i \leqslant m-1; \\ 0, & \text{otherwise;} \end{cases}$$

$$f_3(x_{i,j}) = \begin{cases} \frac{k}{2}, & \text{if } j \equiv 2,3 \pmod{4} \text{ and } 0 \leqslant i \leqslant m-1; \\ 0, & \text{otherwise}; \end{cases}$$

$$f_4(x_{i,j}) = \begin{cases} \frac{k}{2}, & \text{if } j \equiv 3,0 \pmod{4} \text{ and } 0 \leqslant i \leqslant m-1; \\ 0, & \text{otherwise}. \end{cases}$$

Clearly, $\{f_1, f_2, f_3, f_4\}$ is a $T\{k\}D$ family on G. Hence, $d_i^{\{k\}}(G) \geqslant 4$, which follows that $d_i^{\{k\}}(G) = 4$.

Case 3 The others.

By Case 1, $4 \nmid m$ or $4 \nmid n$. Without loss of generality, assume $4 \nmid m$. By Case 2, the remaining case is $4 \nmid n$ or $4 \mid n$ but $2 \nmid k$.

Suppose to the contrary that $d_t^{(k)}(G) = 4$. Let $\mathcal{F} = \{f_1, f_2, f_3, f_4\}$ be a total $\{k\}$ -dominating family. We will prove that, for any $f \in \mathcal{F}$, $f(x_{i-1,j-1}) = f(x_{i+1,j+1})$ and $f(x_{i-1,j+1}) = f(x_{i+1,j-1})$, then we obtain $f(x_{i,j}) = \frac{k}{4}$ for $0 \le i \le m-1$ and $0 \le j \le n-1$, which implies that $|\mathcal{F}| = 1$, a contradiction with $d_t^{(k)}(G) = 4$. Since G is vertex transitive, it is sufficient to show $f(x_{0,0}) = 1$

$$f(x_{2,2}), f(x_{0,2}) = f(x_{2,0}) \text{ and } f(x_{0,0}) = \frac{k}{4}.$$
By Lemma 1.2, $\sum_{x \in NG(x_{i,j})} f(x) = k$. Hence
$$f(x_{i-1,j-1}) + f(x_{i-1,j+1}) + f(x_{i+1,j+1}) = k,$$

where the sums in the subscripts are modular m and n, respectively. For $i=1,2,\cdots,\ m-1,0,$ we have

$$f(x_{0,j-1}) + f(x_{0,j+1}) + f(x_{2,j-1}) + f(x_{2,j+1}) = k,$$

$$f(x_{1,j-1}) + f(x_{1,j+1}) + f(x_{3,j-1}) + f(x_{3,j+1}) = k,$$

$$f(x_{2,j-1}) + f(x_{2,j+1}) + f(x_{4,j-1}) + f(x_{4,j+1}) = k,$$

...

$$\begin{split} f(x_{m-2,j-1}) + f(x_{m-2,j+1}) + f(x_{0,j-1}) + f(x_{0,j+1}) &= k, \\ f(x_{m-1,j-1}) + f(x_{m-1,j+1}) + f(x_{1,j-1}) + f(x_{1,j+1}) &= k. \\ \text{Hence we have} \end{split}$$

$$f(x_{0,j-1}) + f(x_{0,j+1}) = f(x_{4,j-1}) +$$

 $f(x_{4,j+1}) = \cdots = f(x_{4s,j-1}) + f(x_{4s,j+1}),$

where s can be any nonnegative integer. Since $4 \nmid m$, $4s \pmod{m}$ can be any positive integer from $\{1, 2, \dots, m-1\}$. Therefore,

$$f(x_{0,j-1}) + f(x_{0,j+1}) = f(x_{1,j-1}) + f(x_{1,j+1}) =$$

$$f(x_{2,j-1}) + f(x_{2,j+1}) = \cdots =$$

$$f(x_{m-1,j-1}) + f(x_{m-1,j+1}) = \frac{k}{2}.$$

This implies that $2 \mid k$ and hence we must have $4 \nmid n$ (otherwise, we have $4 \mid n$ and $2 \nmid k$, a contradiction). By symmetry of m and n, we have

$$f(x_{i-1,0}) + f(x_{i+1,0}) = f(x_{i-1,1}) + f(x_{i+1,1}) =$$

$$f(x_{i-1,2}) + f(x_{i+1,2}) = \dots =$$

$$f(x_{i-1,n-1}) + f(x_{i+1,n-1}) = \frac{k}{2}.$$

Consider i = 1 and j = 1, we have $f(x_{2,0}) = f(x_{0,2})$ and $f(x_{0,0}) = f(x_{2,2})$. By symmetry, we can obtain $f(x_{i-1,j-1}) = f(x_{i+1,j+1})$ and $f(x_{i-1,j+1}) = f(x_{i+1,j-1})$, for $0 \le i \le m-1$ and $0 \le j \le n-1$. Therefore

$$f(x_{0,0}) = f(x_{2,2}) = f(x_{4,0}) = f(x_{6,2}) =$$

 $f(x_{8,0}) = \cdots = f(x_{4s,0}) = f(x_{4s+2,2}).$

Again by $4 \nmid m$, we have that $4s \pmod{m}$ can be any positive integer in $\{1, 2, \cdots, m-1\}$, and hence

$$f(x_{0,0}) = f(x_{1,0}) = f(x_{2,0}) = \dots = f(x_{m-1,0}).$$

Since $f(x_{0,0}) + f(x_{2,0}) = \frac{k}{2}$, we have $f(x_{0,0}) = \frac{k}{4}$. This completes the proof.

Proposition 2.6 If $k \ge 2$, and $4 \nmid m$ or $4 \nmid n$, then $d_{\ell}^{(k)}(C_m \times C_n) \ge 3$.

Proof Let $G = C_m \times C_n$. Without loss of generality, assume $4 \nmid m$. if $4 \mid k$, that is $\delta(G) \mid k$, then $d_t^{\langle k \rangle}(G) \geqslant \delta(G) - 1 = 3$ by Lemma 1.1.

Assume $4 \nmid k$. By Lemma 1.1, $d_t^{\langle k \rangle}(G) \geqslant \lfloor k / \lceil \frac{k}{4} \rceil \rfloor$. Let k = 4s + t where $1 \leqslant t \leqslant 3$. Moreover,

$$d_{t}^{(k)}(G) \geqslant \lfloor (4s+t)/\lceil \frac{4s+t}{4} \rceil \rfloor = 4 + \lfloor \frac{4-t}{s+1} \rfloor$$

If $s \ge 2$, then $s+1 \ge 4-t$, and thus $d_t^{(k)}(G) \ge 3$ for $k \ge 9$. Hence assume s < 2. Since $4 \nmid k$, we have k = 2, 3, 5, 6, 7. It is obvious that $d_t^{(k)}(G) \ge \lfloor k / \lceil \frac{k}{\delta(G)} \rceil \rfloor \ge 3$ when k = 3, 6, 7 by Lemma 1.1. In order to complete the proof, it suffices to show that $d_t^{(k)}(G) \ge 3$ when k = 2, 5.

When $m \equiv 1 \pmod{4}$, define functions f, g

and
$$h$$
 from $V(G)$ to $\{0,1,\cdots,k\}$ as follows:
$$f(x_{i,j}) = \begin{cases} \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } 0 \leqslant j \leqslant n-1; \\ \left\lfloor \frac{k}{2} \right\rfloor - 1, & \text{otherwise}; \end{cases}$$

$$g(x_{i,j}) = \begin{cases} \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } i \equiv 2,3 \pmod{4}, \\ & i = m-1 \text{ and } 0 \leqslant j \leqslant n-1; \\ \left\lfloor \frac{k}{2} \right\rfloor - 1, & \text{otherwise}; \end{cases}$$

and

$$\begin{split} h\left(x_{i,j}\right) &= \\ \left\{ \frac{k}{2} \, \rfloor - 1, \text{ if } i = m-1 \text{ and } 0 \leqslant j \leqslant n-1; \right. \\ \left\{ \frac{k}{2} \, \rfloor, \text{ otherwise.} \right. \end{split}$$

Note that $\{f,g,h\}$ is a $T\{k\}D$ family on G, hence $d_{\iota}^{(k)}(G)\geqslant 3$.

When $m \equiv 2 \pmod{4}$, define functions f, g and h form V(G) to $\{0,1,\cdots,k\}$ as follows: $f(x_{i,j}) =$

$$\begin{cases} \lfloor \frac{k}{2} \rfloor, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } 0 \leqslant j \leqslant n-1; \\ \lfloor \frac{k}{2} \rfloor -1, & \text{otherwise;} \end{cases}$$

$$g\left(x_{i,j}\right) = \begin{bmatrix} \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } i \equiv 2,3 \pmod{4} \end{cases},$$

$$i = m - 2, m - 1 \text{ and } 0 \leqslant j \leqslant n - 1;$$

$$\left\lfloor \frac{k}{2} \right\rfloor - 1, & \text{otherwise;}$$

and

$$h(x_{i,i}) =$$

$$\begin{bmatrix} \frac{k}{2} \end{bmatrix} - 1, \text{ if } i = m - 2, m - 1 \text{ and } 0 \leqslant j \leqslant n - 1;$$

$$\begin{bmatrix} \frac{k}{2} \end{bmatrix}, \text{ otherwise.}$$

Since $\{f,g,h\}$ is a $T\{k\}D$ family on G, $d_{t}^{\langle k \rangle}(G) \geqslant 3$.

When $m\equiv 3\pmod 4$, define functions f , g and h from V(G) to $\{0,1,\cdots,k\}$ as follows: $f(x_{i,j}) =$

$$\begin{cases} \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } i \equiv 0,1 \pmod{4} \text{ and } 0 \leqslant j \leqslant n-1; \\ \left\lfloor \frac{k}{2} \right\rfloor - 1, & \text{otherwise;} \end{cases}$$

$$g\left(x_{i,j}\right) = \begin{cases} \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } i \equiv 2,3 \pmod{4}, \\ i = 0 \text{ and } 0 \leqslant j \leqslant n-1; \\ \left\lfloor \frac{k}{2} \right\rfloor - 1, & \text{otherwise;} \end{cases}$$

and

$$h\left(x_{i,j}\right) = \begin{cases} \left\lfloor \frac{k}{2} \right\rfloor - 1, & \text{if } i = 0 \text{ and } 0 \leqslant j \leqslant n - 1; \\ \left\lfloor \frac{k}{2} \right\rfloor, & \text{otherwise.} \end{cases}$$

Because $\{f, g, h\}$ is a $T\{k\}D$ family on G, $d_t^{(k)}(G) \geqslant 3$.

This completes the proof.

From Propositions 2.5 and 2.6, we can get the following theorem immediately.

Theorem 2.2 Let
$$k \ge 2$$
. We have

$$d_{t}^{(k)}(C_{m} \times C_{n}) = \begin{cases} 4, & \text{if } 4 \mid m \text{ and } 4 \mid n \text{ (equality also holds for } k = 1); \\ 4, & \text{if } 2 \mid k \text{ and } 4 \mid m \text{ or } 4 \mid n; \\ 3, & \text{otherwise.} \end{cases}$$

References

- [1] XU J M. Theory and Application of Graphs [M].
 Dordrecht/ Boston/ London: Kluwer Academic
 Publishers, 2003.
- [2] COCKAYNE E J, DAWES R M, HEDETNIEMI S T. Total domination in graphs[J]. Networks, 1980, 10: 211-219.
- [3] LIN, HOUX. On the total {k}-domination number of Cartesian products of graphs [J]. J Comb Optim, 2009, 18: 173-178.
- [4] SHEIKHOLESLAMI S M, VOLKMANN L. The total k-domatic number of a graph[J]. J Comb Optim, 2012, 23: 252-260.
- [5] CHEN J, HOU X, LI N. The total k-domatic number of wheels and complete graphs [J]. J Comb Optim, 2012, 24: 162-175.
- [6] ARAM H, SHEIKHOLESLAMI S M, VOLMANN L. On the total {k}-domination and total {k}-domatic number of graphs[J]. Bull Malays Math Sci Soc, 2013, 36: 39-47.