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Abstract: The generating fields of the twisted Kloosterman sums Kl (g, a, x) and the partial Gauss
sums g(g, a, x) are studied. We require that the characteristic p is large with respect to the order d of
the character y and the trace of the coefficient a is nonzero. When p==+1 mod d,we can characterize the
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1 Introduction

1. 1 Background

Let p be a prime,g=p" a power of p. Let feF q[xli' s
-+, x,*' ] be a Laurent polynomial. Let y,, -+, x,:
F,—u,, be multiplicative characters. The twisted
exponential sum of f with respect toy,, ---, x, is defined

as
S:<f7/\/] ’ “.’Xn)i =
2X1<xl)“'A/u(xn)g’rr(fuh o)) € Z [/‘LdPJ ’
XiE]F(;(

where d is the least common multiplier of orders of y, ,
-, X, »¢ 1s a fixed primitive p-th root of unity and Tr=
Trg JE, If all y, are trivial and f is a polynomial, we
denote by
S,(f): = x;s’w"" e Zlp,]

the exponential sum of f- If { is replaced by another
primitive p-th root of unity,the twisted exponential sum
is replaced by a Galois conjugate and its degree does not
change. There are various results about estimation on
the exponential sums, their absolute values and p-adic
valuations we will not list here. What we will discuss is
their generating fields for some special f, x;.

The generating fields of exponential sums are
related to the distinctness of exponential sums and the
generators of cyclotomic fields. When all y; are trivial ,to
give the generating field of S (f) or S, (f) is equivalent
to give its degree as an algebraic number. We list some
known results here.

@ deg f=1: S,(f)=0.
@ deg f=2,p=3 . S5,(x*)=/(-1)7"7p is the

Gauss sum of the non-trivial quadratic character modulo

p- Hasse and Davenportm proved that
S,(a*)= (= 1)'S ()"
Hence S (¥*+a)= (=1)*"'S,(x*)*¢™ and
p—1,if Tr(a) # 0;
degSq(x2 +a)= {1, if Tr(a)= 0and 21 k;
2,if Tr(a)= 0 and 21k
@ f=ax’, p=3 . We may assume that d|(g—1).

Then deg S, (f) divides (p=1)/(p-1, % I d
(p-1) ordl(g-1)/(p-1) ,then
1
deg S,(HN= (p-1)/(p-1,1==).

d
See Ref. [2, Example 3.10].
@ f=ax">+x"" with coprime d, , d,: If p=1 mod
d,p is large with respect to deg f and Tr(a™) #0, then
deg S = p-1 .
SRR P
See Ref. [3, Theorem 1.1].
® For feF [x], (p-1)/deg S,(f) is a factor of
(#(x, ) e P2y =y=f)} =1, p=1).
See Ref. [2, Theorem 3.16].

(© The sequence {S +(f) | is periodic for k=N for
some constant N,see Ref. [4, Theorem 1]. Zhang gave
a bound on the period in Ref. [ 3, Corollary 2. 4 ].
Combining this result and the bound on the degree of
the L-function of f in Ref. [ 5, Theorem 1], Zhang
showed that; under certain coprime condition, the
degree of S (ax™'+x)= (p-1)/d for sufficiently large
k if p=1 mod d and p is large with respect to d. See
Ref. [3, Corollary 1.2(2) ].

The exponential sum of

f=ax,;x, +x + - +x' ae F/
is called the Kloosterman sum K1 ,(g, a). When Tr(a)
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#0,the degree of Kl (g, a) is (p-1)/(n+1, p-1),
see Ref. [ 6, Theorem 1. 1]. When Tr(a) = 0, the
degree of f can be obtained by the work in Ref. [ 7,
Corollary 4.24] and [6, Theorem 5.1] if p is large or
p does not divide a certain integer , with respect to n and
k. But no simple formula is known in general, see also
Ref. [8, Theorem 2].

1.2 Main results

We see that all of these results are about untwisted
exponential sums. In this article, we will consider the
generating field of the general Kloosterman sum

Kln(Xla .."Xn;dl’ ) dn><q’ a) =
Y 2 Iwx) € Q ()
1

PP - i=
x1, -, n, e FX
in two (I:ases, vx;here Xi» °*, X, are multiplicative
characters on F) and a € F ;. See Ref. [9,page 48 ].
When Tr(a) #0,we study the generating field of
the twisted Kloosterman sum
Ki(q, a, x): = KL(x, 151,1)(q, a) =

zX(x)g'l‘r(rﬂl,/x) ,

veFy

and the generating field of the partial Gauss sum
g(q, a,x): = KLi(x;q + 1) (q", a) =
2 X(x)gTr(xﬂl/x).

xitl=gq
These character sums are motivated from the exponential
sums of cubic polynomials. When y is cubic, the
exponential sum
3 _ _ Tr(x3-3ax) _
S q(x 3ax) : = 2 I4 =

weF,
{K](q, a,x),if¢=1mod3;
g(q, a,x),if ¢ =-1 mod 3.
See Proposition 2. 1.
Fix isomorphisms
o_+(Z/pZ )" Gal(Q (1,)/ Q)
where o({,)=¢, forany {, ep,,
(2 /dZ) > Gal(Q (1,)/ Q)
where 7,({,)=¢," for any {, ep,. Both o, and 7, can
be viewed as elements in Gal(Q (u,,)/Q ) since p { d.
Theorem 1.1 Let d be the order of y.
(D When d=2,
* Kl (g, a,x)=0ifx(a)=-1;
- Kl (g, a, x) generates Q (u,)" if y(a)=1,
x(=1)=1 and Tr(/a) #0;
- Kl (g, a, x) generates Q (u,) if x(a)=1,
x(-1)=-1 and Tr(Ja) #0 .
@ When d =3 and p>5d-2, Kl(q, a, x)
generates Q (p,,)" , where
(1.1, 0. ),ifx(~1)=1 andx(a)= 1;
(o_y),ifx(-1)=1 and y(a)=-1;
H=<{(7_),ify(-1)=-1 and y(a)=1;
(r0.), ifx(-1)=-1and y(a)=-1;
{1}, if y(-1)=-1 and y(a) #=+1,
if p=+1 mod d and Tr(a) #0.
See Propositions 3.1 and 3.4.
Theorem 1.2 Let d be the order of y. Assume
that Tr(a) #0.

D If dl(g-1) and p>2,then g(q, a, x) generates

Q ()", where
H= {70, w=1modd,}
and d, Id is the order of a"™""“.

@Ifdl(p+1) and p>7d-2,then g(q, a, x)
generates Q (p,,)", where

= {<7'1, o_,),ifa ¢ F:2or4fd;
(Typars To1s Oy )sifa € F;z and 41 d.

See Propositions 4.1 and 4. 4.

For general d,if (p, d) satisfies a combinatorial
condition,we characterize the generating fields of these
character sums when a € F . Let n be the order of p
mod d. For any reZ or Z/dZ ,write a,=rp”’mod d
with 0sa;<d-1. Define

_ < . a4.,p ~ q a.,p ~ q
V.= nj=0m1n§§f+ 7 , P —9; ¥ f
where
5 = {O,if a; < d/2;

J 1,if a; > d/2.

Denote by

T, ,={re(2/d2)" 1V, =V, Vs e (Z/dZ)"}.
This is a subgroup of (Z/dZ )™ containing -1, p.

Theorem 1.3 Let d be the order of y. Assume
that a € F 7 and p { k.

@If d=3,p>5d-2 and T, ,= (-1, p),then
Kl(q, a, x) generates Q (u,,)",where

(1), 7.1, o) ,ifx(~1)=1 and x(a)=1;
(1,, 0,),ifx(-1)=1 and y(a)=-1;
H=3(7,, 7.,),ify(-1)=-1 and xy(a)=1;
(r,, 740,), ifx(=1)=~1 and y(a)=-1;
(7,),if x(-1)=-1 and y(a) #=1.
In particular, this holds for d <31 with p# +(d/2+1)
mod d if 41d.
@ If dl (g+1),p>7d-2 and T, ., ,=(p) ,then

g(q, a, x) generates Q (u,,)" , where
o= {<Tp, o), ifagF *ordtd;
(Typars 7, 0_),ifa € F?and 41 d.
In particular,this holds if d/ (2, d) <31.

See Theorems 3.1 and 4. 1.

It’ s an interesting phenomenon that these two
different Kloosterman sums depend on similar
conbinatorial conditions. It seems that there should be a
direct relation between these two Kloosterman sums.

We will express the Kloosterman sums as a Fourier
expansion and use Stickelberger’ s congruence theorem
to determine the first several terms of the *%-adic
expansions for a fixed prime ¥ in Q (), ). The
main estimation is in Lemma 3. 3. Then the generating
fields are obtained by these results.

2 Preliminaries

2.1 The Stickelberger’s congruence theorem
We will use this theorem to estimate the valuations of
Gauss sums. The prime p splits into f=¢ (g—-1)/k
primes as

pL [:“(,—1} = pypy
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in Q (u,.,) and each p, is are totally ramified as
piZ [l"“(q—l)n] = Sﬂliy_l
in Q (p,),). Let p be a fixed prime above p in
Q(m,,) and P the unique prime above p in
Q ((,1),)- Let v be the normalized %8-adic valuation.
Then v(p)=p-1 and v(7)=1 where m={-1.
Q(ug-1p)2 By - -+, By

7

PPy CQpg—1)

Qup)> () = (( = 1)

/

pZ CQ

Let « be the residue field of p and w the
Teichmiiller lifting of the quotient map Z [u, , |*—-«"
associated to p. We can view w as a character on ]F; if
we fix an isomorphism F  =k. Different choice of the
isomorphism may cause a composite by a power of the
Frobenius map. Take w(0)=0 for convention. Then w
is multiplicative and

w(a) +w(b) —w(a+b) € p.
In particular, its %3-adic valuation is at least p — 1.
Denote by
gm): = Do) ™™
teFy

the Gauss sum of w™. Clearly,g(0)=-1 and g(pm)=
g(m). Recall the Stickelberger’s congruence theorem,
see Ref. [10;11,Chap.6].

Theorem 2.1 For 0s=m<g-1,

77_m0+--~ +my_q
my -+ +my g +1
T mod Rt et

myl -em,

g(m) =-

where
m=my, +mp+--+m_p,0<m <p-1
In particular,v(g(m))=m mod (p—-1) has same parity
with m.
2.2 Relation to the exponential sums of cubic
polynomials
In this subsection, we will show the relations between
the cubic exponential sums and the twisted Kloosterman
sums or the partial Gauss sums. This fact is well known
to experts. Let’s show it briefly.
Proposition 2.1 Assume that p>3 and aeF ;.
D If g=1 mod 3,then
Sq(x3 -3ax) = Kl(q, a’, x)
where y is any non-trivial cubic character of F .
@ If g=-1 mod 3,then S (x'-3ax)=g (g, a)
where y is any non-trivial cubic character of F .
From this, S, (x’~3ax) generates
Qm,)"=Q+¢)
if Tr(a’) #0 and p>19.
Proof Denote by N, the number of the equation
flx)= & =3ax = ¢ € F,
with multiplicities. The discriminant of f—c is
A=—-27¢2=-21(c" —4d’) € F,

Then N =1 if and only if JA ¢ F . Indeed, there are
three cases:
+ N_.=1,f~c decomposes into a linear factor and a

c

degree 2 irreducible polynomial. Thus the splitting field
of f~cis F ;and VA ¢F .
- N,=3,clearly /A F,.
- N_=0,f-c is irreducible and
«/Z S F(ﬁquz: Fq‘
Fix a nontrivial cube root of unity A € F . Then
JA=+3(2A+1)5.
@ In this case,A € F . Assume that $=+/c’~4a’ €
[F,. That’ s equivalently to say, N, =0 or 3. By

Cardano’ s formula,the solutions of f(x)=c in F , are
u+au, Au+ AMau, Nu+ dau”",

where i’ = (c+5)/2. If N, =3 then u+au™ €F ,,u lies
inF ,NF;=F and vice versa. Hence N, =3 if and
only if vi=(c+5)/2eF :3. We have a’/v=(c-5)/2
and c=v+a’/v.

If N.=3 and c=+2a””,we have =0 and there is a
root with multiplicity 2. Denote by
B» — Z érTr(L').

13
No=i,c# +2a3/2

Then
1 Tr(v+a3/v)
B, = — é/ r(v+a’/v
’ 2 DEF’73§# +a3/2 ’
1 Tr(v+a3/v
B, = ? z 4 (v+a’/v)
Z/&]F‘;(:;

and
BO + Bl + B3 + gTr(zuﬁ/z) + gTr(—Z(ﬂ/Z) _ wac) - o

ceF,
If ag¢F ,the terms ™" disappear. Now

SN = By + 3B+ 207 4 oM
2B3 _ BO + g'l‘l'(2a3/2) + é«'[‘r( —2(1,3/2) —

2 gTr(1!+(z3/v) _ i Z gTr(v+a3/1') +

1/E]F,;<3, v# +a3/2 2 1:¢]F‘;<3
Tr(2a3/2) Tr( -2a3/2)
{ +¢ =

X(@) +x(0) | i

veFy 2

3 3

Kl((], a 5)() "2'K1<‘]’ a ’X> - Kl(q, a
by Lemma 3. 1(D.

) In this case,p=-1 mod 3,k=2[+1 is odd and A
eF ,-F ,. Thus -27 is not a square in F . Assume
that (2A+1)se F . That’s equivalently to say,N, =0
or 3. Let 6: x = x” be the nontrivial element in
Gal(F ,/F ). The solutions of f(x)=c in F  are

u+u, Au+ A, Ve + Al

where 1’ =(c+¢)/2. If ueF ,,then N, =3 and vice
versa. Hence N, =3 if and only if v:=(c+5)/2eF Zf

We have v’ =(c-<)/2=a’/v and c=v+V°. Similar to
D, we have

ox)
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o= X AW X0 s _

wd=q3 2
g(q, a’) +glq,d)
x 5 = g(q, a")

by Lemma 4. 1(D.
Finally, the claim on the generating field of
S,( x’=3ax) follows from Propositions 3.4 and 4. 4.
Remark 2.1 The condition on p can be weaken
to p>11,see Ref. [3, Corollary 1.2].

3 The twisted Kloosterman sums

In this section,we will study the generating field of the
twisted Kloosterman sum
Ki(g, a,x): = 2 x(x)¢""" € Qp,), a e F,
velFy
where d| (g-1) is the order of y.
Lemma 3.1 We have

D Kl(g, a, x)=x(a) Kl(q, a, x);

@ Kl(g, a,x")= Kl(q, a", x).

Proof We substitute x by a/x or x” respectively,
then the result follows.

There is an integer w prime to d such that y =
w VY4 Then

Ki(g,ax)= 7,Kl(q, a, ©

Since we are interested in the generating field of Kl(gq,
a, x) ,we may assume that y=w """ from now on.

Lemma 3.2 We have a Fourier expansion
q-2

—(q—l)/d)'

(4= 1) Kilg, a,x) = T " (@)glm)glm+ L7 1.

m=0

Proof We have
m Jf xy # a;
Zw (= {07
Thus
(q-1) Ki(q, a,¥)= (g=1) Xx(x) " =

xy=a

Z w” (g- l)r/d( ) z ® m(a xy)gTr(x+w)

v, yeFy
q-2

3 ' (@)g(mg(m + 10,

3.1 The quadratic twist
Proposition 3.1 Assume that d=2.

D Kl(q, a, x)=0ify(a)=-1.

@ Ifx(a)=1 and Tr(+/a) #0,then Kl(q, a, x)
generates Q (u, )" if y (—1)=1; generates Q (u,) if
x(-1)=-1.

Proof (D Note that y(a)=—1 and y =y, the result
follows from Lemma 3. 1(D.

) Write a=b>. By Lemma 3.2, we have

(¢-3)72
(¢ - DKI(q, a, x) =

m=0

Write
k-1 ) _ 1 k-1 )
Y ompm+lo== Y oy
j=0 2 j=0
with 0sm;, n;<p-1. Then

2 Y o a)g(m)g(m+q;l).

.= .+
1 m;

-1
p2 +€_, ~pE,

where €, € {0, 1} and €, =¢,_, =0. Denote by m =
min{m,, n;{ and €'=l€,—€;,|. Then

j+l
-1
m, +n =P +2m' + €,
j j ) it E

and

v<g<m>g<m+q )= 2<m +n) =

(p =Dk, 2(2 (p =Dk

2
The equahty holds if and only all m;=¢€;=0, that's to
say ,m=0.

There are two cases such that the valuation is
secondly minimal.
(i) All m'=€/=0 except m/=
0<i<k-1. That’s to say,m=p',
m+(q-1)/2=p'(q+1)/2 mod (g-1).

The summation of Fourier terms over these m is
k-1

Zzw’”(a)g(p")g(p"’ + 1 1) =

20(Tr(a))g(1)g(1-— ) =
20(Tr(a))m"™
p -1 p-1,p + 1
U TRRICEY

where C=4(‘I%l) 1.

€)=V =

1 for a unique i with

= Co(Tr(a)) 7" mod [,

(ii) All m/=€/=0 except €/=¢€/ =1 for a unique pair
i, i’ with 0<si<i’<k-1. That’s to say,e,, =---=¢€, =1
and zero otherwise,m=(p'+p")/2,
m+(q-1)/2=(p"+p"*)/2 mod (g-1).
The summation of Fourier terms over these m is

+ 1
2 3 o >g<f’ R A A
Osi<i'sk-1
pl+p (b>7TV+2
Dy

i+l

Osi<i'sk-1 (F

Co(Tr(b)* - Tlr(bz))w‘+2 mod R,

Now we have
(q - 1) Kl(q, a,x) =

- 2¢(4— )+Cw(Tr(b)) 7" mod R (1)

If o, fixes Kl(q, a, x),we have
o,Kl(q, a, x)=x(1)" Kl(q, ar’, x)=Kl(q, a, x)
and then y(¢)=1,
w(Tr(bt))* = w(Tr(b))* mod L.
Note that Tr(b) #0. If y(-1)=-1,we have t=+1 and
Kl(q, a, x) generates Q (u,)". If y(-1)=1,we have
t=1 and Kl(q, a, ) generates Q (u,).
3.2 The d-th twist with d=3
We need the following lemma to obtain the ¥-adic
expansion of Kl(g, a, x).
Lemma 3.3 Let

k-1
s = z lsj[/,Oﬁ.stp—l,
j=0
be an integer less 'than g-1,satistying s, 7 (p—1)/2 for
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all j. Denote by

2<p 8. —s)p,

M+s = 2(5 +5.)p mod (¢ - 1)
and
V= w(g(M)g(M +5)) =
milrl{f)\j_1 +5,p =6, —sj} R
i=0
where '
5 = {(),ifsj < p/2;
7 ALLif s, > p/2.

Consider v(g(m)g(m+s)) for 0sm< g-1.

@1t I (p—1)/2=s;1>1 for all j,then the valuation
is minimal; m=M ,v=V.

@ If 1(p-1)/2-s;1>2 for all j,then the valuation
is secondly minimal: m=M+p' mod (g-1) for some i,
v=V+2.

@ If I (p—1)/2=s,1>3 for all j,then the valuation
is thirdly minimal; m=M+p'+p" mod (g-1) for some
i, i, v=V+4.

Proof Denote by s;,"=min{s;, p—1-s,{. Write

m+s—(qg-1)e,_, =

k-1
anpf <g-1,0=

j=0
where €,_, € {0, 1}.

n<p-1,

Then
n}.:m+s +€, ~ PE;,
where €, € {0, 1| and €, =¢€,_,. Denote by m'=

min{m,, n;| and €'=l€,~€;,|. Then
e = {2m'+s' Jl,lfﬁ'_ 0;

T om ! +(p—1—s’)+e/1,1f6’—

whereé =8,—€;. Assume that | (p—1)/2-s;1>A for all

@ Place &, -+, 8, in a circle. If all §/=0,
k-1 ’

v(g(m)g(m +s)) = 20 2m +s +€ ) =

k-1
2 (s +ep)=
j=0
Otherwise there a;e « strings of =1’ s, with total length
z. If §/=6/,,=0,then €'=15,-6,,,I. Thus

i+l
k-1

v(g(m)g(m +s))= 3 (m, +n) =

Jj=0

v+ 2(p—1—23)+2(e}1
8#0
v+ Yy |p—1—25j|—(z+a) >
5j’#0
V+2dz-2z2=V+2(A-1).
Therefore ,v(g(m) g(m+s)) =V with equality holds if
and only if m=M.

) Note that the valuation has same parity with s.
When z=1,we have that v(g(m)g(m+s))>V+2. Thus
the valuation is secondly minimal if and only if all §/=0
and only one m,"=1. The result then follows.

3 When z=1,we have that v(g(m)g(m+s))>V+
4. Thus the valuation is thirdly minimal if and only if
all §,"=0,m/=2 for some i or m/=m/=1 for some i#i’,
and other entries are zero. The result then follows.

=0 ) =

Definition 3.1 Let p be a prime prime to d. Let
n be a positive integer such that p" =1 mod d. For any
reZor Z/dZ ,write a;=rp”’mod d with 0sa;<d-1.
Define
n-1
V= LS wings + 22 Gip = )
n j-o

ap_sj_ d

d
(2)

where

0 =

7

{O,if a; < d/2;
L,if a; > d/2.
This definition does not depend on the choice of n.

Proposition 3.2 If p>3d-2,then the valuation of
Ki(g, a, x") is kV..

Proof If r=d/2 mod d,V,=(p-1)/2 and the
valuation of

Kl(q, a,x') = Kl(q, a, ") =
q-2

3 o (@) g(mg(m + 1)

m=0
is (p—1)k/2 by Equation(1).
If r#d/2 mod d,then a,#d/2 and
|P_1_f+1p |:|(2a —d)p+(d—2aj)|2
2 d 2d
p-(d-2)
£~ =2 51
2d

(g = Dr _ T 4GP G
d Z{] d v

satisfies the condition in Lemma 3.3 and then the
valuation of Kl(g, a, x") is kV, by Lemma 3. 2.
Definition 3.2 For any s € Z or Z /dZ ,define
T, ,:= {rmoddl| (r,d)= 1,
V.=V CS(Z/dZ)" (3)

rs

Thus

Define
T . =

p,d

(D T, .
s =1
Proposition 3.3 As(sim)le that p>3d-2.

@ T, ,is a group containing |{ +p"mod dIAeZ |.

@pr—+l mod d,then T, ,={%1].

@ If4ld=16 and p= d/2+1 mod d,then T,
(Z/d7Z)".

@ If3<d<31 and (p, d) does not satisfies 3,
then 7, ={xp'mod dIAeZ }.

Proof @Ifr, r,e T, , thenV,

=V, =V,
rr ]S
Thus r,r,” € T, ,and T, o is a group. Since V =V,
by the deﬁmtlon ,the group _4 contains -1, p.

@ That’ s because if p—+1 mod d,we ‘have
Vo= b i, d =] (4)

@ If p=d/2+1 mod d,then
_ _[d72 xr,ifr < d/2;

G2 = T Goint = {d/z F (d-r),ifr > d/2
Thus V, = (p+1) k/4 and T, , = (Z/dZ ). When
41d=16,¢(d)>4. Hence T, does not equal {-1, p).

(4) We have already know the case p==+1 mod din
2. Clearly the assertion holds if p and —1 generate
(Z/dZ )*. The rest cases are listed in Table 1.

min | r
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Table 1. V, for d<32, (r, d)=1.

d i]; rH/{ ilf Vy d iﬁ rH/{ il} Vr
3 i; g 2: ((?ﬁ);f; i1, 8,10} (19pF17) /81
s 11,3, 41 (8F6)/39 ; 2,7, 11} (20p£2)/81
13 2,5, 6] (p£1)/3 7 {4,5, 134 (22pF14)/81
{1, 5} (3pF2)/13 {1, 8, 10t (19pF1)/81
5 12, 31 (5p=1)/26 10 12,7, 11} (20p£16) /81
S . 2 1 AU, ( ?1):—'__1)_1_1}_________ 4,5, 134 (22pF4)/81
15 4 B‘;’: (<3P1L31>)//160 5 1,3,9] (13pF11)/84
e T P D {5, 11, 13} (29pF3)/84
16 ________ 7 13, 5! (pF1)/4 9 {1, 3, 9¢ (13pF5)/84
) § 12 A F B e 28 5,11, 13 (29p+19) /84
,5,6, 7] (21p£9) /68 _
17 (1,4 (5pF3)/34 1311, 13} {3, 11} {5, 9] (pF1)/4
4 {2, 8§ (SPTFB) /1T [
(3,5 (4p1)17 , 11,4,5,6,7,9,13] (45p=23)/203
e, T (13pF1)/34 {2,3,8,10, 11, 12, 14} (60p+8),/203
nge T (lepe2y/s7 s [11,4,5,6,7,9, 13 (45p+7) /203
7 {2,3,5] (10p26)/57 {2,3,8,10, 11, 12, 14} (60pF10)/203
" 14,6, 9] (bF1)/3 o 11.4,5,6,7,9, 13| (45pF9) /203
1.7.8 (16pF14)/57 12,3,8,10, 11, 12, 14} (60pF12)/203
8 12,3, 5] (10pF4)/57 7 {1,4,5,6,7,9, 13} (45p ¥25) /203
46,9 (p1)/3 {2,3,8,10, 11, 12, 14}  (60pF14)/203
0 o 1,91 T g [1.4,5.6,7,9,13] (45p+1)/203
_____________________ (3.7 (p+1)/4 29 12,3,8,10, 11, 12, 14} (60pF18)/203
4 (1,4,5f (1op=2)/63 {1, 124 (13pF11)/58
{2, 8,10} (20p=4) /63 {2, 51 (7p+3)/58
5 11,4, 5} (10pF8)/63 13,7 (5pF2)/29
21 2,8, 10} (20pF16)/63 12 14, 10} (Tp3)/29
i1, 8} (3pF3)/14 {6, 141 (10pF4)/29
8 12, 5} (p£1)/6 {8, 91 (17pF1)/58
__________________________________ (4,10} (p£1)/3 (11, 13 (12p1)/29
s 1,5 TSN ;3 11.4.5,6,7,9,13]  (45pF5)/203
(7, 11} e Y | — 12,3,8,10, 11,12, 14| (60pF26)/203
24 7 i, 74 (p+1)/6 30 11 (1, 1 (pF1)/5
(5, 11} R D Y R —— 0 K1 S ¢ =2 D V4 S
1 (1, 11} 3 [1,2,4,8,15] (30p=2)/155
__________________________________ ST ¥4 2 {3,6,12,7, 14 (42pF22)/155
4 i1,4,6,9, 11} Gipy/125 7 {5, 10,9, 11, 13} (48p+28) /155
(2,3,7,8, 12| (32pT28)/125 [1,4,2,8, 15 (30p4) /155
6 i1,4,6,9, 11} (31pF11)/125 4 13,12, 6, 14, 7} (42p+18) /155
[2,3,7,8, 12§ (32p+8) /125 {5, 10,9, 11, 13} (48pF6)/155
I, 74 (4pF3)/25 (1,5, 6] (12p22)/93
12, 11 (13p£9)/50 12, 10, 12| (24px4)/93
57 3, 4] (Tp1)/50 > 13,15, 13 (pF1)/3
16, 8| (Tp£1)/25 31 {4, 7, 114 (22p+14)/93
19, 12| (21p£3)/50 18,9, 14§ (pF1)/3
0 [1,4,6,9, 11 (31pT29)/125 [1,6,5 (12p¥10)/93
[2,3,7,8, 12 (32p+12) /125 12,12, 10] (24p¥20)/93
n L4601 (31p29) /125 6 13,15, 13 (px1)/3
___________________________ 12,3,7,8, 12}  (32pF2)/125 14,7, 11} (22p+8)/93
i1, 3, 9} (pF1)/6 18,9, 144 (px1)/3
3 [5,7, 11} (23p+9) /78 {1,8,2,4,15} (30p8) /155
i1, 5| (3pF2)/26 8 13,6, 12,7, 14} (42p+36) /155
26 (3, 11} (Tpxd)/26 1929, 10, 13, 10 (48pF12)/155
5 {7, 9} (8pF1)/26 7 every coset
{1,3,9] (p¥F1)/6 32 9 every coset p/4
9 5,7, 11} (23p+1)/78 15 every coset (pF1)/4
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Remark 3.1 (D One may expect that T, ,is also
a group. Unfortunately it’ s not true. For instance, take
d=33 ,p=+10 mod 33,then 7, ,={=l, +4, 7, +10}.

) One can find more pairs (p, d) such that T, .,
# (-1, p) like Proposition 3.3@3), where d is divisible
by a high power of 2. It’s conjectured that T, ,= (-1,
p) when 4 1 d and p>3d-2.

@ It seems that T,,=T, ,if p'=p mod d and
both p, p'>3d-2. But I do not have a proof or a
counterexample.

Proposition 3.4 Assume that =3 and p>5d-2.
If p=+1 mod d and Tr(a) #0, then Kl(q, a, x)
generates Q (u,, )", where

<T—1 s U—1> ify(=1)= landyx(a)= 1;
(o) ifx(=1)= landyx(a)= -1;

H= {{(7r_),ifx(=1)= —Tandy(a)= 1;
(ry0.),ifx(-1)= - landx(a)= - 1;
{1}, ifx(=1)= -1 andy(a) # £1.

Proof We may assume that y=w “""’“. Denote
by M, the M in Lemma 3.3 for s=(g-1) r/d. By
Lemma 3.3 and Proposition 3.2, we have

(¢ - DKIl(q, a,x") =

W"()g(M)g(M, + =0 +

k-1
3 0" (@)g (M, +p M, + 1 4y =
i=0

W"()g(M)g(M, + =0 +

Cr""? 0" (a)w(Tr(a)) mod R * (5)
where C is a constant prime to p.
By Lemma 3. 1(D), we have
7,0,Kl(q, a,x) = x(1) “Kl(q, fa, x") =
x(ta)" Kl(q, t’a, x™) (6)
If 7,0, fixes Kl(g, a, x) ,then V,=V,. Thus w==x1 by
Proposition 3. 3@. If w=1,xy(t)"' Ki(gq, fa, x)=
Kl(g, a, y) and we have
x(t) '0"(a) = 0" (a) mod B.
This forces y (1) '™ (#)=1 and then
x(t) 'o"(Fa)w(Tr(a)) =
0" (a)w(Tr(a)) mod L.
Since w(Tr(a)) #0,we have w (£ )=1,t==+1 and
x(H=1.
If w==1x(ta)” Ki(gq, a, x)= Kl(q, a, x)
and we have
x(ta) '0"(’a) = 0" (a) mod L.
This forces y(ta) '@ (#)=1 and then
x(ta) 0" (Fa)w(Tr(a))
0" (a)w(Tr(a)) mod .
Since w(Tr(a)) #0,we have w (#)=1,r=+1 and
x(ta)=1. The result then follows.
When 7, , equals (-1, p),we can determine the

generating field of Kl (¢, a, x), where a € F | and

p1k.
Theorem 3.1 Assume that 3<<d|(g-1),p>5d-

2,aeF andpfk. IfT, ,=(-1, p),thenKi(q, a, x)
generates Q (u,,)",where

(r,, 7, 0.,),ifx(-1)= landy(a)= 1;

<Tp, o_),ify(=1)= landy(a)= -1;

H= (7,7 ),ifx(-1)= —1landx(a)= 1;

(r,, 740,),ifx(=1)= - landy(a)= - 1;

(r,),ifx(=1)= -1andy(a) # =1.

In particular, this holds for d <31 with p#+(d/2-1)
mod d if 41d.

Proof If 7,0, fixes Kl(q, a, x),it also fixes
7Kl(q, a, x)= Kl(gqg, a, x'). Thus V=V, by
Equations(5), (6) and Proposition 3.2. Thenwe T, ,
and w = +p" mod d for some A. For w = p", by
Lemma3. 1), we have

Ki(q, a,x")= Kl(q, a,x") =
Ki(q, ¢, x)= Kl(q, a, x).
Similar to the proof of Proposition 3.4, if Tr(a) #0,we
have w(#*) =1 and then t==1 y(¢)=1.

For w=-p" ,by Lemma 3. 1@2), we have

Kl(q, a, x™) = Kl(q, a, x).
Similarly ,if Tr(a) #0,we have t=+1 and y(ta)= 1.
The last claim follows from Proposition 3. 3@.

4 The partial Gauss sums

In this section,we will study the partial Gauss sum
glg, a,x):= 2x(){" e Q(p,), aecF],
d=

where §:x = x” is the non-trivial element in Gal(F ./
F,),Tr'(x)= Trquq(x) =Tr(x+x’) and d|(g*-1) is
the order of y. The notations w, v, g are defined as in

Subsection 2. 1, but g is replaced by ¢°.
Lemma 4.1 We have

@D g(q, a,x)=x(a)g(q, a, x).

@ g(q, a,x")=g(q, d", x).

(3 When d is even,we have

g(q, a,x™") = xy(a)g(q, a,x),
where y, is the quadratic character on F .

Proof We substitute x by x’ = a/x or x
respectively, then (D and @ follows. If xx’ = a, then
X (x)=0""""?*(a)=x,(a) and B follows.

Similar to Section 3, we may assume that y =

""" since we are interested in the generating field

of ¢(q, a, x).
Lemma 4.2 We have a Fourier expansion

(q - 1_Zg(q, a,X') =
Zowm(a)g((q +1)m + q d_ 1r).

Proof Write a=a’"' =aqa’ for some a e F 5, then
we have
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g2 q-2 11 p - T\ k-1
2 w(f1+1)m(a—lx) — 2 wm<a-lxx5) = <E +2+ B )P +2 < q (10)
m=0 m=0
0,if v’ # a; Denote by g, the Gauss sum with respect to F .
q-1,ifw’ = a @ If m+s=gq,then
Thus v(g((g+1)m+s))= v(g,(m+s-q)g,(m+1))=
r r T (% _1) (m+1>>‘
-1 _ -1 T (x) _ v(g,(m +s &,
(¢-Delg, a,x)= (g )XEUX ()¢ Since s—2 has same §, sequence as s,by Lemma 3.3, the
2 . iy ) valuation is
20 EFXX (@) (e 0){ T = . minimal; m=M+28,~1,v=V+48,-2;
x e qz

q-2 2 1

Y o"(a) g((q+ Dm+ T

r).
m=0
We will consider the cases d| (g+1) respectively.
4.1 The case dl(g-1)

Proposition 4.1 Assume that d| (g—1) and p>2. If
Tr(a) #0,then g(gq, a, y) generates Q (,u,dp)H,where
H= {r,0,1 w=1modd,|

and d, |d is the order of a'*"""“.
Proof We have
glqg,a,x)= o

" a)g(q, a 1) (7)
and
(¢ -1eg(g,a,1) =
1 +w(Tr(a))g(q +1) mod B’ (8)
by Lemma 4.2. Since
2 X1U<xt—l)§Tr'(x) —

xx0 = ar2

x"()glq, a®, x") (9)

if 7,0, fixes g(q, a, x),we have
X—w(t)w—(q—l)(w—l)/d(a) = 1
Thus we have
o(Tr(a)) = w(Tr(a)) mod L.

If Tr(a) #0,then t==+1 and y ()= (" )=1.
Then w=1 mod d, and g(q, a, x) generates Q (p,,)".
4.2 The case dl(g+1)
We need the following lemma to obtain the %3-adic
expansion of g(q, a, x).

Lemma 4.3 Let s be a positive integer less than
(q—1)/2. Let s, §;, M, V be the notations as in
Lemma 3.3. Assume that | (p—1)/2-s,1>3 for all j;
5o=2 and not all §; are same.

(D The valuation v(g( (g+1)m+s)) is

- minimal; m=M,v=V,
- secondly minimal; m=M+p’ ,v=V+2.

@ The valuation v(g( (g+1)m=s)) is

+ minimal; m=M+s,v=V;
- secondly minimal: m=M+s+p’ ,v=V+2.

Proof By the assumptions, p =11 and s, <
(p=9)/2. Then s<(p-7)p*"'/2 and

k-2

M= Z(P _81‘—1 _5,')]]/ = ZPW <3
8= j=0 10

Thus

7,08(q, a,x)=

M+28, -1 +p +p" +5 <

- secondly minimal: m=M+28,-1+p' ,v=V+45,;
- thirdly minimal; m=M+28,—1+p'+p" ,v=V+
46,+2.

But by (10), these three cases do not happen and
the valuation is at least V+4.

If m+s<q,then

v(g((g+1)m+s))= v(g,(m)g,(m+s)).

By Lemma 3.3, the valuation is
« minimal; m=M ,v=V,
- secondly minimal: m=M+p' ,v=V+2.
The result then follows.
@) If m<s,then
v(g((g+1)m —s))=
v(g,(m-1)g(m+q-5))=
v(g,(m)g,(m' +5=2)),
where m'=m+g-s. Since s—2 has same J; sequence as
s,by Lemma 3.3, the valuation is
- minimal ; m=M+28§,~1+s,v=V+45,-2;
- secondly minimal: m=M+28,-1+s+p',v=V+
46, ;
- thirdly minimal; m=M+28,—1+s+p'+p" ,v=V+
46,+2
by (10). But m<s,these three cases do not happen and
then the valuation is at least V+4.
If m=s,then
v(g((g+1)m=s))=v(g,(m=s)g,(m)).
By Lemma 3.3, the valuation is
- minimal; m=M+s,v=V;
- secondly minimal: m=M+s+p’ v=V+2.
The result then follows.

Proposition 4.2 If p>7d-2 then the valuation of
8(q, a,x") is kV,,.

Proof If r=0, d/2 mod d,then V, =0 and the
order of y" is at most 2, which divides g—1. Thus the
valuation of g(g, a, x") is zero by (7) and (8).

If 0, d/2 mod d,by Lemma 4. 1D and the fact
that V, =V_, ,we may assume that 1 <r<d/2. Write

¢ -1
d r=s, T qsy,
_(d-rgq-r
§, = ¥ s
s = rq—(d—-r)
M d .
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Then

k-1

+ 1 '+p_b"
_SMz(d_zr>qd = Z jld 7,
j=0

where bjp’E2r mod d with 0<b;<d-1. By Lemmas
4.2,4.3 and

s= s

q -1

g((g+1)m + r)=

e((g+D)(m+s, +1) —m%),i“ <r<

g((g+1)(m+s,) + <d—2r>q;1

the valuation of g(q, a, x') is kV,,=kV_,,.
Definition 4.1 Let p>7d-2 be a prime prime to

),ifi$r<i,
4 2

d.
T = N T¢,={rmoddl (r,d) =1,

P
(s,d) =1

V,, = V,,¥(s,d)= 1} C(Z/dZ)*,
where T, , is defined as Equation(3).

Proposition 4.3 Assume that p>7d-2.

(D If d is odd, then T, ,=T, , If dis even,then
T ,=irlrmod d/2e T, ,,}. Thus T, ,is a group
containing (d/2+1, -1, p).

@ If p=+1 mod d,then T, ,= {1, +(d/2+1) 1.

® T ,=(d/2+1, -1, p) if and only if

T e o= (-1, p)

@ If -1 is a power of p mod d,then T, ,=(d/2+
1, p)ifd/(2, d) <31.

Here ,d/2+1 appears only if 41d.

Proof Note that (d/2-1, d)= (d/2-1, 2)=1
holds only if 41d.

(D follows from the definition directly. @ follows
from (1 and Proposition 3. 3. @ follows from (1.
For @,p#+(d/4+1)mod d/2 if 41d/2=16. Then the
result follows from (D and Proposition 3. 3@.

Proposition 4. 4  Assume that p>7d-2. If p=
-1 mod d and Tr(a) #0,then g(q, a, xy) generates
Q ()", where
_ ({r, 0., ifa g F ordfld;
ey, 1,0 ) ifa e F *and 4| d.
Proof We may assume that y = “""/?. The
cases d=1, 2 is shown in Proposition 4. 1 and we may
assume that d=3.

H

2_
Denote by N,=qd 1r+(q+l)Mr such that v(N, )=

kV,, is minimal. Then by Lemma 4. 3, the valuation is
secondly minimal if and only if m=M +p' for some i,in
which case,the valuation is KV, +2. By Lemma 4.2, we
have

w"(a)g(N,) + 3 0" (@g(N, + (¢ + 1)p') =

k-1

" (a)g(N,) + Y, &" " (a)g(N, + (¢ +1)p') =

i=0
0" (a)g(N,) + Cr""w"(a)w(Tr(a)) mod R">*
(11)

Note that y(x)=1 for any x e F ] since d|(g+1).

By Lemma 4.1, we have
g(q,a,x")= g(q,a,x),
g(q, a, X)) = x,(a)glq, a, x).

If 7 o, fixes g(q, a, x),then by (9), V,, =V,.
Thus w==+1, +(d/2+1)mod d by (4). If 7, 0, fixes
g(q, a, x),we have

0" (*a) = 0" (a) mod .
This forces " (#)=1 and then
0" (Fa)w(Tr(fa)) = 0" (a)w(Tr(a)) mod L.
Since Tr(a) #0,we have w(7*)=1 and r==+1.

If41d and w=d/2+1,we have y,(a)=1 and o,
fixes g(q, a, x). Since Tr(a) #0,we have r==1. The
result then follows.

Theorem 4.1 Assume that d1(g+1),p>7d-2,
aeF and pfk If T, ,, , is generated by p,then
g(q, a, x) generates Q (u,,)" ,where
e (1,,0,),ifa ¢ przoréwd;

(Tupirs 7, 0_),ifa € F*and 41 d.

In particular,this holds if d/ (2, d) <31.

Proof If 7 o, fixes g(q, a, x) ,it also fixes

7,8(q,a,x)=g(q, a,x").

Thus V,,.=V, by (9), (11) and Proposition 4.2. Note
that —1 is a power of p modulo d. Then we T, ,and
w=p" or (d/2+1)p" mod d for some A. For w=p" by
Lemma 4. 1@,we have

g(q. a, x)= glq, ", x)= glq, a,x).
Similar to the proof of Proposition 4.4, if Tr(a) #0,we
have w(#)=1 and then r==+1.

For 41d and w= (d/2+1)p" mod d,by Lemma 4. 1
@), we have

g(q, a,x") = x,(a)g(yq, a, x).
Thus y,(a)=1 by (11). Similarly,if Tr(a) #0, we
have r==+1.
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