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Abstract: By Hall’ s marriage theorem, we study lower bounds of the Lin-Lu-Yau curvature of amply
regular graphs with girth 3 or 4 under different parameter restrictions. As a consequence,we show that
each conference graph has positive Lin-Lu-Yau curvature. Our approach also provides a geometric proof
of a known diameter estimates of amply regular graphs in the case of girth 4 and some special cases of girth
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1 Introduction and statements of result

Ricci curvature is a fundamental concept in Riemannian
geometry. Its extension to general metric measure
spaces, particularly, to locally finite graphs, has
attracted lots of attention!'™'. In 2009, Ollivier>*
introduced the notion of coarse Ricci curvature of
Markov chains on metric spaces including graphs. On
graphs, Ollivier’s Ricci curvature k, of an edge is
defined via the Wasserstein distance between two
probability measure around the two vertices of the edge,
depending on an idleness parameter p € [0,1]. In 2011,
Lin et al. ") modified Ollivier’ s notion by taking the
minus of the derivative of x, at p=1. We will study this
modified Ricci curvature, which will be referred to as
the Lin-Lu-Yau curvature, on amply regular graphs in
this paper.

Let G=(V,E) be a locally finite connected simple
graph. Recall that the girth of G is the length of its
shortest cycle. We denote by d(x,y) the length of the
shortest path connecting the two vertices x and y. We
call w: V—[0,1] a probability measure on the graph
G=(V,E) if ), p(v)=1.

veV
Definition 1.1 Let G=(V,E) be a locally finite
graph, u, and u, be two probability measures on G. The
Wasserstein distance W, (u,, w1, ) between u, and w, is
defined as
Wiy n) = inf 3, D d(x,y)m(a,y)

yeV xeV
where the infimum is taken over all maps 7: VxV—
[0,1] satisfying

m(x)= X om(ay), m(y) = D mlx,y).

yeV xeV
Such a map is called a transport plan.
We consider the following particular measure
around a vertex xe V.

p,ify = x;
1-p .
P = fv ~x:
i (y) dog(x) 1Y 7

0, otherwise,

where deg(x) : = z 1 is the vertex degree of x.

yeViy~x
Definition 1. 2'*"  Let G=(V,E) be a locally
finite graph. For any vertice x,y € V, the p-Ollivier-
Ricci curvature «,(x,y), pe[0,1], is defined as

W, (e,
— 1 _ 1 x Wy
K,(x,y) Td(xn)
The Lin-Lu-Yau curvature x(x,y) is defined as
k(xy) = lim )
1 =p

Notice that «,(x,y) is always 0. Hence, the Lin-
Lu-Yau curvature k (x,y) is minus the derivative of
k,(x,y) at p=1.

Bourne et al. ! studied the relation between p-
Ollivier-Ricci curvature and Lin-Lu-Yau curvature. In
particular, they proved that for an edge xy € E with
deg(x)=deg(y)=d

d+1
k(x,y) =

7 (xy) (1)

The Lin-Lu-Yau curvature has been computed or
estimated on graphs with further regularity assumptions.
For regular graphs (i.e., every vertex has the same
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degree) , the following upper bound estimate is known.

Theorem 1.1 Let G=(V,E) be a d-regular
graph. For any edge xy € E, we have
2+1A

p )
where A, :=I"(x) NI'(y), I'(x):={ze VI xzeE},
and I'(y):={ze VI yzeE}.

Bonini et al.'"' derived Lin-Lu-Yau curvature
formulas for strongly regular graphs in terms of the
graph parameters and the size of a maximal matching in
the so-called core neighborhood. In fact, a more general
curvature formulas for regular graphs has been shown in
Reference [ 12, Theorem 2.6]. In particular, their result
leads to exact formulas for the Lin-Lu-Yau curvature for
strongly regular graphs with girth 4 and 5. For the case
of girth 3, no exact formula for the Lin-Lu-Yau
curvature purely in terms of graph parameter exists; The
4 x4 Rook’s graph and Shrikhande graph are both
strongly regular with the parameter (16,6,2,2) ; Bonini
et al. """ computed their Lin-Lu-Yau curvature to be k=

K(x,y) S

% and K=% respectively.

We study the Lin-Lu-Yau curvature of amply
regular graphs with girth 3 or 4 in this paper.

Definition 1.3 ( Amply regular graph' ')  We call
a d-regular graph with n vertices an amply regular graph
with parameter (n,d,a,B) if the following holds true:

(i) Any two adjacent vertices have o« common
neighbors.

(ii) Any two vertices with distance 2 have S
common neighbors.

We remark that if the above property (ii) holds for
any two non-adjacent vertices, the amply regular graph
is strongly regular. Therefore, amply regularity is a
relaxation of the strongly regularity.

For amply regular graphs with girth 4 we have the
following Lin-Lu-Yau curvature formula.

Theorem 1. 2 Let G=(V,E) be an amply
regular graph with parameter (n,d,a,B) with girth 4.
For any xy € E, we have

2
k(x,y) = 7

This formula has been established for the particular
cases of strongly regular graphs with girth 4 and distance
regular graphs with girth 4 in Refs. [11] and [13],
respectively. Observe that the Lin-Lu-Yau curvature of
a given edge only involves number of common
neighbors of vertices with distance at most 2.
Therefore, the proofs of [ 11] and [ 13] can be adopted
directly to amply regular graphs with girth 4.

Our main result is the following Lin-Lu-Yau
curvature formula or estimates for amply regular graphs
with girth 3 (i.e., a=1).

Theorem 1.3 Let G=(V,E) be an amply
regular graph with parameter (n,d,«,83).
(i) If a=1 and a<B, then we have for any xy € E
that
_3
K(?C J) - (l .
(ii) If =1 and a=B-1, then we have for any
xy € E that
2
= —.
w(xy) =
(iii) If «=B>1, then we have for any xy € E that

2
==
k(x,y) 7

Remark 1.1 (D Consider the 9-Paley graph
which is strongly regular with parameter (9,4,1,2). It
fulfills the parameter restrictions in Theorem 1.3(i) and
(ii). We can check directly the Lin-Lu-Yau curvature

of the 9-Paley graph is %

) Consider the Shrikhande graph which is strongly
regular with parameter (16,6,2,2). It fulfills the
parameter restriction in Theorem 1. 3 (iii). We can
check directly the Lin-Lu-Yau curvature of the

Shrikhande graph is % Therefore, the estimate in

Theorem 1.3 (iii) is sharp.

@ Bonini et al. 't 7) coniectured that the
Lin-Lu-Yau curvature of any strongly regular conference
graphs with parameter (4y+1,2y,y-1,y) with y=2
satisfies

1
2

Theorem 1.3 (ii) implies that for such conference
graphs

k(x,y) = +2i’y, for all xy € E.

k(x,y) = L, for all xy € E.

Y

@ In general, it is still open whether the Lin-Lu-
Yau curvature of an amply regular graph of parameter
(n,d, a,B) with girth 3 (i.e., a=1) and B=2 is
always nonnegative or not.

For Ollivier’s Ricci curvature, a Bonnet-Myers
type diameter estimate holds true'?’ ; Uniformly positive
curvature lower bound implies the finiteness of the
diameter. This has been extended to the Lin-Lu-Yau
curvature.

Theorem 1. 4 ( discrete Bonnet-Myers theorem'”’ )
Let G=(V,E) be a locally finite connected graph.
Suppose k(x,y) =k>0 holds true for any xy € E. Then
the diameter

diam(G) < %

Discrete Bonnet-Myers theorem has recently found

important applications in coding theory: It provides a
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completely elementary way to derive bounds on locally
correctable and some locally testable binary linear
codes' ).

Applying Theorem 1. 4, we have the following
consequences.

Corollary 1.1 Let G=(V,E) be an amply
regular graph with parameter (n,d,a,83).

(i) If G has girth 4, then

diam(G) < d.
(ii) If =1 and a<B, then

diam(G) < Z?d
(iii) If =1 and a=B-1, then

diam(G) < d.
(iv) If a=B>1, then

diam(G) < d.

The following diameter estimate for amply regular
graphs is known via classical combinatorial methods,
see, e.g., Ref. [15, Theorem 1.13.2].

Theorem 1. 5'°'  Let G=(V,E) be an amply
regular graph with parameter (n,d,a,8). If asB#1,
then

diam(G) < d,
where the equality holds if and only if G is a d-
hypercube graph.

Remark 1.2 Corollary 1.1 provides a geometric
proof via Lin-Lu-Yau curvature for Theorem 1.5 in the
case of girth 4 and some special cases of girth 3.
Moreover, we improve the estimate in Theorem 1. 5
under the condition of Corollary 1.1(ii).

2 Preliminaries

We first recall the important concept of matching from
graph theory.

Definition 2. 1''¢ "1 Jet G=(V,E) be a
locally finite simple connected graph. A set M of
pairwise nonadjacent edges is called a matching. The
two vertices of each edge of M are said to be matched
under M, and each vertex adjacent to an edge of M is
said to be covered by M. A matching M is called a
perfect matching if it covers every vertex of the graph.

The following Hall’ s marriage theorem will be an
important tool for our purpose.

Lemma 2. 116 ™eem 04 Tt H=(V E) be a
bipartite graph with the bipartition V=S U 7. Then H
has a matching which covers every vertex in S if and
only if

| (W) =] WI forall WC S
holds, where I' (W) :={veT | there exists w e W such
that vwwe E} .

For any xy € E, the Lin-Lu-Yau curvature «(x,y)
only depends on the subgraph induced by vertices with
the distance less than or equal to 2 to x and

[6, L 2.3 . :
ytotemma23) ©For convenience, we introduce the

following notation of the core neighborhood of xy € E;
C,={xf Uiy UA UN UN UP_,
where
N =I()\(iytuI'(y)),
N, =I'()\(ix{UI'(x)),
P ={zeV ld(x,2)=2,d(y,z)=2}.

3 Proof of Theorem 1.3

In this section, we prove Theorem 1. 3.

Proof of Theorem 1.3(i) We consider the core
neighborhood decomposition of an edge xy € E, that is,
F(x)= {y} UA UN,, I'(y)= {xf UA UN,.
Since a=1, we can denote A  ={x,|, and there are no
edges connecting x, and any vertex in N,or N,. We are
going to show the existence of a perfect' matching
between N, and N, via applying Lemma 2. 1.

Let H be the bipartite subgraph with vertex set V,,: =
N,UN, and edge set E,;: ={vweElveN,, weN,|.
Take a subset ACN,, let B: =I"y (A) be the set of
neighbors of A in N,. Observe that for any vertex x, €
A, we have d (xv,. ,v)=2. Therefore, there are S
common neighbors of x; and y. Since x is a common
neighbor of x; and y, there are S—1 neighbors of x; in
N,. Similarly, for any vertex y, e BCN_, there are 5-1
néighbors of y, in N,. Denote by '

E(A,B): = {xy e El x € A, y € B}.
We then have
YB-D=1EABI<Y (B-1).

veA webB

Since B>1, we derive from above that
FAI<I Bl=11T(A)l.
Applying Lemma 2. 1, there is a perfect matching
M between N, and N . We construct the following
transport plan building upon such a perfect matching .
0,v=x,w= y;

ST e A, U ixf Uiyl
7T(’l},’M}): = 1
—, vw € M;

d+1

0, otherwise.

Noticing that IN | =N | =d-a-1, we calculate the

Wasserstein distance
1 1
W](/‘L(éTl ’/"L(‘IT]) $ Z Z d('U,’W)']T(U,’LU) =

veV weV
I'N, | _d-a-1_4d-2
d+1 d+1 d+1
Applying Eq. (1), we have the Lin-Lu-Yau

curvature

d+1
7 Kr(ay) =
3

NI
(1= Wit opg)) =~

k(x,y) =

d+1
d
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Combining with Theorem 1.1, we obtain
3
K(xy)=
Proof of Theorem 1. 3 (ii) We construct a
bipartite graph H from the core neighborhood of xy € E
as follows. Denote
Ax}, = {z,, 2,1
We add a new set of vertices A’ :={z], ", z,!
which is considered as a copy of A . Let H be the
bipartite graph with vertex set
Vy= N UA UA UN,
and edge set
E,=FE UE,UE, UE,UE,,

where
E, = fowlveN,weN, 6 wekE},
E, = %vz’ilveNx,z'ieA';),vzieE},
E, = %ziwlzieAx),,weNy,ziweE},
E, = {zz/l i= 1, ,al,
E; = {ziz;|zizjeE,i#j,1$i,j$a}.

Notice that in the above construction, edges only
exist between N, U A _and N,U A/. We will show that
H has a perfect matching by Lemma 2. 1.

Take a subset ACN, U A . Let B=I"y ,, (A) be
the neighbors of A in N UA/. ,

(D The case A CNX. Similarly as in the proof of
Theorem 1.3 (i), there are B—1=1 neighbors of any
veAin N U A/, and B—1=1 neighbors of any w € B
NN, in NX' U AX;.. Consider any vertex z;e BNA!. The
corrésponding vertex z; € A and x have o common
neighbors in G including the vertex y. Since there is a
new additional edge between z; and z/in H, the vertex z’
has exactly « neighbors in N, U A_ in H. Therefore,

v

we derive
YB-D=1EABI< ¥ B-1)+ X a
veA u'EBﬂf\“'} MEBQA;)

By assumption, we have a«=8-1. Hence the above
estimate yields
FAI<I Bl=11Ty 4 (A)l.
(2 The case ACA . Consider any vertex z; € A.
The vertices z; and y has a common neighbors in G
including the vertex x. Since there is a new additional
edge between z; and zie A’ in H, the vertex z, has
exactly a neighbors in N, U A’ in H. Therefore, we
derive A '
Na=1EABI< Y (B-1)+ 3 «a
ved weBNN, weBNA;,
Using a=B-1, we obtain
FATsIBlI=1 1, (A) 1.
3 The case ACN,U A . We have
> B-1)+ Y a=1EA,B)I<

veANN, vedNA,,

Y B-1)+ Y a

weBNN, weBNA;,

By a=B-1, we obtain
FAIsIBI=1 Ty (4) 1.
In conclusion, we have |AI<IBI =11, (A)| for
any subset ACN U A . Then, Lemma 2.1 implies the
existence of a perfect fnatching of H. Therefore, there

exists a transport plan between ,Uﬂﬁ and ,LL;{ITI in which the
mass at any vertex in N.U A is moved by a distance at
most 1. And the mass at {x} and {y} stay put. Using
such a transport plan, we estimate the Wasserstein
distance

Wl(,ujg]Tl,,w}l,lTl) < 2 Z dv,w)m(v,w) < le - 1.

veV weV +1

Applying Eq. (1), we have the Lin-Lu-Yau curvature
d+1

d

k(ey)= “oles (ey) =

y (1- Wl(MfélT‘,MﬁlTl)) = %

Proof of Theorem 1.3 (iii) We modify the
construction of the bipartite graph H in the proof of
Theorem 1.3 (ii) by dropping the edge set E,. That is,
H is the graph with vertex set V,=N U A UA/ U N,
and edge set E,=E, U E,U E,;U E;.

Take a subset ACN, U A . Let B=I"y , ,, (A) be

the neighbors of A in N,UA/. Similarly as the analysis

d+1

in the proof of Theorem 1.3 (ii), we have

> B-1)+ Y (a-1)=1E,B)I<

veANN, vedNA,,
> B-1)+ Y (a-1).
weBNN, weBNAy,
By assumption, we have a=8>1. Then we derive
from above that
FATsIBlI=1 1, (A) 1.
Therefore, there is a perfect matching of H by
Lemma 2.1. Similarly as in the proof of Theorem 1.3
(ii), we derive

2
==
k(x,y) p
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