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1　 Introduction
Homogeneity occurs in panel data analysis when the
individuals in a subgroup share the same regression
coefficients because of the similarity among them. For
example, the relationship between the mean daily
maximum temperature ( TMAX ), total rainfall
(RAIN ), and total sunshine duration ( SUN ) in
neighboring geographical regions is expected to be
approximately the same[1] . The traditional approaches
assume all individuals share the same unknown
parameters, e. g. , Refs. [2,3] . It is important to pay
attention to the subgroups because they may have very
important practical meaning and lead to some important
findings in practice. To identify subgroups, several
methods have been proposed under the homogeneity
setting. Ref. [4] proposed a two-step procedure that
combines hierarchical clustering and the Lasso. Refs.
[5,6] regarded the fused Lasso as an effort of exploring
homogeneity, with the assistance of neighborhoods
defined according to either time or location. Ref. [7]
proposed the octagonal shrinkage and clustering
algorithm for regression ( OSCAR ) . Ref. [ 8 ]
considered simultaneous grouping pursuit. Ref. [ 9 ]
proposed a Bayesian framework by using shrinkage
priors. Ref. [10] proposed a method called clustering

algorithm in regression via data-driven segmentation
(CARDS) to explore homogeneity. Ref. [11] designed
an algorithm called clustering algorithm in regression via
data-driven segmentation ( CARD ) to explore the
homogeneity. Ref. [12] applied change point detection
and a binary segmentation based algorithm to detect the
subgroups. Ref. [1] proposed a modeling based on the
single index models embedded with homogeneity. Ref.
[13] detected change points for regression coefficients
of each covariate separately by the binary segmentation
based algorithm. Ref. [ 14 ] proposed a approach,
referred to as spatially clustered coefficient ( SCC )
regression, to detect spatially clustered patterns in the
regression coefficients.

Particularly, the aforementioned approaches assume
that the estimation parameters are usually fixed as
constants, which is not reasonable because in some
cases the covariates may have dynamic effect on the
response as time changing. For example, the influence
of total rainfall (RAIN) and total sunshine duration
(SUN) on temperature usually changes with the time,
caused by, changes in the local environment, see Figure
1. The varying coefficient model is a useful extension of
linear models and has many advantages in real
applications. The varying coefficient model is often
applied in epidemiological study for predicting CD4 (T-



Figure 1. The scatter plot of standardize TMAX versus
standardize RAIN (a) and standardize SUN (b) in Armagh
from January 2001 to December 2020.

helper lymphocytes) cell changes among HIV (human
immunodeficiency virus ) -infected person[15] . This
model can also be used in toxicity analysis in
environmental studies[16] . Several methods have been
proposed to estimate coefficient functions. Ref. [17]
used the local linear regression and the kernel-based
weights to estimate model. Ref. [18 ] estimated the
trend function and the coefficient function without
taking the first difference to eliminate the fixed effects.
Ref. [19] proposed a new technique to estimate the
unknown coefficient functions based on the first-order
differences and the local linear regression. Ref. [20]
proposed a penalised likelihood method with the Lasso
penalty function.

Furthermore, the estimation methods have been
proposed mostly based on least-squares ( LS )
estimation, see Refs. [1,13], among others. The least-
squares ( LS ) estimates certainly have some nice
properties, particularly when the random errors follow
the normal distribution. However, it is well-known that
the LS-estimation will not perform well when the dataset
has outliers or is heavy-tailed distributed. For example,
in the UK climate data, the distribution of TMAX in
Armagh is obviously disobeying the normal distribution,
see Figure 2. In this situation, robust estimation
methods are desired. Based on the varying coefficient
model, several M-estimation methods have been
proposed. Ref. [21] presented the local linear LAD-
estimation method. Ref. [22] established the asymptotic
normality of proposed estimators for both the parametric
and nonparametric parts. Ref. [ 23 ] proposed an
efficient and robust penalized estimating procedure for
varying coefficient single-index models based on modal
regression and basis function approximations. Ref. [24]
proposed a robust estimation procedure based on the
exponential squared loss function for the varying
coefficient partially nonlinear model. In this paper, we
use B-spline function approximations to estimate the

unknown functions under the framework of M-
estimation. More details about M-estimation can be seen
in Ref. [25] .

Figure 2. The distribution of standardized TMAX in Armagh.

Generally speaking, our method has three
innovations. First, we identify the subgroup structure of
every predictor separately, while traditional methods
usually treat all predictors as only one estimation index
to identify subgroups. Second, we assume that the
estimated parameters are functions that changing with
time, while the existing works generally treat the
parameters as constants. At last, we estimate coefficient
functions under the framework of M-estimation, which
is more robust to the potential outliers and heavy-
tailedness of observed distribution than widely-used LS
estimation.

The rest of this article is organized as follows.
Section 2 describes the varying coefficient model,
presents the estimation method and the subgroup
identification procedure. The results of simulation study
are given in Section 3. In Section 4, we apply our
method to estimate the subgroup structure of the UK
climate data. Section 5 describes the conclusions.

2　 Methodology
2. 1　 Varying coefficient model
Consider a time-varying response Y ( t ) with p-
dimensional covariate function X( t), the observations
are obtained from n subjects each repeatedly measured
for ni times over a set of distinct time points, i. e. ,
(Yij, Xij, tij) represents the jth observation of the ith
individual at time tij, i = 1,…, n, j = 1,…, ni, where
Xij = ( Xij1, …, Xijp )T is a p-dimensional vector of
predictors.

Consider the following varying coefficient linear
model:

Yij = XT
ijβi(tij) + 􀆠ij = ∑

p

k = 1
Xijkβik(tij) + 􀆠ij (1)

where βi(tij) = βi1(tij), βi2(tij),…, βip(tij)( ) T and
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βik tij( ) =

β1k tij( ) when i ∈ G1,k

β2k tij( ) when i ∈ G2,k

︙
βNkk tij( ) when i ∈ GNk,k

( ) ,k = 1,…,p.

Without loss of generality, we assume that tij∈[0, 1],
Xij and 􀆠ij are independent, E(􀆠ij |Xij)= 0, Xij1 =1. The
set G︿ k ={Gq,k: q=1,…, Nk} is a partition of set {1,…,
n}, which means there are Nk subgroups in the subjects
on the kth predictor. The individuals in the same
subgroup have the same coefficient function βik( t) . So
that, βuk( t)= βqk( t), for all u∈Gq,k . The number of
subgroups Nk is unknown.

This allows us to get the homogeneity structure of
individuals respect to each covariate. The individuals
whose kth predictor have similar influence on response
variables are more likely to be divided into the same
subgroup. For kth predictor, we only have Nk unknown
functions to estimate with Nk being much smaller than
n. Therefore, the above assumption partitions the whole

individuals into at least max
k

(Nk ) and at most ∏
p

k = 1
Nk

subgroups. The total number of functions to be

estimated is∑
p

k = 1
Nk .

2. 2　 Methods
In order to estimate the unknown functions {βik( t), i =
1,…,n;k=1,…,p}, we use M-estimation with B-spline
approximations. Our main purpose is to obtain the
structure of subgroups, so we estimate all βik( t) by the
same B-spline basis. A spline is defined as a piecewise
polynomial that is smoothly connected at its knots,
B(t) = (B1 ( t),…, BL ( t))T represents the B-spline
basis functions of order d and knots τ ={0 = τ0 <τ1 <…<
τL-d+1 = 1} are formed by the equally spaced on the
interval [0, 1] . We can approximate βik(t) by βik(t)=
B( t)Tθik, θik = (θik1,…,θikL)T . Based on longitudinal
observation {〈Yij, Xij, tij〉, i = 1,…,n; j = 1,…,ni},
we can minimize the objective function:

∑
n

i = 1
∑
ni

j = 1
ωiρ(Yij - ∑

p

k = 1
XijkB(tij)Tθik) (2)

where βi =(βi1,…,βip)T, then the M-estimator β︿ ik(t) of
βik(t) is β︿ ik =B(·)Tθik, ωi is a non-negative weight for
the ith subject and ρ is a suitably chosen loss function.
Usual choices of ωi include ωi ≡ 1 / N = 1 /∑ni and
ωi≡1 / ( nni ), which correspond to providing equal
weight to each single observation and equal weight to
each subject, respectively. Traditional estimation
methods in subgroup identification are major in least-
squares estimation ρ(u)= u2, but we use least-absolute
estimation ρ ( u ) = | u | instead to account for the

robustness consideration. The LAD loss is more robust
than the LS loss in the cases that the data have some
outliers and the random errors follow heavy-tail
distributions. However, it is well known that LAD
regression is also lack of robustness when the data
include outliers in the covariates[26] ( i. e. , there exist
leverage points) . In this scenario, we can assign a
weight to each observation in advance, and the final
estimation is expected be robust to the outliers in the
covariates if those pre-assigned weights correctly reflect
the outlying information among all covariates, see Ref.
[27 ] for more details. In literature, several robust
estimation methods have been proposed and different
kinds of ρ have been studied, like a ρ function with a

bounded derivative ρ′(μ)= max{-1, min{ u
c
,1}},c>

0, more details about the properties of M-estimators can
be found in Refs. [28,29] .

We will propose a three-step estimation procedure
to identify the subgroups. In the first stage, we get an
initial estimator as 􀭹βik ( t ) = B ( t )T􀭴θik, which only
depends on the observations for the ith individual.
Second, we use the change point detection method to
identify the subgroup structure via the initial estimated
functions {􀭹βik ( t)} . At last, we estimate the βik ( t)
under the identified subgroup structure. The following
gives the details:

Step 1 (Initial estimation) . For each individual i,
i=1,…,n, based on the ni observations, we can get an
initial estimator 􀭹βik by minimizing the objective function.

∑
ni

j = 1
ωiρ(Yij - ∑

p

k = 1
XijkB(tij)Tθik) (3)

　 　 Step 2 (Homogeneity pursuit) . For any 􀭹βik, i =1,
…, n, k = 1,…, p, 􀭴θik = (􀭴θik1,…, 􀭴θikL) . 􀭴θikl is the lth
component of the 􀭴θik . We can sort {􀭴θikl, i=1,…,n} and
denote them by b(1)≤…≤b(n) .

For different individuals i1, i2, if their kth
predictors belong to the same subgroup, the difference
between 􀭴θi1kl and 􀭴θi2kl ( l = 1, …, L ) is small. So
identifying the subgroup structure among {􀭹βik, i=1,…,
n} is equivalent to detecting the change points among
{􀭴θikl,i=1,…,n} for l=1,…,L. Then we use the binary
segmentation algorithm, which has been applied in
statistics, more details can be found in Refs. [30,31] .

For any 1≤i1< i2≤n, let

Δi1i2(κ) =
(i2 - κ)(κ - i1 + 1)

i2 - i1 + 1
∑
i2

l =κ+1
b(l)

i2 - κ
-

∑
κ

l = i1

b(l)

κ - i1 + 1( ) .
Given a threshold δ, which can be selected, the binary
segmentation algorithm to detect the change points
works as follows:
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(A) Find k︿ 1 such that
Δi,n(k

︿
1) = max

1≤κ < n
Δ1,n(κ) .

If Δ1,n(k
︿
1)≤δ, there is no change point among {b( l),

l=1, …, n }, and the process of detection ends.
Otherwise, add k︿ 1 to the set of change points and divide
the region {κ: 1≤κ≤n} into two subregions: {κ: 1≤
κ≤k︿ 1} and {κ: k︿ 1+1≤κ≤n} .

(B) Detect the change points in the two subregions
obtained in part (A), respectively. Consider the region
{κ: 1≤κ≤k︿ 1} first. Find k︿ 2 such that

Δ1,k︿1(k
︿
2) = max

1≤κ≤k︿1
Δ1,k︿1(κ) .

If Δ1,k︿1(k
︿
2)≤δ, there is no change point in the region

{κ: 1≤κ≤k︿ 1} . Otherwise, add k︿ 2 to the set of change
points and divide the region {κ: 1≤κ≤k︿ 1} into two
subregions: {κ: 1≤κ≤k︿ 2} and {κ: k︿ 2 +1≤κ≤k︿ 1} .
Similarly, for the region {κ: k︿ 1+1≤κ≤n}, we find k︿ 3

such that
Δk︿1+1,n(k

︿
3) = max

k︿1+1≤κ < n
Δk︿1+1,n(κ) .

If Δk︿1+1,n(k
︿
3)≤δ, there is no change point in the region

{κ:k︿ 1 + 1≤κ≤ n} . Otherwise, add k︿ 3 to the set of
change points and divide the region {κ: k︿ 1 +1≤κ≤n}
into two subregions: { κ: k︿ 1 + 1 ≤ κ ≤ k︿ 3 } and { κ:
k︿ 3+1≤κ≤n} .

(C) For each subregion obtained in part (B), we
continue using the same computational algorithm as that
for the subregion {κ: 1≤κ≤k︿ 1} or {κ: k︿ 1+1≤κ≤n}
in part ( B ) and keep doing so until there is no
subregion containing any change point.

Finally, let all change points be Kikl = {k︿ (1) <k
︿
(2) <

…<k︿ (Nikl)}, then we can divide the kth predictor into
Nikl+1 subgroups by the lth component of the θ︿ ik . We
reuse the binary segmentation algorithm to get the
change points for l = 1,…,L. We get all change points
of the kth predictor Kik = {Kik1,…,KikL} . According to
the set of change points, we can identify the subgroup
structure of the kth predictor G︿ k = {G1k,…,GNkk}, the
individuals in the same subgroup have the same
unknown functions β︿ zk, z=1,…,Nk . For k=1,…,p, we
get the subgroup structure G︿ k of {􀭹βik, k=1,…,p}, and
let G︿ ={G︿ 1,…,G︿ p} .

Step 3 ( Final estimation) Based on the above
calculation, we get the final subgroup structure. And
minimize the following objective function

∑
n

i = 1
∑
ni

j = 1
ωiρ(Yij - ∑

p

k = 1
XijkB(tij)Tθik),

we use β︿ zk( t)= B( t)Tθ︿ zk (k = 1,…,p,z = 1,…,Nk) to
replace the βik(t)= B(t)Tθik (i=1,…,n,k=1,…,p) .

As we know, the choices of smoothing parameters
strongly influence the adequacy of the estimators. In our
paper, we use splines with equally spaced knots and
fixed degrees. In the literature, d, the order of B-
spline, is almost always fixed to be either d = 3
(quadratic splines) or d= 4 (cubic splines), see Refs.
[1, 13] . The number of spline functions L, can be
selected by ‘ leave-one-subject-out ’ cross-validation
procedure, like Ref. [25] . We can also select a fixed L
like Refs. [32,33] .

Apparently, the whole estimation procedure
depends crucially on the threshold δ used. On the other
hand, if δ is too small, the number of change points
will increase, we will come up with too many groups,
leading to inflated variances of the final estimators. On
the other hand, if δ is too large, we will mistake
different group parameters βij’s in the same region and
treat them as the same parameter, leading to a biased
final estimators. To identify the homogeneity pursuit
accuracy, the δ can be selected by the CV procedure in
Ref. [1], or by standard Bayesian information criterion
(BIC) in Ref. [12] . We use the following BIC in our
simulation studies and real data analysis

∑
n

i = 1
∑
ni

j = 1
(Yij - ∑

p

k = 1
XijkB(tij)Tθ︿ ik) + γln(∑

n

i = 1
(ni)),

where γ is the total number of distinct parameters in the
estimated model.

We summarize the above method as the following
Algorithm 2. 1.

Algorithm 2. 1　 Subgroup identification algorithm in the
varying coefficient model
Input: yij: the jth observation of the ith individual of response
variable; xij: the jth observation of the ith individual of
independent variables; L: the number of spline functions; a,b:
the value range of δ
Output: β︿ ik: the estimation parameter of the kth independent
variable of the ith individual
1 generate B-spline basis functions B(t)= (B1(t),…,BL(t))T;
2 for i in 1:n do
3 　 　 generate covariance matrix 􀭴xi by xi and B(t);
4 　 　 estimate 􀭹βi =(􀭹βi1,…,􀭹βip)T by 􀭴xi and yi, 􀭹βik, k=1,…, p,
􀭹βik(tij)= B(tij)T􀭴θik, 􀭴θik =(􀭴θik1,…, 􀭴θikL);

5 end for
6 for δ in a:b do
7 　 　 for k in 1:p do
8 　 　 　 for l in 1:L do
9 　 　 　 　 consider { 􀭴θikl, i = 1, …, n}, use the binary

segmentation algorithm to get all change points Kikl ={k︿ (1) <k
︿
(2)

<…<k︿ (Nikl)
};

10　 　 　 end for
11 　 　 　 consider all change points of the kth predictor Kik =

{Kik1,…,KikL }, get the subgroup structure G︿ k = {G1k,…,
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GNkk
};

12 　 　 end for
13 　 　 get the subgroup of every predictor G︿ ={G︿ 1,…,G︿ p};
14 　 　 the individuals have the estimation functions βik = β

︿
iz, i =

1,…,n,k=1,…,p,z=1,…,Nk, while (i,k)∈Gz,k

15 　 　 get the β︿ ik by minimizing the following objective function

∑
n

i = 1
∑
ni

j = 1
ωiρ(Yij - ∑

p

k = 1
Xijkβik)

16 　 　 calculate the BIC by β︿ ik and yij
17 end for
18 choose the right δ in order to make the BIC minimum
19 get the final estimation parameter {βik} and the final subgroup

structure G︿

3　 Simulation
In this section, we investigate finite sample performance
of proposed estimation method. At the same time, we
compare the subgroup identification accuracy between
the least-squares loss ρ(u) = u2 and least-absolute loss
ρ(u)= | u | . Two Models are conducted with the same
model structure, while the coefficient parameters βi1,βi2

in Model Ⅰ are segment linear functions and the
coefficient parameters βi2 in Model Ⅱ are non-linear
functions. We assume that the coefficient parameters are
different kinds of smooth functions, in order to show
that our subgroup identification algorithm has great
accuracy in different situations.

ModelⅠ
We generate the data from the following model:

yij = Xij1βi1 tij( ) + Xij2βi2 tij( ) + εij,
i = 1,…, n, j = 1,…, ni,

where tij =
j
ni

, j = 1,…,ni and Xij = (Xij1, Xij2)T = (1,

0. 1×T×tij +xij2)T . The coefficient functions are chosen
as

βi1(t) =
(t × ni - 1), 1 ≤ i ≤ n / 3;
3(t × ni - 1), n / 3 < i ≤2n / 3;
5(t × ni - 1), 2n / 3 < i ≤ n;

{
βi2(t) =

(t × ni - 1), 1 ≤ i ≤ n / 4;
2(t × ni - 1), n / 4 < i ≤ n / 2;
3(t × ni - 1), n / 2 < i ≤3n / 4;
4(t × ni - 1), 3n / 4 < i ≤ n.

ì

î

í

ï
ï

ï
ï

　 　 We divide every coefficient function into different
subgroups, the first coefficient function has three
subgroups, the second coefficient function has four
subgroups. In summary, all individuals have been
divided into six subgroups,

G1 = {i:1 ≤ i ≤ n
4
}, G2 = {i: n

4
< i ≤ n

3
},

G3 = {i: n
3

< i ≤ n
2
}, G4 = {i: n

2
< i ≤2n

3
},

G5 = {i:2n
3

< i ≤3n
4
}, G6 = {i:3n

4
< i ≤ n} .

　 　 ModelⅡ
We generate the data from the model in ModelⅠ

but Xij = ( Xij1, Xij2 )T = ( 1, xij2 ) . The coefficient
functions are chosen as

βi1(t) =
3, 1 ≤ i ≤ n

2
;

0, n
2

< i ≤ n;

ì

î

í

ï
ï

ï
ï

βi2(t) =
3et - 1

ni - 3, 1 ≤ i ≤ n
3
;

3e
ni+1
ni

-t - 3e, n
3

< i ≤ n.

ì

î

í

ï
ï

ï
ï

We divide every coefficient function into different
subgroups, the first and the second coefficient functions
have two subgroups. In summary, all individuals have

been divided into three subgroups, G1 ={ i:1≤i≤ n
3
},

G2 ={i:
n
3
<i≤ n

2
} and G3 ={i:

n
2
<i≤n} .

Under the assumption of the model structure and
coefficient functions in the above two models, we
generate the xij2 from the same distribution while the
random errors are generated from three different
distributions reflecting outliers.

Case I: xij2’s are i. i. d. from a normal distribution
with mean 0 and variance σ2 = 0. 1. The random errors
(􀆠i1,…,􀆠ini)

T are independent random noise having the
N(0,1) distribution.

Case II: xij2’s have the same distribution like Case
I. The random error ( 􀆠i1, …, 􀆠ini )

T are independent
random noise having the t distribution with df=3.

Case III: xij2’s have the same distribution like Case
I. The random error ( 􀆠i1, …, 􀆠ini )

T are independent
random noise having the Cauchy distribution.

We apply three estimation approaches for
comparison. Approach 1 (A1) is Under-fitting. In this
estimation approach, we do not consider the individual
characteristics. In other words, we treat all individuals
as one whole group, so NK =1, β1k =…=βnk, k =1,…,
p. Approach 2 (A2) is Correct-fitting which is the
method we proposed. In this estimation approach, we
assume all individuals follow a potential subgroup
structure. Approach 3 (A3 ) is Over-fitting. In the
estimation approach, we do not consider the
homogeneity pursuit between different individuals. In
other words, we treat every individual as an one-
member subgroup, so Nk = n, β1k = 􀭹βik, which is
estimated in Step 1 of Algorithm 2. 1.

For each simulated data set, we consider the
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balanced design where ni’s are all equal. We use cubic
spines with 1 inner knots and without intercept; thus, the
dimension of the B-spline basis is 4. We adopt standard
BIC to select the number of subgroups. The choice of ωi

is ωi≡1 / N=1 /∑ ni, representing ω1 =…=ωn .
We use the following two metrics to compare the

estimation accuracy and subgroup identification
accuracy: The mean squared error (MSE) (MSE(Y︿ ij)
= E (‖ Y︿ ij - Yij ‖2 )), and the normalized mutual
information (NMI) . The NMI is proposed by Ref. [10]
to evaluate the distance between two groups. Suppose
A={A1,A2,…} and B = {B1,B2,…} are two sets of
disjoint group of {1,2,…,n} . The NMI is defined as

NMI(A, B) = 2I(A,B)
H(A) + H(B)

,

where

I(A, B) = ∑
i,j

| Ai ∩ Bj |
n

log
n | Ai ∩ Bj |
| Ai | | Bj |( )

is the mutual information between the two groups, and

H(A) = ∑
i

| Ai |
n

log n
| Ai |( ) .

NMI takes values in [ 0, 1 ], and a larger value
indicates a higher degree of similarity between the two
groups. NMI=1 means group A is the same as group B.
In our simulations, we compare the subgroup B which is
estimated with the true subgroup A. NMI can assess the
accuracy of subgroup identification.

We consider balanced design where Ti ’ s are all
equal. The number of repeated measurements is set to
be T= 30 or 60, the number of individuals is set to be
n=60 or 120. The number of repeated measurements is
smaller than the number of individuals, which is more
common in our daily life. We calculate the results for
estimation errors (MSE) and subgroup identification
accuracy (NMI) for βik, i =1,…,n, k =1,…,p, based
on the 100 simulation results. Normal distribution means
the random error 􀆠ij comes from the normal distribution
with mean 0, variance 1. t3 distribution means the
random error 􀆠ij comes from the t distribution with df is
3. Cauchy distribution means the random error 􀆠ij comes
from the Cauchy distribution.

Table 1 reports the average of MSE and NMI, the
data are generated from the Model Ⅰ. To A1, we
consider all individuals as one group, so that the
estimation subgroup structure B={B1} ={1,…,n}, then

I(A, B) = ∑
i

| Ai |
n

log
n | Ai |
n | Ai |( ) = 0.

So NMI =0. At the same time, the MSE is much larger
than A2 and A3 because A1 assumes β1k =…= βnk, k =
1,…,p. To A3, we consider every individual as on

one-member subgroup, so that the estimation subgroup
structure B={B1,…,Bn} ={1,…,n}, Bi ={i}, then

I(A, B) = ∑
i

1
n

log n
| Ai |( ) = Constant.

So NMI is constant and MSE is the smallest. To A2,
the method we proposed, we can see that MSE is just a
little larger than A3, representing that estimation error is
small and our estimation functions are close to the true
coefficient functions. When the random error obeys the
normal distribution, our estimation method can recover
the true subgroup structure well, and LS-estimation has
a better effect on identification accuracy than LAD-
estimation, but the difference is not great. However,
when the random error obeys the t distribution, a
common heavy-tailed distribution, LAD-estimation has
obvious advantages over LS-estimation. For example,
considering the situation n = 120, T = 60, when the
random error obeys the normal distribution, NMI under
LS-estimation is 0. 9386 while NMI under LAD-
estimation is 0. 9299. When the random error obeys the
t distribution, NMI under LS-estimation is 0. 7382 while
NMI under LAD-estimation is 0. 7900. In addition, the
identification accuracy will increase with the number of
observation times, because the initial estimation
functions 􀭹βik, i=1,…,n, k =1,…,p, will be estimated
more accurately. In the more extreme case, LS-
estimation accuracy will further decline, we use the
Cauchy distribution as an example. We can see that the
NMI in A2 by the LS-estimation even smaller than the
NMI in A3, it means many individuals are divided into
wrong subgroups. Because MSE has a wide range of
fluctuations, there is little significance in comparing
MSE. But the LAD-estimation method still works, like
NMI =0. 6772, when T=60, n=120.

Table 2 reports the average of MSE and NMI, the
data are generated from the Model Ⅱ. The simulation
results of simulation in ModelⅡshow that in the case of
different smooth coefficient functions, our proposed
method can also work well. And the accuracy of
subgroup identification is much better under the
framework of M-estimation in the situation with outliers
and heavy-tailed distribution. For example, also
considering the situation n = 120, T = 60, when the
random error obeys the normal distribution, NMI under
LS-estimation is 0. 9903 while NMI under LAD-
estimation is 0. 9625. When the random error obeys the
t distribution, NMI under LS-estimation is 0. 8922 while
NMI under LAD-estimation is 0. 9474. At the same
time, the number of subgroups in Model Ⅱ is smaller
than the number of subgroups in ModelⅠ, so the NMI
which represents the accuracy of subgroup identification
in ModelⅡ is a little higher than the NMI in ModelⅠin
some cases, although the coefficient parameters βi2 in
ModelⅡare non-linear functions.
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Table 1. The average of MSE and NMI under ModelⅠ.

n
MSE(A1)

T=30 T=60
MSE(A2)

T=30 T=60
MSE(A3)

T=30 T=60
NMI(A1)

T=30 T=60
NMI(A2)

T=30 T=60
NMI(A3)

T=30 T=60

Normal
LAD

LS

60 5095. 55 54873. 19 0. 9779 0. 9643 0. 8646 0. 9370 0 0 0. 8872 0. 9808 0. 5879 0. 5879
120 5140. 94 54679. 69 0. 9876 0. 9942 0. 8601 0. 9373 0 0 0. 8535 0. 9299 0. 5251 0. 5251
60 5015. 02 53423. 40 0. 9673 0. 9895 0. 7436 0. 8676 0 0 0. 9019 0. 9956 0. 5879 0. 5879
120 5014. 44 53444. 51 0. 9817 0. 9978 0. 7475 0. 8715 0 0 0. 8734 0. 9386 0. 5251 0. 5251

t3

LAD

LS

60 5094. 90 54785. 78 2. 6892 2. 8258 2. 4760 2. 7061 0 0 0. 7792 0. 9268 0. 5879 0. 5879
120 5108. 42 54699. 71 3. 1108 2. 8940 2. 6078 2. 7547 0 0 0. 7184 0. 7900 0. 5251 0. 5251
60 5014. 11 53458. 75 2. 7647 2. 9043 2. 1769 2. 5650 0 0 0. 7504 0. 8891 0. 5879 0. 5879
120 5022. 01 53448. 49 2. 9186 2. 9515 2. 2380 2. 6182 0 0 0. 6842 0. 7382 0. 5251 0. 5251

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

Cauchy
LAD

LS

60 18969.32 92561.47 13939.85 37073.83 13929.79 37069.21 0 0 0.6819 0.7706 0.5879 0.5879
120 52462.35 86469.29 45376.21 31825.07 44578.35 31821.30 0 0 0.5865 0.6772 0.5251 0.5251
60 7984.40 86433.64 2595.22 30657.09 1735.02 30081.34 0 0 0.5597 0.6287 0.5879 0.5879
120 21368.28108291.7015988.22 79650.40 13043.86 79121.59 0 0 0.4729 0.5082 0.5251 0.5251

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

Table 2. The average of MSE and NMI under ModelⅡ.

n
MSE(A1)

T=30 T=60
MSE(A2)

T=30 T=60
MSE(A3)

T=30 T=60
NMI(A1)

T=30 T=60
NMI(A2)

T=30 T=60
NMI(A3)

T=30 T=60

Normal
LAD

LS

60 7. 3802 7. 4374 1. 0883 0. 9992 0. 9142 0. 9627 0 0 0. 9114 0. 9710 0. 3962 0. 3962
120 7. 3219 7. 4368 0. 9919 0. 9982 0. 9202 0. 9621 0 0 0. 8886 0. 9625 0. 3488 0. 3488
60 7. 1616 7. 2063 0. 9916 0. 9959 0. 8392 0. 9150 0 0 0. 9428 0. 9914 0. 3962 0. 3962
120 7. 1149 7. 2007 0. 9967 1. 0002 0. 8392 0. 9150 0 0 0. 9322 0. 9903 0. 3488 0. 3488

t3

LAD

LS

60 9. 3828 9. 3059 3. 0565 2. 9444 2. 8476 2. 8542 0 0 0. 8449 0. 9506 0. 3962 0. 3962
120 9. 1949 9. 3639 2. 8974 2. 9963 2. 6878 2. 8994 0 0 0. 8117 0. 9474 0. 3488 0. 3488
60 9. 1182 9. 1945 2. 9926 2. 9582 2. 4037 2. 7184 0 0 0. 7874 0. 9051 0. 3962 0. 3962
120 9. 1262 9. 2380 3. 0108 3. 0382 2. 4890 2. 7848 0 0 0. 6733 0. 8922 0. 3488 0. 3488

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

Cauchy
LAD

LS

60 4171.43 7926.31 4169.82 7926.29 4164.21 7925.71 0 0 0. 6519 0. 8319 0. 3962 0. 3962
120 41098.36 46060.40 42086.33 45061.30 40076.19 40686.60 0 0 0. 5851 0. 7868 0. 3488 0. 3488
60 23996.50 19264.44 21052.26 18435.66 21023.77 18151.70 0 0 0. 2717 0. 2966 0. 3962 0. 3962
120 48312.76 49427.15 44324.14 46035.53 40617.16 26766.37 0 0 0. 2148 0. 2335 0. 3488 0. 3488

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

Table 3. Subgroup structure based on the observations in 16 locations by the LAD-estimation approach.
Armagh Bradford Camborne Eastbourne Eskdalemuir Heathrow Hurn Lerwick

INTERCEPT 1 1 1 1 1 1 1 1
RAIN 1 2 2 3 1 1 3 3
SUN 4 1 2 1 3 1 1 2

Leuchars Oxford Paisley Ross-On-Wye Shawbury Sheffield Waddington Whitby
INTERCEPT 1 1 1 1 1 1 1 1

RAIN 2 1 2 1 2 2 2 3
SUN 1 1 1 1 1 1 1 1

4　 Real data analysis
We apply the proposed algorithm to the UK climate
dataset which is available from the UK Met Office
website ①, and contains data of the mean daily
maximum temperature ( TMAX ), the mean daily

minimum temperature ( TMIN ), days of air frost
(AF ), total rainfall ( RAIN ), and total sunshine
duration (SUN) collected from 37 stations. We first
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remove the missing values and thus select data during
the period of January 2001 to December 2020, then
observations from 16 locations can be used. Ref. [1]
has used the dataset to identify the subgroup structure
based on the single index models, and achieved good
results. We assume unknown parameters βik ( t ) are
functions of time t while they consider βik as a constant.
Let yij and Xij = (Xij1,Xij2 )T be the observations for
TMAX, RAIN, and SUN, respectively, from the ith
location at the jth month, i= 1,…, 16, j= 1,…, 240.
We standardize the data and our estimation model is

yij = βi0 + Xij1 βi1 tij( ) + Xij2βi2 tij( ) ,
i = 1,…, 16, j = 1,…, 240.

　 　 We use the estimation method by the LAD-
estimation. Table 3 reports the subgroup structure based
on the UK climate data. {1,2,…,16} represents the
locations from Armagh to Whitby. To INTERCEPT, all
locations follow one group, β︿ 01 = - 0. 0358. To the
covariate RAIN, all locations are divided into three
subgroups

G︿ 1 = {G1,1, G2,1, G3,1}, G1,1 = {1,5,6,10,12},
G2,1 = {2,3,9,11,13,14,15}, G3,1 = {4,7,8,16},

and βi1 =β
︿
u1, when i∈Gu,1 .

To the covariate SUN, all locations are divided
into four subgroups,

G︿ 2 = {G1,2, G2,2, G3,2, G4,2}, G1,2 = {1},
G2,2 = {2,4,6,7,9,10,11,12,13,14,15,16},

G3,2 = {3,8}, G4,2 = {5} .
βi2 = β︿ u2, when i∈Gu,2 . Figure 3 shows the estimated
coefficient functions.

Figure 3. βi1 and βi2 in different subgroups by the LAD-
estimation approach.

Based on the subgroup structure of the predictor
“INTERCEPT”, “RAIN” and “SUN” . We can divide
all locations into seven subgroups,
G︿ = {G1, G2, G3, G4, G5,G6,G7}, G1 = {6,10,12},

G2 = {2,9,11,13,14,15}, G3 = {3},
G4 = {4,7,16}, G5 = {5}, G6 = {8}, G7 = {1} .

So total rainfall and total sunshine duration in two
different locations in the same subgroup have the same
impact on the mean daily maximum temperature.

Figure 4. UK map and subgroup structure by the LAD-
estimation approach.

Figure 5. UK map and subgroup structure by the LS-
estimation approach.
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Table 4. Subgroup structures based on the observations in 16 locations by the LS-estimation approach.

Armagh Bradford Camborne Eastbourne Eskdalemuir Heathrow Hurn Lerwick

INTERCEPT 1 1 1 1 1 1 1 1

RAIN 1 1 1 1 1 1 1 1

SUN 1 2 3 4 5 2 6 3

Leuchars Oxford Paisley Ross-On-Wye Shawbury Sheffield Waddington Whitby

INTERCEPT 1 1 1 1 1 1 1 1

RAIN 1 1 1 1 1 1 1 1

SUN 6 6 5 6 6 2 2 6

　 　 From Figure 4, we can see that the similarity
between the subgroup structures identified by our
method and the geographical location in reality.
Armagh, Camborne, Eskdalemuir, Lerwick are isolated
and far away from each other and other 12 locations, so
we divides them into different subgroups, every location
as one-member subgroup. At the same time, Ross-On-
Wye, Heathrow and Oxford are divided into the same
subgroup while they are in close proximity. Eastbourne,
Hurn and Whitby are divided into the same subgroup
because they are all located by the sea.

For comparison, we use the estimation method by
the LS-estimation while other steps are the same as the
estimation method by the LAD-estimation. From the
Table 4, based on the subgroup structure of the predictor
“INTERCEPT”, “RAIN” and “SUN”, we can see that
all locations are divided into six subgroups,

G︿ = {G1, G2, G3, G4, G5,G6}, G1 = {1},
G2 = {2,6,14,15}, G3 = {3,8}, G4 = {4},
G5 = {5,11}, G6 = {7,9,10,12,13,16} .

From Figure 5, the LAD-estimation approach works
more reasonable than the LS-estimation approach. For
example, the estimation method divides Bradford,
Heathrow, Sheffield and Waddington into one
subgroup, while Heathrow is much different from other
three locations.

5　 Conclusions
In this paper, we proposed a subgroup identification
algorithm to identify homogeneity in varying coefficient
model for panel data. Instead of using the LS-
estimation, we choose to use the LAD-estimation
method to account for the potential outliers and heavy-
tailedness of observed distribution. Numerical studies
indicate our algorithm resulting in satisfactory
performance. Additionally, the corresponding
theoretical properties similar to Refs. [11,25] can also
be investigated.

There are some issues can be studied in the future.
First, in our proposed method, the threshold δ can be

selected by the CV procedure or the standard BIC.
Whether there is a better way to select a suitable δ to
meet different scenarios or not, furthermore, varying δ
to meet different kinds of predictors. Second, we use
least-absolute estimation ρ(u)= | u | to account for the
robustness consideration. Other robust estimation
functions may get a better estimation accuracy, and
select different ρ to meet different scenarios.
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纵向数据下变系数模型的一种稳健同质寻踪算法
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摘要: 探讨了变系数模型中参系数函数的同质性,其中同一个子群中的个体的系数函数是相同的. 在重复观测

的条件下,我们用 B 样条来拟合变系数模型的系数函数,同时用变点检测的方法来进行子群识别. 为了解释可

能的异常值或重尾分布,我们在 M 估计的框架下拟合系数函数,在本文中以绝对值(LAD)损失为例. 模拟数据

表明,当模拟数据集存在异常值或参数函数为重尾分布时,我们的估计方法优于常用的最小二乘(LS)估计.
关键词: 变系数模型;M 估计;B 样条;变点检测 ;同质寻踪
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