文章编号:0253-2778(2020)05-0669-04

Ore-type condition for loose Hamilton cycles in 3-uniform hypergraphs

YU Lei

(CAS Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China)

Abstract: A classic result of Ore in 1960 states that if the degree sum of any two independent vertices in an n-vertex graph is at least n, then the graph is Hamiltonian. Here a similar problem for 3-uniform hypergraph was studied and an approximate result was obtained.

Key words: Ore-type condition; hypergraph; Hamilton cycle; degree

CLC number: O157. 4 **Document code:** A doi:10.3969/j.issn.0253-2778.2020.05.014

2010 Mathematics Subject Classification: 94B15

Citation: Yu Lei. Ore-type condition for loose Hamilton cycles in 3-uniform hypergraphs [J]. Journal of University of Science and Technology of China, 2020,50(5):669-672.

余磊. 3 一致超图中线性哈密顿圈的 Ore 条件[J]. 中国科学技术大学学报,2020,50(5):669-672.

3 一致超图中线性哈密顿圈的 Ore 条件

余 磊

(中国科学技术大学数学科学学院,中科院吴文俊数学重点实验室,安徽合肥 230026)

摘要: 1960 年, Ore 证明了如下结果: 如果一个n 点图的任意两个独立点的度和不小于n, 那么它包含一个哈密顿圈. 将这个结果推广到 3 一致超图上, 并得到一个近似最优的结果.

关键词: Ore 条件;超图;哈密顿圈;度

0 Introduction

Given $k \ge 2$, a k-uniform hypergraph (k-graph for short) consists of a vertex set V and an edge set $E \subseteq \binom{V}{k}$. For $1 \le \ell \le k-1$, a k-graph is called an ℓ -cycle if its vertices can be ordered cyclically so that each of its edges consists of k consecutive vertices and every two consecutive edges share exactly ℓ vertices. A (k-1)-cycle is often called a tight cycle while a 1-cycle is often called a loose cycle. We say that a k-graph contains a Hamilton ℓ -cycle

if it contains an *t*-cycle as a spanning subhypergraph.

For a set $A \subseteq V(H)$, let H [A] be the subgraph induced by A. For two vertex sets S, $R \subseteq V(H)$ with |S| < k, let $N_H(S,R) = \{T: T \subseteq R \text{ such that } S \cup T \in E(H)\}$ and $\deg_H(S,R) = |N_H(S,R)|$. By the definitions here, $\deg_H(S) = \deg_H(S,V(H))$. If $S = \{v\}$, write $\deg_H(v,R)$ for $\deg_H(\{v\},R)$. The minimum d-degree $\delta_d(H)$ of H is the minimum of $\deg_H(S)$ over all d-element vertex sets S in H. The subscript will be omitted if the underlying hypergraph is clear from the context.

Ore^[1] showed that a graph G with $\sigma_2(G) \geqslant n$ is Hamiltonian, here $\sigma_2(G) = \min\{d(u) + d(v): u, v \text{ are independent}\}$. Tang and $Yan^{[2]}$ generalized this theorem to k-graphs.

Definition 0.1 Let H be a k-graph, $S, T \in \binom{V}{k-1}$, we say S, T are independent if there exists no such edge e that $S \cup T \subseteq e$. Set

$$\sigma_2(H) = \min\{\deg(S) + \deg(T): S, T \in \binom{V(H)}{k-1},$$

S and T are independent $\}$.

Theorem 0.1^[2] For every $k \ge 3$, $\gamma > 0$, there exists n_0 such that every $n \ge n_0$ vertices k-graph H with $\sigma_2(H) \ge (1+\gamma)n$ contains a tight Hamilton cycle.

We study a similar problem by considering loose Hamilton cycles in 3-graphs.

Theorem 0. 2^[3] There is an integer n_0 such that every 3-graph H on $n \ge n_0$ vertices with n even and $\delta_2(H) \ge n/4$ contains a loose Hamilton cycle.

Theorem 0.3^[3] Let $\gamma > 0$, then there exists n_0 such that every $n \ge n_0$ vertices 3-graph H with n even and $\sigma_2(H) \ge (1/2+\gamma)n$ contains a loose Hamilton cycle.

This bound is approximately best possible since it was shown in Ref. [3] that there exists a 3-graph H on n vertices with $\delta_2(H) \geqslant (n-2)/4$, which contains no loose Hamilton cycle.

To prove Theorem 0.3, we will use the so-called absorbing method.

We say that a 3-graph H is a (loose) path if its vertices can be ordered as v_1 , v_2 , \cdots , v_{2m+1} so that $E(H) = \{ \{v_{2i+1}, v_{2i+2}, v_{2i+3}\} : i = 0, \cdots, m-1 \}$ with endpoints $\{v_1, v_{2m+1}\}$.

A path P with endpoints v_1 and v_2 is said to absorb $U \subseteq V \setminus V(P)$ if there is a path Q in H with endpoints v_1 and v_2 and such that $V(Q) = V(P) \cup U$.

1 Proof of Theorem 0.3

To prove Theorem 0.3, we need the following lemma.

Lemma 1. 1 Given $\gamma > 0$, let H be an n vertices 3-graph with $\sigma_2(H) \geqslant \left(\frac{1}{2} + \gamma\right)n$ and with

n sufficiently large, then for any $K \in \binom{V(H)}{2}$ with deg (K) < n/4 and $0 < \alpha < 1/40000$, there exists a path P in H such that

 $(I) |V(P)| \leq \alpha n.$

([]) $K \subset V(P)$, $\{u,v\} \cap K = \emptyset$, where u,v are the endpoints of P.

(||||) Any vertex set $U \subset V \setminus V(P)$ with $|U| \le \alpha^2 n$, $|U| \in 2\mathbb{N}$ can be absorbed by P.

The following lemma provides a collection of paths covering nearly all the vertices in hypergraph.

Lemma 1.2(Path cover lemma^[4]) For every $\gamma, \varepsilon > 0$, there exist n_0 , p such that every 3-graph H = (V, E) on $n > n_0$ vertices with δ_2 $(H) \geqslant (1/4+\gamma)n$ the following holds. There is a family of disjoint paths P_1, \dots, P_q $(q \leqslant p)$, which covers all but at most εn vertices of H.

The following lemma is used to connect the paths into one path.

Lemma 1.3 (Reservoir Lemma^[4]) For every $d, \varepsilon > 0$, there exists n_0 such that every 3-graph H = (V, E) on $n > n_0$ vertices with $\delta_2(H) \geqslant dn$ the following holds. There is a set R of size at most εn such that for all 2-set $S \in \binom{V}{2}$, we have $\deg(S, R) \geqslant d\varepsilon n/2$.

Proof of Theorem 0.3 If $\deg(S) \geqslant n/4$ for all $S \in \binom{V(H)}{2}$, then by Theorem 0.2 H contains a loose Hamilton cycle. So we can fix some $K \in \binom{V(H)}{2}$ with $\deg(K) < n/4$.

Let P be the path guaranteed by lemma 1.1 (applied with $\alpha < \gamma/4$), let u,v be the endpoints of P. Let $V' = (V \setminus V(P)) \cup \{u,v\}$ and let H' = H[V'] be the induced subhypergraph of H on V'. Then

$$\delta_2(H') > \left(\frac{1}{4} + \gamma\right)n - \alpha n > \left(\frac{1}{4} + \frac{3\gamma}{4}\right)n$$
.

Due to Lemma 1.3 with d=1/4, $\varepsilon=\alpha^2/2$, we can choose a set $R \subseteq V' \setminus \{u,v\}$ of size at most $\alpha^2 n/2$ such that for every $S \in \binom{V'}{2}$,

$$\deg(S,R) \geqslant \frac{\alpha^2 n}{16} - 2.$$

Set $V'' = V \setminus (V(P) \cup R)$ and let H'' = H [V''] be the induced subhypergraph of H on V'', then

$$\delta_2(H'') > \left(\frac{1}{4} + \gamma\right)n - \alpha n - \frac{\alpha^2 n}{2} > \left(\frac{1}{4} + \frac{\gamma}{2}\right)n.$$

Lemma 1.2 applied to H'' with $\varepsilon = \alpha^2/2$ yields a family of disjoint paths P_1, \dots, P_q , which covers all but at most $(\alpha^2 n)/2$ vertices of H''. Use T to denote the set of the uncovered vertices in V''.

Let $P_0 := P$, and let P_i^b, P_i^e be the endpoints of $P_i(i=0,1,\cdots,q)$. For sufficiently large n,

$$\deg(\{P_i^e, P_{(i+1)(\text{mod}(q+1))}^b\}, R) \geqslant \frac{\alpha^2 n}{16} - 2 > q + 1.$$

Therefore for each $i \in \{0, 1, \dots, q\}$, we can choose a vertex $x_i \in R \setminus (\bigcup_{0 \le j < i} x_j)$ such that $P_i^e x_i P_{(i+1) \pmod{(q+1)}}^b$ is an unused edge. Hence, we can connect all these paths to form a loose cycle \mathfrak{C} .

Let $U = V \setminus V(\mathfrak{C})$ be the set of vertices not covered by \mathfrak{C} , then $U \subseteq R \cup T$ and

$$\mid U \mid \leqslant \frac{\alpha^2 n}{2} + \frac{\alpha^2 n}{2} = \alpha^2 n.$$

Since $\mathfrak C$ is a loose cycle and $n\in 2\mathbb N$, we have $|U|\in 2\mathbb N$. So P absorbs U to obtain a loose Hamilton cycle of H.

2 Proof of Lemma 1, 1

Proof of Lemma 1.1 For $S \in {V \choose 2}$, a 5-set

 $T = \{u_1, \dots, u_5\}$ is said to absorb S if there is a path in H [T] on five vertices and a path in $H[S \cup T]$ on seven vertices both with endpoints u_1 and u_5 .

Claim 2.1 For any 2-set $S \in \binom{V}{2}$ with S = K

or $S \cap K = \emptyset$, there are at least $\binom{n-2}{5}/500$ 5-set

 $T \in {V \setminus K \choose 5}$ that absorb S.

Proof Set $S = \{v_1, v_2\}$.

Case 2.1 $S \cap K = \emptyset$.

For any 2-set $S' \in \binom{V \setminus K}{2}$, since S' and K are independent, we have $\deg(S') > (1/4 + \gamma)n$.

Set $V' = V \setminus K$, we can select $T = \{u_1, u_2, u_3, u_4, u_5\}$ as follows. Let $u_1 \in V' \setminus S$ be an arbitrary vertex, then u_1 has n-4 choices; select $u_2 \in$

 $(N(u_1,v_1)\setminus\{v_2\})\cap V'$, then u_2 has $(1/4+\gamma)n-3$ choices; select $u_3\in (N(u_1,u_2)\setminus\{v_1,v_2\})\cap V'$, then u_3 has $(1/4+\gamma)n-4$ choices; select $u_4\in (N(u_2,v_2)\setminus\{v_1,u_1,u_3\})\cap V'$, then u_4 has $(1/4+\gamma)n-5$ choices; select $u_5\in (N(u_3,u_4)\setminus\{v_1,v_2,u_1,u_2\})\cap V'$, then u_5 has $(1/4+\gamma)n-6$ choices. There are at least

$$(n-4)\left(\left(\frac{1}{4}+\gamma\right)n-3\right)\left(\left(\frac{1}{4}+\gamma\right)n-4\right) \cdot \left(\left(\frac{1}{4}+\gamma\right)n-5\right)\left(\left(\frac{1}{4}+\gamma\right)n-6\right)/5! \geqslant \left(\frac{n-2}{5}\right)/500$$

choices for T. We have $u_1u_2u_3$, $u_3u_4u_5 \in E(H)$ and $u_1v_1u_2$, $u_2v_2u_4$, $u_4u_3u_5 \in E(H)$, so $T = \{u_1, u_2, u_3, u_4, u_5\}$ is indeed a 5-set which absorb S.

Case 2.2 S = K.

We select $T = \{u_1, u_2, u_3, u_4, u_5\}$ as follows. Firstly we select u_2 from $V \setminus (N(S) \cup S)$, then $\{u_2, v_1\}, \{u_2, v_2\}$ are both independent with S, so $\deg(u_2, v_1), \deg(u_2, v_2) > (1/4+\gamma)n$. Select $u_1 \in N(u_2, v_1) \setminus \{v_2\}$, we have $(1/4+\gamma)n$ choices; select $u_3 \in N(u_2, u_1) \setminus \{v_1, v_2\}$, we have $(1/4+\gamma)n-2$ choices; select $u_4 \in N(u_2, v_2) \setminus \{v_1, u_1, u_3\}$, we have $(1/4+\gamma)n-2$ choices; select $u_5 \in N(u_3, u_4) \setminus \{v_1, v_2, u_1, u_2\}$, we have $(1/4+\gamma)n-4$ choices, so there are at least

$$\left(n-2-\frac{n}{4}\right)\left(\frac{1}{4}+\gamma\right)n\left(\left(\frac{1}{4}+\gamma\right)n-2\right) \cdot \\ \left(\left(\frac{1}{4}+\gamma\right)n-2\right)\left(\left(\frac{1}{4}+\gamma\right)n-4\right) \setminus 5! \geqslant \\ \left(\frac{n-2}{5}\right) / 500$$

choices for T. We have $u_1u_2u_3$, $u_3u_4u_5 \in E(H)$ and $u_1v_1u_2$, $u_2v_2u_4$, $u_4u_3u_5 \in E(H)$, So $T = \{u_1, u_2, u_3, u_4, u_5\}$ is indeed a 5-set which absorb S.

From now on, whenever we mention a 5-set absorb a pair $v_1, v_2 \in V$, we always assume that $\{v_1, v_2\} = K$ or $\{v_1, v_2\} \cap K = \emptyset$.

Given two distinct vertices $v_1, v_2 \in V$, let $A(v_1, v_2)$ be the family of 5-sets $T \in \binom{V \setminus K}{5}$ that absorb $\{v_1, v_2\}$. By Claim 2.1,

$$|A(v_1,v_2)| \geqslant {n-2 \choose 5}/500.$$

Let \mathfrak{F} be a family obtained by selecting every 5-set from $\binom{V\backslash K}{5}$ independently with probability

$$p = \frac{\alpha n}{20\binom{n-2}{5}}.$$

Then $\mid \mathfrak{F} \mid$ satisfies binomial distribution $B\left(\binom{n-2}{5}, p\right)$, so its expectation is

$$\mathbb{E}\left[\mid \mathfrak{F}\mid \right] = \binom{n-2}{5} p = \frac{\alpha n}{20},$$

the variation of $|\mathfrak{F}|$ is

$$\operatorname{Var}[\mid \mathfrak{F}\mid] = {n-2 \choose 5} p(1-p).$$

By the Chebyshev's inequality,

$$\mathbb{P}\left(\left|\left[\mathfrak{F}\right] - \mathbb{E}\left[\left|\left[\mathfrak{F}\right]\right]\right] \geqslant \mathbb{E}\left[\left|\left[\mathfrak{F}\right]\right]\right) \leqslant \frac{\operatorname{Var}\left[\left|\left[\mathfrak{F}\right]\right]\right]}{\mathbb{E}^{2}\left[\left|\left[\mathfrak{F}\right]\right]\right]} = \frac{1 - p}{\binom{n - 2}{5}p} = o(1),$$

which implies that

$$\mathbb{P}\left(\mid \mathfrak{F}\mid \geqslant \frac{\alpha n}{10}\right) = \mathbb{P}\left(\mid \mathfrak{F}\mid \geqslant 2\mathbb{E}\left[\mid \mathfrak{F}\mid \right]\right) \leqslant o\left(1\right).$$

For any $v_1, v_2 \in V$, let $X_{\langle v_1, v_2 \rangle}$ be the number of 5-sets in \mathfrak{F} which absorb $\{v_1, v_2\}$. Then $X_{\langle v_1, v_2 \rangle}$ has binomial distribution and

$$\begin{split} \mathbb{E}\left[X_{\langle v_1, v_2\rangle}\right] &= \mathbb{E}\left[\mid A\left(v_1, v_2\right) \cap \mathfrak{F}\mid\right] \geqslant \\ \frac{\binom{n-2}{5}}{500} p \geqslant \frac{\alpha n}{10000} > 0\,, \end{split}$$

by the Chernoff's bound,

$$\mathbb{P}\left(X_{\langle v_1, v_2 \rangle} \leqslant \frac{\mathbb{E}\left[X_{\langle v_1, v_2 \rangle}\right]}{2}\right) \leqslant \exp\left(-\frac{\mathbb{E}\left[X_{\langle v_1, v_2 \rangle}\right]}{2}\right) = o(1).$$

Let Y be the number of intersecting pairs of 5-sets in \mathfrak{F} , then

$$\mathbb{E}\left[Y\right] \leqslant 5\binom{n-2}{5}\binom{n-2}{4}p^2 \leqslant \frac{\alpha^2n}{10},$$

by the Markov's inequality, we have

$$\mathbb{P}\left(Y > 2\mathbb{E}\left[Y\right]\right) < \frac{\mathbb{E}\left[Y\right]}{2\mathbb{E}\left[Y\right]} = \frac{1}{2}.$$

Therefore, with positive probability, there exists a family \mathfrak{F} , such that

(I) $|\mathfrak{F}| \leq \alpha n/10$.

(
$$\parallel$$
) For any $\{v_1, v_2\}, |A(v_1, v_2) \cap \mathfrak{F}| \geqslant$

 $\alpha n/20000 \geqslant 2\alpha^2 n$.

(\blacksquare) The number of intersecting pairs of 5-set in \Re is at most $\alpha^2 n/5$.

Let \mathfrak{F}' be obtained from \mathfrak{F} by deleting all intersecting sets and sets that do not absorb any $\{v_1, v_2\}$, then

(I) $|\Re'| \leq \alpha n/10$.

(\parallel) For any $\{v_1, v_2\}$, $\mid A(v_1, v_2) \cap \mathfrak{F}' \mid \geqslant \alpha^2 n + 1$.

For any $S \in \mathfrak{F}'$, H[S] contains a path on five vertices. We connect these paths to a new path. Suppose that we have obtained a path P' by connecting some paths in \mathfrak{F}' , select an unused path Q, let u, v be the endpoints of P' and Q, respectively. Since

$$\deg(u,v) - 2 - (6 \mid \mathfrak{F}' \mid -2) \geqslant$$

$$\left(\frac{1}{4} + \gamma\right)n - \frac{3\alpha n}{5} > 0,$$

we can select a vertex $x \in N(u,v) \setminus (K \cup P' \cup \mathfrak{F}')$, and use uxv to connect P' and Q. We can do this until we obtain a path which covers all 5-sets in \mathfrak{F}' , after absorbing K, we obtain a path P, which contains at most

$$|V(P)| \leqslant \frac{\alpha n}{10} \cdot 5 + \left(\frac{\alpha n}{10} - 1\right) + 2 \leqslant \alpha n$$

vertices such that $\{u,v\} \cap K = \emptyset$, here u,v are the endpoints of P.

Suppose that $U \subset V \setminus V(P)$, $|U| \leq \alpha^2 n$, and $|U| \in 2\mathbb{N}$, let S_1, \dots, S_q $(q \leq \alpha^2 n/2)$ be an arbitrary partition of U into sets of size 2, since $|A(S_i) \cap \mathfrak{F}'| \geq \alpha^2 n + 1$, we can select an unused $T_i \in \mathfrak{F}'$ for each S_i . This implies that P absorbs U. This completed the proof.

References

- [1] ORE O. A note on Hamiltonian circuits[J]. Amer. Math Monthly, 1960, 67: 55.
- [2] TANG Y, YAN G. An approximate Ore-type result for tight Hamilton cycles in uniform hypergraphs[J]. Discrete Math, 2017, 340: 1528-1534.
- [3] CZYGRINOW A, MOLLA T. Tight codegree condition for the existence of loose Hamilton cycles in 3-graphs[J]. SIAM J. Discrete Math, 2014, 28(1): 67-76.
- [4] HÀN H, SCHACHT M. Dirac-type results for loose Hamilton cycles in uniform hypergraphs[J]. J. Comb. Theory Ser. B, 2010, 100: 332-346.