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A modified coherent diffraction algorithm based on the total
variation algorithm for insufficient data
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Abstract; X-ray coherent diffraction imaging (CDI) is a lensless imaging technology. Its basic
principle is to illuminate an isolated sample with a highly coherent X-ray beam, then collect the
information of the coherent diffraction pattern in the far field, and last restore the real structure
information of the sample from the diffraction pattern by using the the CDI algorithm. Due to the
limitation of experimental technology experimental data are usually defective, thus tolerance to
noise and missing data is an important indicator for the CDI algorithm. Here a modified coherent
diffraction algorithm by adding the total variation (TV) constraint into the CDI reconstruction
algorithm was developed to improve the tolerance to noise and missing data. Then the
performance of the modified coherent diffraction algorithm based on the total variation algorithm
was verified using simulation data and experimental data. The results show the modified
algorithm can accelerate convergence and improve the tolerance to noise and missing data.
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0 Introduction

In 1999, Miao et al. ' experimentally realized
coherent diffraction imaging (CDI) of aperiodic
structures for the first time. Because of the

construction of  third-generation synchrotron
radiation sources, coherent diffraction imaging, a
lenless method™ , has been widely used in biology
and  material  science"*, A variety  of
reconstruction algorithms have been developed
based on the Gerchberg-Saxton algorithm, such as
error-reduction ( ER) algorithm, hybrid input-
output ( HIO) algorithm, guide HIO (GHIO)
( 0SS)

algorithm. The basic principle of these algorithms

algorithm, oversampling smoothness
is that different constraints are used to guide the
direction of iteration for achieving the purpose of
the improved algorithm. The TV-based CDI
reconstruction algorithm  follows the same
improved route. From the current theory of CDI,
data analysis for coherent X-ray imaging (CXI) is
still a far from fully developed and enhanced
algorithms based on new constraints. X-ray CDI
involves irradiating a nonperiodic sample with X-
rays, collecting the coherent diffraction image at
the far field, and using a phase retrieval algorithm
to obtain a high-resolution image of the samplet™.
These steps show that there are two main factors
that affect the reconstruction of a coherent
diffraction image: the quality of the acquired
diffraction pattern and the ability of the phase
retrieval algorithm. Therefore, for better CDI
reconstruction results, we need to focus on two
aspects: optimize experimental methods and
improve the experimental system to obtain higher-
quality diffraction patterns, and optimize phase
retrieval and reconstruction algorithms to obtain
the reconstructed structure.

In real circumstances, noise and missing data
in the central area of the image often negatively
affect the reconstruction of the image of the
The noise level in actual experiments

reach 25% or

challenging for many reconstruction algorithms.

samplel®.

can easily higher, which is

The following theory about the missing data
problem has been proposed:

D, —1

7 :T‘i

where D; is the number of missing pixels in the

=Ty e2 @)

direction, i represents different diffraction
directions, o; is the oversampling rate, and 7, is
the number of missing waves. For example, if the
oversampling rate of a diffraction pattern in the x
direction o, is 3, then if the lost pixels in the x
direction D; is 7, the number of missing wave 5, =
1. When #;, > 1, some structural information
about the sample has been permanently lost,
which introduces artifacts into the reconstructed
images. The missing structural information cannot
be recovered by iterative algorithms. Therefore,
an optimized phase retrieval and reconstruction
algorithm that is more accurate with respect to
noise and missing data in central area plays an
important role in improving the resolution of
reconstructed images-?. This paper presents a
reconstruction algorithm based on total variation
(TV) constraints. According to the reconstruction
results obtained with simulated data and experimental
data, the reconstruction algorithm accelerates the
convergence speed and improves the tolerance to noise

and missing data in the central area.

1 TV-based CDI reconstruction algorithm

1.1 CDI reconstruction algorithm

Many CDI reconstruction algorithms are based on
iteration between real space and reciprocal space.
Different reconstruction algorithms have different
constraints or filters in real space and reciprocal space.
Taking the commonly used hybrid input-output(HIO)
algorithm' and the oversampling smoothness (OSS)
algorithm'™ as examples, the real-space constraints of
the HIO algorithm are a finite-size constraint and a
positive-density constraint, that is, a support
constraint, and the reciprocal-space constraint is the
amplitude constraint of the experimental data. A
smoothing filter based on the HIO algorithm was
added to the OSS algorithm. The process for the HIO

algorithm is shown in Fig. 1.
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Fig.1 (a) CDI iterative algorithm flowchart and (b) HIO algorithm flowchart that corresponds to (a). |F., (q) | is the

experimentally measured amplitude, which is the reciprocal space constraint; the support constraint is the real-space constraint,

and p () is the reconstruction result of each iteration. (¢) OSS algorithm flowchart in which a smoothing filter based on (b) was added

1.2 TV principle
The wusual theory of image reconstruction
involves a transformation:

WX =Y (2)
where W is the system matrix [W, ;] xxm composed
of N row vectors W, , X is the unknown image,
and Y is the experimental data, 1i. e., the
diffraction pattern. In theory, the image X that
needs to be reconstructed can be obtained directly
2.

experimental data are usually insufficien

with  Eq. However, the measured

) 5o a
new method to solve this issue must be developed.

To solve the problem of Eq. (2), TV
minimization was considered an effective method
for obtaining high-quality reconstructed images
from insufficient data. The idea of minimizing TV

is to find an X that satisfies the following:

min || Xrv | =minD>) | VX, |

sat

s.t. WX =Y (3)

If the pixel values are labeled X,, then the
image gradient magnitude, also known as the
(RN
. is

7 X»*l-,/ )Z _'_ (X,\.I

gradient image

| VX, =/ (X.,

7X.\.171)2
)
The TV of the image is the /,-norm of the

gradient image, as shown in Eq. (5):

H X.\‘.,l H TVZZ ‘ VXs.z ‘:

Sat

DX

sat

7Xx71.1>2+(Xx.1 7Xx.171)2 (5)

Minimization of TV is a useful way to reduce
noise while preserving the edge in the image
processing field. The mainstream method used to
minimize TV is the gradient descent method,

where the gradient of the image is defined as

d
PRI (L

(X, XD+ X, — XD

et (X, X ) X, X,
(X — X0 B
et X — X0+ (X, — X))’
(X, — X,

et X — X0+ X — Xoi)?

(6)
where ¢ is a small positive number (e =1 X 10°%)
added to the denominator to prevent the special
case where the denominator is zero.
TV-based

recovering an image from sparse samples of its

According to a algorithm for
Fourier transform ™. The premise that this
optimization method is effective is that the gradient
image of the sample is sparse. If the number of
pixels in a picture with zero or near zero is twice
the number of non-zero pixels, then this picture is
sparse.
1.3 TV-CDI reconstruction algorithm

As shown in Fig. 2, TV constraint was added
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Fig.2 (a) TV-HIO algorithm flowchart and (b) TV-OSS algorithm flowchart where the TV constraint was added to

to the CDI reconstruction algorithm on the basis of
the TV-based gradient descent reconstruction
algorithm (POCS-TVM)MY . TV constraint plays
a role in guiding the direction of iteration.

The TV gradient descent constraint is

defined as

! " ~ INX Ny
da=|pi(r)—0 () .G, () =%
(; V4 " (
Gy =8 ) — ad G
| G(r) |
(7

where d, is the difference factor between the
reconstructed image of the last iteration and the
image after the support constraint, a is a relaxation
factor, and p’,-(r) and p”,(r) are real-space sample
images reconstructed at different stages of the
algorithm. Eq. (7) shows that the TV constraint
can be added to any CDI iterative reconstruction
algorithm, The original HIO and OSS algorithms
had a TV constraint added to their flowcharts to
yield TV-HIO and TV-OSS.

2 Simulation results

To verify the effectiveness of the algorithm,
we performed a series of simulation experiments
using different noise intensities and different
amounts of missing data in the central area. We
used the HIO, TV-HIO, OSS, and TV-0OSS
algorithms to reconstruct the image and compared
the results of the original algorithms with the

reconstruction results of the algorithms with the

TV constraint.

As shown in Fig. 3, the original image used in
the simulation experiment was a “lLena” image
(256 X 256 pixels) and the oversampling rate was
set to 3. 16 independent calculations for each case
were performed. Considering the quality of
reconstruction and calculation time, the TV
constraint was used every five iterations and the
gradient descent was calculated 10 times for each
TV constraint. The relaxation factor « in the TV
constraint was 0. 2 and the relaxation factor 8 in
the support constraint was 0. 8. We performed
10 000 iterations and finished the reconstruction
with 100 iterations of the error-reduction (ER)
algorithm to let the algorithm converge to the

closest local minimum#*7,

As shown in Figs. 4 and 5, we added five
levels of Poisson noise, 5%, 10%, 15%, 20%,
and 25% separately, into the simulated diffraction
patterns. The average number of photons per pixel
in the central area of 100X100 pixels region of the
diffraction pattern with the above five different
noise was calculated, it is 4. 2 X 10", 1. 06 X 10",
4.27X10%,2.37X10°,1. 5X 10° photons per pixel
respectively. The four levels of missing data at the
center, 7X7, 10X10, 13X 13, and 19X 19 pixels,
were set separately.

The noise intensity was calculated as follows:

SV ] Foere k) |—| Fre () ||

k—k
ow

R noise — (8)
2 ‘ Fnoiswfrco (k ) ‘

k=k oy




422 PEMFHRARAKFFR % 50 &
T w15
o :
10
5
0
-5
100 200 300 400 500 600 700 °
Fig.3 (a) “Lena” image, 256 X256 pixels, and (b) simulated diffraction pattern, no noise
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All sets have a 7X 7 pixels data loss at the center. The black square area in (a) is the low frequency
area that does not participate in the noise intensity calculation.
Fig. 4 Simulated patterns of Poisson noise in noise-free. 5%, 10%. 15%. 20% . and 25% intensity. respectively
where | Fou (F) | represents the noise-free Fourier magnitudes with Poisson noise. Because
noise-iree - e -

more than 90% intensity of the pattern is located

Fourier magnitudes and | F . (k) | represents the
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(d) 19x19 pixels

(c) 13x13 pixels

Fig. 5 Center of the enlarged diffraction pattern with data losses

of 7X7, 10X10, 13X 13, and 19X 19 pixels, respectively

in the central low-frequency region and the Poisson
noise affects mainly the high-frequency region,
part of the central area data was not involved in the
calculation. As an example, the pattern size of the
simulation experiment was 768 X 768 pixels while
the data in the central area of 100X 100 pixels was

not included in the calculation.

We used the real-space error coefficient as a
criterion for judging the quality of reconstruction.

It is defined as

Rewr =) X — /0 X o

where X .. is the reconstructed image and X is

X o (9

the original image. The real-space error coefficient
can be used to see visually the degree of difference
between the reconstructed image and the original
image.

The results of our simulation experiments are
presented in Tab. 1. The data show that under the
same conditions, the real-space error coefficients of
the reconstructed image after TV constraint are
significantly reduced, which improves the accuracy
of convergence and the tolerance to noise intensity
and data loss in the central area.

The the
various algorithms to perform 10 000 iterations is

presented in Tab. 2. The data show that adding the

computational time required for

TV constraint increased the computational time by
about 150 s for both HIO and OSS algorithms,
increase 23% computational time for HIO while
11% for OSS.

correlations with other factors.

and there were no obvious

Tab.1 Real-space error coefficients of the four algorithms under different simulation conditions

missing data

algorithm pixels
5% 10% 15% 20% 25%
7X 7 10.97% 12.75% 13.83% 14.73% 15.62%
HIO 10 X 10 10.70% 12.80% 14.19% 15.39% 15.53%
13 X 13 11.32% 13.02% 15.30% 16.56 % 19. 96 %
19 X 19 12.07% 19.33% 19.15% 20.69% 28.41%
7X 7 7.2% 10.81% 12.78% 13.85% 14.32%
10 X 10 7.31% 11.05% 12.85% 13.80% 14.43%
TV-HIO
13 X 13 8.14% 11.56% 15.45% 14. 86 % 16.92%
19 X 19 9.31% 13.33% 16.38% 20. 64 % 21.21%
7X7 7.82% 9.42% 10.97% 11.85% 12.72%
0SS 10 X 10 7.84% 9.49% 11.0% 11.61% 11.92%
13 X 13 7.85% 9.86% 10.71% 12.52% 12.68%
19 X 19 11.13% 11.42% 11.23% 13.09% 15.66%
7X 7 1.67% 3.21% 5.66% 7.46% 9.08%
10 X 10 1.62% 3.27% 5.88% 7.60% 9.27%
TV-0SS
13X 13 2.17% 3.74% 5.94% 8.94% 9.62%
19 X 19 3.25% 5.46% 6.95% 10.42% 11.85%
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Tab.2 Computational time for 10 000 iterations of the four algorithms under different conditions (unit:s)

missing date

algorithm pixels
5% 10% 15% 20% 25%
7TX 7 646. 80 642. 68 646. 56 666. 21 670. 96
10 X 10 647.28 645. 27 648.61 651.78 652. 35
HIO
13X 13 649.73 647.41 649. 58 650. 79 650. 37
19 X 19 648.73 649.79 650. 35 651.01 649. 83
7TX 7 787.50 791.97 792.77 794.11 795.97
10 X 10 787.47 792.09 797.11 797.99 796. 96
TV-HIO
13 X 13 787.58 790.78 792.92 793.17 798.01
19 X 19 789. 00 790. 70 796.59 798. 96 792.92
7TX7 1295. 75 1300. 86 1301. 94 1292.11 1293. 57
10 X 10 1296. 57 1298. 27 1292. 46 1294. 68 1299.11
0SS
13X 13 1292. 69 1298. 92 1321.99 1295. 48 1302.52
19 X 19 1298. 15 1295. 28 1293.92 1302. 34 1299.78
7TX7 1446. 38 1453. 81 1445.78 1440. 77 1448.53
10 X 10 1459. 44 1452. 48 1457. 28 1440. 66 1445. 68
TV-0SS
13X 13 1448. 84 1450. 80 1456. 86 1445. 68 1439. 76
19 X 19 1453.78 1452. 56 1434. 28 1448. 60 1437. 60
HIO TV-HIO 0SS

10.97% 7.2% 7.82%

missing date
=7x7 pixels,
Noise=5%

15.66%

missing date
=19x19 pixels,
Noise=25% |

Fig. 6 Reconstruction results and reconstruction error coefficients of the four algorithms obtained

under the best and worst simulation conditions

To see the contrast more intuitively, we perception show that adding the TV constraint
selected the reconstructed images obtained under improved the reconstruction quality and accuracy.
the best and the worst simulation conditions, Under the worst simulation conditions, the real-
shown in Fig. 6. space error coefficient of the HIO algorithm was as

Under the best simulation conditions, the four high as 30% , which basically announced the failure
algorithms basically reconstructed a clear image, of the reconstruction. After adding the TV

i

but the real-space error coefficient and visual constraint, we see a clear outline of “Lena”,
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confirming the improvement of the reconstruction
quality. The reconstruction result of the TV-OSS
algorithm was very good, even under the worst
real-space error

simulation conditions.  The

coefficient almost reached the reconstruction
precision of the HIO algorithm under the best

simulation conditions.

3 Experiment data reconstruction

To further demonstrate the advancement of
the algorithm, we used the diffraction pattern
from a CDI experiment on magnetotactic bacteria,
shown in Fig. 7', This diffraction pattern is
obtained after a series of pre-processing steps and
can be directly reconstructed. Compared with Fig.
4, we can find that the noise of this diffraction

pattern is relatively high.

100 200 300 400 500 600

Fig. 7 The 700 X 700 pixels diffraction pattern of the
magnetotactic bacteria. The inset is the center of the
enlarged diffraction pattern, where the data loss is 19 X 19
pixels

According to the theory on oversampling, we
oversampling rate in the

After

calculation, the oversampling rate was 11. 7 in the

can estimate the

horizontal —and  vertical  directions.
horizontal and 3. 4 in the vertical. Therefore, we
started with loose support of 200X 60 pixels, then
obtained tighter support from the dozens of
reconstruction images with loose support by
setting the intensity threshold. By repeating this

process, tighter support was obtained, as shown in

Fig. 8.
(a)

Fig. 8 Tight support and loose support used
in the reconstruction process

The four algorithms were used to reconstruct
the diffraction pattern of the magnetotactic bacteria
shown in Fig. 7. The results, which are roughly
similar, are shown in Fig. 9. Compared with the
results of Ref. [ 147], the reconstruction results
show that the reconstructed contour is reliable. In
a real experiment, the real-space error cannot be
calculated and additional parameters are required to
measure the quality of reconstruction. The most
commonly used convergence consistency of the
reconstruction results and the phase retrieval
transfer function are methods that meet our needs.

Each of the four algorithms performed 200
independent reconstructions and the convergence of
the reconstruction results was analyzed. The
between the 200

difference results of each

reconstruction algorithm is calculated as follows:

2 o (xy) —p,(x.3) |

T,y

D,, == ,
Dl eay) Fo ey D
(sst=1,2,3,+,200) () (s F# 1)
The smaller the better the
After

fitting the difference between the 200 results, the

difference, the

convergence of the reconstruction result.

reconstruction convergence of the four algorithms
becomes intuitive. The fitting curve is shown in
Fig. 10, where the abscissa is the difference value
and the ordinate is the probability distribution
value as a function of the difference value. The
smaller the difference in the peak of the fitting
curve and the smaller the half-height width, the
better the convergence of the reconstruction
result. After adding the TV constraint, the

convergence improved, which agrees with the
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Fig. 9 Average of 200 reconstruction results of the four algorithms

expected results of the simulation experiment.

0.15
------- HIO
TV-HIO
0SS
—TV-0SS
0.10F i
z
g
E D
0.05 N
0 I . . .
0 5% 10% 15% 20% 25%
difference

Fig. 10 Fitting curve of convergence of the four algorithms

In addition to verifying the accuracy of the
reconstruction by the algorithms, we calculated
the phase retrieval transfer function (PRTF) curve
of the reconstruction results of the four algorithms

as follows!®,

| Fa

PRTF(g) = 1D

‘ exp
where ‘ F.

reversing the reconstruction result and | F.,

? is the diffraction pattern obtained by

9 .
1S

the experimentally measured diffraction pattern,
which is equal to the square of the amplitude. The
PRTFs of the reconstruction results of the four
algorithms are shown in Fig. 11, where the red
horizontal line is the reference value of 1/e"% and
0. 5.
results of the OSS and TV-OSS algorithms were
significantly better than those of the HIO and TV-

The figure shows that the reconstruction

HIO algorithms and that results of the TV-HIO
algorithm were better than those of the HIO
algorithm. The reference value shows that the
reconstruction results of the OSS and TV-OSS
algorithms are reliable. From Fig. 11, we can draw
the conclusion that the reconstruction was more

accurate after adding TV constraints.

1.0

0.8
w 0.67
4
=
(=¥

0.4+

0.2F

—TV-0SS
0 L L L L L ]
0 5 10 15 20 25 30
spatial frequency/(1/pum)
Fig. 11 PRTF curves of the reconstruction

results of the four algorithms

4 Conclusion

We presented our proposal of a new constraint
called total variation (TV) minimization that can

be added

reconstruction algorithm.

diffraction iterative

We added the TV
constraint to the popular HIO and OSS algorithms
to yield the TV-HIO and TV-OSS algorithms.
the
data

to any coherent

using

the

According to reconstruction results

simulation and experimental data,
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addition of the TV constraint improved the
tolerance to noise and missing data, and improved
the accuracy and consistency of the reconstructed
image.

In addition, because the TV algorithm is an
iterative algorithm, it is easy to add it to an
iterative reconstruction algorithm. TV minimization
can be added to the PIE algorithm™™ and other
coherent diffraction 3D reconstruction algorithms™
that have wide range for development and application.

The TV-based CDI reconstruction algorithm
had been developed on the basis of previous
algorithms to improve the performance of the
algorithm and provide more algorithm choices for
experimenters. At present, this algorithm is only
used in simulation data and biological cell
experimental data. In the future, it will need to be

continuously improved in the data processing

process of different types of experimental samples.
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