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Abstract: Beam angle optimization (BAO) largely determines the performance of the fixed-field
intensity modulated radiation therapy (IMRT), and it is usually considered as non-convex optimization
and a non-deterministic polynomial(NP) hard problem. In this work, BAO is reformulated into a highly
efficient framework of standard quadratic optimization. The maximum of beamlet intensities for each
incident field as the surrogate variable indicates whether one radiation field has been selected. By
converting the function of maximum value in the objective into a set of linear constraints, the problem is
solved as standard quadratic optimization via reweighting l1-norm scheme. The performance of the
proposed BAO has been verified on a digital phantom and two patients. And the conclusion is drawn: the
proposed convex optimization framework is able to find an optimal set of beam angles, leading to
improved dose sparing on organs-at-risk (OARs) in the fixed-field IMRT.
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1　 Introduction
Inverse treatment planning for intensity modulated
radiation therapy ( IMRT) aims to obtain a prescribed
dose distribution on planning target volume ( PTV)
while sparing organs at risk (OARs) . A fully optimized
IMRT plan should consider all the system parameters of
a clinical linear accelerators as control variables in the
optimization process, including beam number, beam
angle, multi-leaf collimator (MLC) leaf positions, and
monitor unit ( MU ) for each segment. Convex
formulation of such an optimization task, however,
appears challenging since most control variables have a
non-linear relationship with the delivered dose
distribution. In this work, we improve fixed-field IMRT
by including beam angled optimization into the inverse
treatment planning process, via a new l1-norm
minimization approach.

A large number of treatment beams prolongs dose
delivery time and therefore increases potential dose
errors due to patient motion. On the other hand, it is
reported that the dose improvement of a treatment plan
diminishes as beam number increases and less than 10
beam angles are often sufficient for IMRT[1] . As a
small beam number is used in current fixed-field IMRT,

the selection of beam angles largely determines the
treatment plan quality[2,3] . Beam angle optimization
(BAO) searches for an optimal set of beam orientations
to obtain the best plan quality from all possible beam
angle combinations, which is inherently an NP-hard
combinatorial optimization problem with no efficient
solutions yet. As such, BAO is not ubiquitously
implemented in current clinical practice. Instead, beam
number is first empirically determined, and beam angles
are selected in a trial-and-error fashion. Due to the
mathematical complexity of inverse planning in IMRT,
empirical tuning of beam angle selection does not
guarantee the optimality of treatment plan. For instance,
the mathematically optimal beam configuration can be
counterintuitive since the extra freedom of intensity
modulation compensates for the visually sub-optimal
beams[7] . To shorten the treatment planning time of
IMRT, equiangular beams are used in many radiation
therapy scenarios, and the same beam angle setting is
typically used for the same disease site on different
patients, at the cost of reduced plan optimality[8, 9] .

BAO for IMRT has been an active research area for
decades[6,7,10-14] . Many existing BAO methods improve
the empirical selection of beam angles by including
dosimetric or geometric considerations[12,15-17], and they



are not exactly optimization algorithms from a
mathematical perspective. For example, some
researchers use beam’ s-eye-view dosimetry[18] to rank
the possible beam orientations according to the quality
of dose distribution inside the PTV when the tolerance
for OARs is not exceeded. Another similar work[16] uses
the ratio of OAR total dose to mean PTV dose as the
quality metric for each incident field. The above
strategies reduce the computation of BAO by analysing
the contribution of individual beam to the overall quality
of a treatment plan, which inevitably compromises the
optimality of delivered dose distribution due to
negligence of multiple-beam interplay[19] .

Another category of BAO methods aims to find the
optimal beam angles for IMRT using global optimization
for a non-convex problem. Existing approaches include
simulated annealing algorithms[7,13,19], genetic
algorithms[20, 21], particle swarm optimization
method[22], and multi-objective optimization
algorithms[23, 24] . As a weakness of non-convex
optimization with a large solution pool in general, these
methods typically require clinically unacceptable long
computation and it is theoretically impossible to
guarantee the global optimality of the solution due to the
existence of multiple local minima[10, 25] .

Recent developments on optimization methods give
rise to non-conventional treatment planning algorithms
for IMRT. Sparse optimization was introduced to IMRT
treatment planning by Zhu and Xing to obtain a
satisfactory dose distribution with a simplified treatment
plan[26, 27] . By minimizing a total-variation objective
with quadratic constraints, the algorithm finds piece-
wise constant fluence maps with sparse gradients,
leading to a highly efficient treatment with a small
number of segments. BAO searches for optimal sparse
beams in the angular space, which can be formulated as
a sparse recovery problem as well. The key challenge of
solving BAO via sparse optimization is to find an
appropriate control variable for the objective function to
indicate the sparsity of beams while still preserving the
convexity of the optimization problem. A probably first
attempt of sparse optimization based BAO can be found
in a recent literature[28] . The authors find it difficult to
formulate an l1-norm objective and propose a mixed l2,1-
norm of beam intensities instead, which is inherently an
adaptation of the group-lasso ( also called group-
sparsity) method[29] widely used in signal processing
and statistical learning[30-34] for fearture selection.
Theoretically, such a scheme compromises the
optimality of BAO for the mixed l2,1-norm objective not
only imposes the sparsity on the beam angle level, but
also perform an additional smoothing penalty within
each field. On the other hand, the authors also admit it
that the use of a somewhat complicated group-lasso

objective also complicates the computation since the
proposed l2,1-norm minimization cannot be solved by
either linear or quadratic programming. Some BAO
algorithms are recently developed based on the group-
lasso method and they both replace the l1-norm with the
nonconvex function to better approximate the l0-norm
while rataining the l2-normin each field as the control
variable to indicate whether this field is selected or
not[5, 35] . The quasi l0-norm method ( i. e. , l2,0-norm)
eliminates the l2-norm penalization within each field
during the BAO process, it still employs a complicated
iteration scheme due to the nonideal group-sparsity
objective.

In this work, by designing a new control variable
in the sparse optimization framework, we propose an
improved BAO algorithm with an l1-norm regularized
quadratic objective. Since the algorithm is in a standard
form of quadratic optimization, it accurately finds the
global minimum with high computational efficiency.
The method performance is demonstrated on one digital
phantom, one prostate patient and one head-and-neck
(HN) patient.

2　 Methods
2. 1 　 Inverse treatment planning of IMRT using l1-

norm minimization
We develop the proposed algorithm using a beamlet
model. Each radiation beam from a pre-determined
angle is divided into small beamlets. The delivered dose
distribution on the patient, d⇀, has a linear relationship
with beamlets of fluence map, x⇀:

d⇀ = Ax⇀ (1)
where d⇀ is a vectorized dose distribution for a three-
dimensional volume, and the beamlet intensity x⇀ is a
one-dimensional vector that consists of row-wise
concatenations of beamlet intensities for all fields. Each
column of the matrix A is a beamlet kernel which
corresponds to the delivered dose distribution by one
beamlet with unit intensity. In this work, we use the
Voxel-based Monte Carlo algorithm ( VMC ) [36] to
generate the matrix A.

In the conventional beamlet-based treatment
planning of IMRT, sum of square errors of the delivered
dose relative to the prescribed dose is used as an
objective function in the optimization of the beamlet
intensity x⇀, and the fluence map optimization (FMO)
problem is expressed as

minimize:φFMO = ∑
i
λi(Ai x

⇀ - di)T(Ai x
⇀ - di) (2)

subject to: x⇀ ≽0
where the index i denotes PTV or different OARs, Ai is
the beamlet kernel for different structures, λi is the
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corresponding importance factor[37, 38], and di is the
prescribed dose to each structure. The optimized
beamlet intensity is finally converted to MLC leaf
positions and MUs for different segments, using a leaf
sequencing algorithm[39] .

In current fixed-field IMRT, a small number of
beam angles (typically 5-10) are pre-determined before
the optimization of beamlet intensities. In this work, we
aim to include a large number of beam angles from a
full rotation into the beamlet optimization framework
and use sparse optimization to automatically select the
optimal beam combination, so the new optimization
algorithm takes the following form of l1-norm
minimization:

minimize:φFMO + β S⇀( x⇀) 1 (3)
subject to:x⇀ ≽0

where β is a user-defined parameter adjusting relative
weights between the FMO objective and the BAO
objective; S⇀( x⇀) is a vector with a length of the total
available beam number, and one element of S⇀( x⇀) is
zero if the corresponding beam angle is not selected.
· 1 calculates the l1 norm of one vector. Note that,

the beamlet kernel Ai in the optimization problem (3)
has a significantly increased size as compared with that
in the optimization problem ( 2 ), due to the large
number of beamlets from all available fields.

The function S⇀ in the optimization problem (3)
outputs a sparse vector signal when only a small number
of beam angles are selected and the combined objective
favors a sparse S⇀ due to the existence of l1-norm
regurlarization term. The design of S⇀ is the main
contribution of this paper. The challenge lies in that the
optimization problem (3) needs to be in a form of or
convertible to convex optimization for its efficient
computation. We propose to use:

S⇀( x⇀) = max( x⇀θ) (4)
where x⇀θ denotes all beamlets at angle θ , and max
( x⇀θ) is a vector with a length of total available beam
number, of which each element is the maximum
intensity of beamlets within one beam at angle θ .

The function of Eq. (4) is non-linear or quadratic.
However, it can be easily verified that the proposed
optimization framework, i. e. , the optimization problem
(3) and Eq. (4), can be converted to an equivalent
form of quadratic optimization. Define a new vector y⇀,
with a length of total available beam number. The
proposed algorithm can be rewritten as:

minimize:φFMO + y⇀ 1 (5)
subject to:x⇀ ≽0,x⇀θ ≼ y⇀(θ)

where y⇀(θ) stands for the element of vector y⇀ at angle

θ . Compared with the mixed l2,1-norm and l2,0-norm
methods mentioned before[5,28,35], our algorithm exhibits
the form of l2,∞ -norm which excludes the smoothing
penalization within each field during the BAO process
without sacrifacing the computation efficiency of convex
optimization.

In order to convert the problem ( 5 ) to the
framework of a standard quadratic programming, we
define a combined vector z⇀ = [ x⇀;y⇀] . If the total
number of beamlets is N and the number of all candidate
beam angles is M, so the optimization variable z⇀ is an
(N +M)-dimensional vecotr. Then the problem (5)
could be rewritten as an equivalent form as

minimize: 1
2

z⇀TQ z⇀ + c⇀T z⇀ (6)

subject to:Β z⇀ ≼0
where Q is an (N +M)2-dimensional real symmetric
matrix, c⇀ is a vector with the length of (N+M), and B
is an (N+M)2-dimensional matrix. Specifically,

Q = 2ATA O
O O
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where e⇀ is an M-dimensional all-one vector.
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where I is an identity matrix with the size of N by N,
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(7. 4)

　 　 Multiplication by the upper half of matrix B is used
to perform the constraints of x⇀≽0 , while multiplication
by the other half of matrix B imposes the contrasints of
x⇀θ≼y⇀(θ) on the optimization variable.

The problem (6) has a form of standard quadratic
optimization, and it is the main result of the paper. Zero
elements of the optimized y⇀ obtained from the
optimization problem ( 6 ) indicates that the
corresponding beam angles should not be used in the
fixed-field IMRT.
2. 2　 The proposed BAO with a reweighting scheme
Derived from l1-norm minimization, the optimization
problem (6)sacrifices sparsity of the optimized solution
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for computational efficiency. At the cost of increased
computation, the non-convex l0-norm minimization
enhances the solution sparsity and therefore reduces the
number of required beams. In this paper, we propose to
balance the computational efficiency and the solution
sparsity via a series of reweighted l1-norm
minimization, a strategy commonly used in different
l1based sparse optimization problems[28,40,41] .

The reweighting scheme approximates l0-norm
minimization by adaptively assigning large weights to
the optimized vector elements with small values in the
previous iteration of l1-norm minimization[41] . In each
iteration, the optimization takes the following form:

minimize: 1
2

z⇀TQ z⇀ + c′⇀T z⇀ (8)

subject to:Β z⇀ ≼0
where c′⇀ is defined as [ - 2ATb⇀; β ·w⇀ ] . The
optimization problem above has the same form of
problem ( 6 ), except that the all-one vector e⇀ is
replaced by a new weighting vector w⇀. w⇀ ( θ ) ,
element of w⇀ at beam angle θ , is adaptively updated
after each iteration using the same methods as in
Ref. [28]:

　 　 　 　 　 　 w⇀(θ)= exp 1-
xθ 2

xθ max
2

é

ë
ê
ê

ù

û
ú
ú (9)

where xθ 2 calculates the l2-norm of all beam
intensities at angle θ and xθ max

2 is the maximum of
xθ 2 in the neighboring three angles with non-

vanishing values.
Algorithm 　 BAO using quadratic optimization

with reweighting
Set the parameter values of λi, di and β ; Initialize

w⇀(θ)= 1 for all θ . Set a target beam number NA .
repeat
1. Solve the optimization problem (8);
2. Count the number of non-zero elements in y⇀, Nang;
3. Update w⇀ using Eq. (9) .
until Nang is no longer larger than NA .
The proposed BAO algorithm is summarized

above. We first initialize w⇀ as an all-one vector. The
optimization problem (8) is repeatedly computed with
w⇀ updated using Eq. (9) . After each iteration, we
count the number of non-zero elements of y⇀, i. e. , the
number of selected beam angles, Nang . The BAO
process terminates if Nang is no longer than NA . After
BAO selects the optimal beam angles, a standard
inverse planning for fixed-field IMRT finally generates a
treatment plan and a delivered dose distribution.
2. 3　 Evaluation
We evaluate the proposed BAO method on a digital

phantom, a prostate patient and a head-and-neck
patient. For all evaluation studies, we consider 40
equiangular beams in a full rotation as the candidates of
all available beam orientations. The PTV is centered at
the axis of rotation, with a source-to-axis distance
(SAD) of 100 cm. In the FMO for fixed-field IMRT,
each field targets the center of PTV, and contains 20 by
20 beamlets, with a beamlet size of 5 mm by 5 mm at
SAD, while during the BAO process, the beamlet size
is downsampled to 1cm by 1cm to reduce the memory
usage. To save computation in the Monte Carlo
simulation of the dose kernel (i. e. , the matrix Ai), the
CT data are downsampled to a voxel size of 3. 92 mm
by 3. 92 mm by 2 mm. All the algorithms are
implemented in Matlab, using CVX, an open-source
optimization software[42] . On a 2. 4 GHz workstation
with 28 cores, the proposed BAO takes 3 min on the
digital phantom, 5 min on the prostate patient, and 6
min on the head and neck patient.

A theoretically optimal set of beam angles is
difficult to derive on clinical cases, since it is dependent
on the geometries of structures ( i. e. , the dose kernel
Ai) as well as the parameters of treatment planning ( i.
e. , λi, di and β ) . The study of digital phantom with
a known optimal set of beam angles is designed to test
the proposed BAO algorithm. We implement the
conventional IMRT planning ( i. e. , the optimization
problem ( 2 )) with all beam angles included for
comparison. In the patient studies, we investigate the
dose performance of fixed-field IMRT using the
proposed BAO and a set of equiangular beam angles. In
addition to the final dose distributions, we compare the
dose-volume-histogram ( DVH ) curves of OAR for
different plans with a similar dose coverage on PTV.

A particular difficulty occurring in the design of
patient studies is that, on the same patient, the
parameters of IMRT planning, especially the importance
factors (i. e. , λi), need to be fine-tuned for different
sets of beam angles to achieve clinically acceptable
treatment plans, leading to unfair comparisons of
different algorithms. For a comprehensive evaluation of
method performance, we consider fixed-field IMRT
planning with the proposed BAO a multi-objective
optimization problem, with the following objectives of
minimization:

PTV dose objective:
φ1 = (APTV x

⇀ - dPTV)T(APTV x
⇀ - dPTV)

　 　 OAR dose objective:
φ2 = ∑

i∈OARs
λi(Ai x

⇀ - di)T(Ai x
⇀ - di)

　 　 beam number objective:
φ3 = y⇀ 1
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Figure 1. The validation study on a simulation phantom. (a) The simulation phantom with PTV and OAR. The quantity of max( x⇀θ)
for each incident field without (b) and with (c) the proposed BAO.

　 　 Definitions of all variables are the same as those in
the optimization problem (8) . The regularization term
in problem (5) , φ3, is considered as one of the
objectives in this multi-objective optimization problem,
so the penalty weight β is no longer needed here and the
weighting factors for each angle w⇀ ( θ) is adaptively
adjusted as mentioned before. Note that, for simplicity
of result presentation, we use one single dose objective
for all OAR structures. The relative values of
importance factors of the OAR structures remain
unchanged in each patient study. In the evaluations, we
fix the value of one objective and compute the Pareto
frontiers of the other two objectives.

3　 Results
3. 1　 The digital phantom study
Figure 1 ( a) shows the digital phantom used in the
simulation. This is a cylinder phantom composed of
pure water to simulate the tissue and the diameters of the
phantom and PTV are 20 cm and 2. 5 cm respectively.
The phantom is rotationally symmetric, and therefore
the optimal beam angles are only dependent on the
relative positions of PTV and OAR. Six passages at
randomly selected angles of 0°, 54°, 81°, 153°, 216°,
315° are designed, on which the radiation beams reach
PTV without passing through OAR. As such, these six
beam angles are considered the optimal orientations in
this study.

The results of conventional IMRT planning using
the optimization framework (2) and the proposed BAO
algorithm are shown in Figure 1 ( b ) and ( c ),
respectively. The maximum value of beamlet intensities
for each angle (i. e. , max ( x⇀θ) as defined in Eq. (4))
is used as an indicator of whether one beam angle is
selected or not. It is seen that the conventional IMRT

planning fails to select the most effective beam angles
and all 40 beams are used for treatment. The proposed
BAO method perfectly chooses the six optimal beam
angles with no errors, out of more than 3000000
possible combinations (i. e. , C6

40) .

Figure 2. Results of the prostate patient study. Pareto
frontiers of the PTV dose objective ( φ1) and the OAR dose
objective( φ2) for the same number of beam angles using an
equiangular plan and the proposed BAO.

3. 2　 The prostate cancer patient study
Figures 2, 3, and 4 show the results on the prostate
patient. By tuning algorithm parameters, the proposed
BAO is able to select different numbers of beam angles.
With the same PTV dose coverage, Figure 2 compares
the Pareto frontiers of fixed-field IMRT with five beam
angles using an equiangular plan and the BAO method.
It is seen that the proposed BAO substantially improves
the dose performance over an equiangular plan with
reduced dose objective values on both PTV and OARs.

The improved dose sparing on OARs achieved by
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Figure 3. Comparison of dose distributions on the prostate
patient with five beam angles using an equiangular plan (a)
and using the proposed BAO (b), respectively.

Figure 4. Comparison of DVH curves for the BAO plan
(dashed) and the equiangular plan ( solid) . ( a) shows the
DVHs in PTV and overall OAR, and (b) shows the DVH in
each critical structure.

the proposed BAO is better seen in the comparison of
dose distributions in Figure 3 and DVHs in Figure 4. In
this patient case, we find that five beam angles (9°,
36°, 117°, 234°, 324°) obtained by the proposed BAO
successfully achieve a clinically acceptable dose
coverage on PTV. We then compare with the
conventional IMRT planning using five equiangular
beams starting at 0°. The algorithm parameters are tuned
such that both plans obtain the same dose performance
on PTV. With the freedom of beam angle selection, the
proposed BAO favors beam passages reaching PTV
without intersecting OARs (see Figure 3) and therefore
significantly improves dose sparing on OARs. The
superior performance of the BAO plan over the
equiangular plan is further seen in the DVH comparison
of Figure 4. The proposed BAO reduces the overall dose

exposure on OARs by 30. 53%. Table 1 summarizes and
compares the results of the BAO and equiangular
treatment plans with the clinical acceptance criteria,
which also demonstrates the validity of the proposed
BAO.

Table 1. Prostate plan objectives and results.

Regions Acceptance criteria BAO(Gy) Equiangular(Gy)

PTV 78Gy≥95% 78. 4 78. 5

Rectum 70Gy≤20% 51. 9 49. 7

60Gy≤35% 38. 3 42. 9

Bladder 65Gy≤25% 16. 8 24. 9

40Gy≤50% 3. 4 3. 5

Femoral Heads

Left 45Gy≤1% 30. 9 31. 8

Right 45Gy≤1% 16. 4 32. 7

Figure 5. Results of the head-and-neck patient study. Pareto
frontiers of the PTV dose objective ( φ1) and the OAR dose
objective( φ2) for the same number of beam angles using an
equiangular plan and the proposed BAO.

3. 3　 The head-and-neck cancer patient study
A similar performance of the proposed BAO is

observed on the head-and-neck patient, as shown in
Figures 5-8. Figure 5 compares the Pareto frontiers of
the PTV and the OAR dose objectives for the IMRT
plans using seven beams generated from the proposed
BAO with seven and nine equiangular beams starting at
0°. It should be noticed that the seven beam angles
selected by the BAO outperforms not only the
equiangular seven beams but also the nine beams, which
further confirms the necessity and essentiality of BAO
for the complex and non-intuitive scenarios like head-
and-neck cases.

416 中国科学技术大学学报 第 51 卷



The superior performance of the BAO plan for
OAR avoidance is visually verified in the comparison of
dose distributions in Figure 6. The algorithm parameters
are tuned to obtain the same dose coverage on PTV in
all three plans using seven beams selected by BAO (0°,
45°,63°,99°,126°, 261°,288°), equiangular seven and
nine beams. We find that, compared with the prostate
patient case, the results of BAO is more counterintuitive
on the head-and-neck patient, mainly due to the
geometric complexity of PTV and OARs. In this case,
our algorithm selects the optimal beams distant from
equiangular directions to better adapt the strip-shape of
PTV as well as to avoid the OARs. The improved dose
sparing on OARs in the BAO plan is seen in the DVH
comparison in Figure 7. The proposed BAO reduces
OAR dose by 16. 1% and 12. 3% from that of the
equiangular plans using seven and nine beams,
respectively. Table 2 compares the results of the BAO
and equiangular plans with the acceptance criteria which
indicates that the plans are all clinically acceptable and
the superiority of the BAO plan.

Table 2. HN plan objectives and results.

Regions Acceptance
criteria BAO(Gy) Equiangular

(7 / 9 beams, unit:Gy)

PTV 70Gy≥95% 70. 4 70. 0 / 70. 8

Brain Stem Dmax≤54Gy 1. 9 2. 2 / 2. 0

Spinal Cord Dmax≤40Gy 19. 3 18. 0 / 16. 6

Parotid Gland

Left Dmean≤26Gy 22. 4 22. 3 / 23. 2

Right Dmean≤26Gy 12. 1 14. 7 / 13. 4

Mandible Dmean≤35Gy 18. 6 20. 6 / 19. 3

Oral Cavity Dmean≤40Gy 11. 0 14. 0 / 13. 4
[Note] D represents the dose distribution in the corresponding organ.

4　 Conclusions
In this paper, we propose a new BAO algorithm to
improve fixed-field IMRT. The problem of optimal
angle selection is first formulated as l1-norm
minimization based on the sparse optimization, and then
converted into a highly efficient framework of standard
quadratic optimization. On a digital phantom, the
proposed BAO successfully finds the theoretically
optimal set of beam angles from more than 3000000
possible combinations. Our algorithm reduces the
delivered dose on OARs by 30. 53% and 12. 3% to
16. 1% on a prostate patient and a head-and-neck
patient, respectively, compared with that of equiangular
IMRT plans with the same PTV dose coverage.

The optimal set of IMRT beam angles varies on

Figure 6. Comparison of dose distributions of different slices
on the HN patient with plans using equiangular seven beams
(a, b), nine beams ( c, d) ,and seven beams using the
proposed BAO(e, f), respectively.

Figure 7. Comparison of DVH curves for the BAO
plan and the equiangular plans.

different cancer patients. In the era of patient-specific
radiation therapy, beam angle selection remains as one
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of very few procedures missing in the current clinical
practice of fixed-field IMRT, mainly due to its high
complexity of implementation. Compared with those of
existing researches on non-convex or convex BAO
algorithms, the main contribution of our work is to
show that BAO can be accurately performed using a
simple and efficient framework of standard quadratic
optimization. As such, the proposed BAO method is
practical for improving IMRT dose performance
especially on patients with irregular shapes and / or
positions of PTV and / or OARs ( i. e. , head-and-neck
patients) . Larger dose benefits achieved by BAO are
expected on non-conventional IMRT scenarios ( e. g. ,
non-coplanar IMRT[17, 35]), where beam angles have
additional degrees of freedom. Our algorithm is
therefore more attractive in these applications for its
mathematical simplicity.

There remains a common issue in all existing group
sparsity regularization methods. As mentioned in
Section 2. 3,the important factors for different OARs (
λi in Eq. (2))need to be fine-tuned for different beam
orientations selected, in other words, pre-fixed
important factors can affect the final optimized beam
angles. For example, if the weighting λi for OARi is
very large, those beam angles directly passing through
OARi will be discarded in the optimized orientations.
However, if weighting factors for all OARs are very
large, the prescribed dose distribution inside the PTV
may be impossible to be reached. So the best solution is
to discard the dose objective during the BAO process,
and the dose volume prescription should be implemented
as constraints of the optimzation problem. In this way,
the BAO method directly minimize the number of beam
angles when the dose volume constraint is always
satisfied.
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